一种基于支持向量回归的建模方法

文档序号:10594623阅读:257来源:国知局
一种基于支持向量回归的建模方法
【专利摘要】一种基于支持向量回归的建模方法,步骤如下:一、对卫星遥测数据进行小波分解,获取其奇异点;二、将卫星遥测数据通过奇异点分割为多个数据段;三、对各个数据段分别使用支持向量回归建模,得到定量模型;四、对各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持向量回归模型,即定量模型;五、对在卫星遥测数据奇异点附近的原始数据进行量化,分配数据符号,得到数据符号集合;六、根据卫星遥测数据,与步骤五中得到的数据符号集合,生成多维数据符号序列,结合模式符号集合,生成模式转移元组;七、对得到的模式转移元组进行D?Markov重构,得到D?Markov机定性模型;八、将D?Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型。
【专利说明】
一种基于支持向量回归的建模方法【
技术领域

[0001]本发明提供一种建模方法,特别涉及一种基于支持向量回归的建模方法,属于基于卫星遥测数据的建模领域,能够仅通过卫星遥测数据对卫星设备建立混合模型。【【背景技术】】
[0002]根据建模方式的不同,系统建模技术可分为基于机理与数据驱动两大类。基于机理的建模通过分析系统内部机理结构建立精确模型,而数据驱动的建模则使用系统历史数据,重构系统行为,从而建立近似模型。传统建模方法假设系统数据处于稳态,而卫星遥测数据变化复杂,具备多个工作模式,针对卫星数据,传统的建模方法存在诸多缺陷。
[0003]常用的数据驱动的定量建模方法有线性回归(Linear Regress1n)、自回归滑动平均(Auto Regressive Moving Average)、支持向量回归(Support Vector Regress1n) 与人工神经网络(Artificial Neural Network)等。这些建模方法首先规定了带有未知参数的基本模型结构,随后使用系统的历史数据来估计各个参数的值,最终得到系统的近似模型。但这些基本模型所对应均为光滑曲线,对仅有一个工作模式的系统,这些建模方法能够取得良好的效果,但对拥有多个工作模式的混合系统,建模精度将大大降低,特别是在模式切换点附近,建模误差无法接受。
[0004]常用的数据驱动定性建模方法有符号序列分析、D-Markov回归等。这些建模方法首先将系统历史数据量化,得到定性的符号序列,随后通过统计学分析符号序列间的关联关系,得到系统的定性统计学模型。由于卫星遥测数据是多个模式下的数据集合,因此为建立准确统计模型,需要分析的字符串很长,给建模带来了困难。
[0005]本专利所提出的一种基于支持向量回归的建模方法使用基于小波的奇异点识别方法探测混合模式切换时所引起的奇异点,随后使用支持向量回归与D-Markov回归,根据卫星遥测数据建立混合模型。【
【发明内容】

[0006]1、发明目的:
[0007]本发明的目的是提供一种基于支持向量回归的建模方法,它针对具备多个工作模式的混合系统,使用该系统的历史数据,重构其行为,建立该系统的混合模型。
[0008]2、技术方案:
[0009]本发明一种基于支持向量回归的建模方法,其步骤如下:
[0010]步骤一:对卫星遥测数据进行小波分解,获取其奇异点;[0011 ]所述的“对卫星遥测数据进行小波分解,获取其奇异点”,做法如下:当卫星遥测数据为单维时,使用小波对其进行分解,并重构得到各细节层,当细节层在某处的幅值明显高于其附近时,即为一个奇异点;当卫星遥测数据为多维时,需要对所有的维度单独进行小波分解,所有奇异点之集合即为总的奇异点。
[0012]步骤二:将卫星遥测数据通过奇异点分割为多个数据段;
[0013]所述的“通过奇异点分割为多个数据段”,做法如下:卫星遥测数据以奇异点为分界点,划分为多个数据段。
[0014]步骤三:对各个数据段分别使用支持向量回归建模,得到定量模型;
[0015]所述的“使用支持向量回归建模”,做法如下:对任意数据段,当数据为单维度数据时,以时间为输入,该数据段为输出,使用支持向量机进行建模;当数据为多维度时,则以历史数据中标记的输入输出为准使用支持向量机建模。需要指出的是,当数据为单维度时,需要将时间轴平移到〇时刻开始。最终,得到卫星遥测数据各个数据段的支持向量回归模型。
[0016]步骤四:对各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持向量回归模型,即定量模型;
[0017]所述的“各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持向量回归模型,即定量模型”,做法如下:在步骤三中对所有数据段使用了支持向量回归建模,每个数据段对应于一个支持向量回归模型,即定量模型。当任意两个定量模型近似, 即所有模型参数的相对误差均在5%之内时,即认定两者为相同的定量模型,两个定量模型将通过参数取平均值的方式融合成为一个新的定量模型,以此类推,将所有可融合的定量模型进行融合,并分配给各个定量模型唯一的模式符号。各个数据段的模式符号与其所对应的定量模型的模式符号一致,此时一个模式符号即对应卫星遥测数据中蕴含的一个工作模式。后面对系统的模式与其对应的模式符号不加区分。
[0018]步骤五:对在卫星遥测数据奇异点附近的原始数据进行量化,分配数据符号,得到数据符号集合;
[0019]所述的“在卫星遥测数据奇异点附近的原始数据进行量化,分配数据符号,得到数据符号集合”,做法如下:根据系统特性,首先选择D-Markov的长度D,随后对卫星遥测数据模式切换点前D个数据点进行量化,即将卫星遥测数据幅值所在区间划分为多个子区间,随后对落入不同区间的数据分配数据符号,落入同一区间的数据分配相同数据符号。
[0020]步骤六:根据卫星遥测数据,与步骤五中得到的数据符号集合,生成多维数据符号序列,结合模式符号集合,生成模式转移元组;
[0021]所述的“根据卫星遥测数据,与步骤五中得到的数据符号集合,生成多维数据符号序列,结合模式符号集合,生成模式转移元组”,做法如下:依次分析卫星遥测数据,当出现一个模式切换点时,将该模式切换点前D个数据点所对应的数据符号依次记录,得到一个数据符号序列,该数据符号序列和模式切换前后所处模式对应的模式符号一起构成一个模式转移元组。
[0022]步骤七:对得到的模式转移元组进行D-Markov重构,得到D-Markov机定性模型;
[0023]所述的“D-Markov机”指每个状态代表一个或多个长度为D的数据序列的有限状态自动机。
[0024]所述的“对得到的模式转移元组进行D-Markov重构,得到D-Markov机定性模型”, 做法如下:统计所有模式转移元组,由模式a转移到模式邱勺模式转移元组出现次数记为Nae, 在这Nae个模式转移元组中,数据符号序列s出现的次数记为N%,那么当当前模式为a,当前数据量化得到的序列为s时,模式转移为邱勺概率为NWNae,一起组成模式概率转移元组〈a, s,Nsae/Naf!,。所有模式概率转移元组一起组成D-Markov机定性模型。
[0025]步骤八:将D-Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型。
[0026]所述的“将D-Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型”,做法如下:将D-Markov机定性模型中模式符号与所对应的定量模型相关联,便得到了混合模型。在该混合模型中,D-Markov机的模式代表了卫星遥测数据所蕴含的模式,D-Markov机的切换条件代表了卫星遥测数据模式切换的条件,各个模式所对应的支持向量回归模型代表卫星遥测数据在该模式下的连续行为。[〇〇27]优点及功效:
[0028]本发明的优点是能够根据混合系统的历史数据得到建模模型,与传统定量模型相比能够表示系统的工作模式,且有着更高的精确程度。【【附图说明】】[〇〇29]图1原始数据图。
[0030]图2小波奇异点识别图。[〇〇31]图3数据段1支持向量回归模型。[〇〇32]图4数据段2支持向量回归模型。[〇〇33]图5数据段3支持向量回归模型。[〇〇34]图6数据段4支持向量回归模型。[〇〇35] 图7建模模型。[〇〇36]图8本发明所述方法流程图。【【具体实施方式】】
[0037]下面结合附图1-8,对本发明进一步说明如下:[〇〇38]方法实施对象为一三模式系统,观测数据为一维,见图1所示。
[0039]本发明一种基于支持向量回归的建模方法,其步骤如下:
[0040]步骤一:对系统历史数据进行小波分解,获取其奇异点;[0041 ]步骤二:将原始历史数据通过奇异点分割为多个数据段;
[0042]步骤三:对各个数据段分别使用支持向量回归建模,得到定量模型;[〇〇43]步骤四:对各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持向量回归模型;
[0044]步骤五:对在奇异点附近的原始数据进行量化,分配数据符号,得到数据符号集合;
[0045]步骤六:根据原始数据,结合步骤四与步骤五中得到的符号集合,生成多维符号序列,结合模式符号集合,生成模式转移元组;
[0046]步骤七:对得到的模式转移元组进行D-Markov重构,得到D-Markov机定性模型;
[0047]步骤八:将D-Markov机中模式符号与所对应的支持向量回归模型相关联,得到模型。[〇〇48]例如图1为某卫星电源系统电流监测数据。
[0049]步骤一做法如下:
[0050]对图1中的遥测数据进行小波分解,得到结果如图2所示,可以明显看出在时间轴1、2、3处幅值较大,取1、2、3处幅值最大的几个点,分别求平均可以得到奇异点分别为0.97、 2.05与2.96。[〇〇51 ] 步骤二做法如下:[〇〇52]原始遥测数据采样率为0.01,共计400个点。使用0.97、2.05与2.96分割可以得到 1:97、98:205、206:296 和 297:400共计四段数据。[〇〇53] 步骤三做法如下:
[0054]分别对四段遥测数据采用支持向量回归建立模型,得到四个模型ml、m2、m3、m4jt 应曲线图3、图4、图5、图6所示。[〇〇55]步骤四做法如下:
[0056]由于ml与m4接近,因此需要融合为m5,分配同一个符号,m2与m3各自分配不同符号。结果给m5分配符号a,m2分配符号队m3分配符号Y。[〇〇57] 步骤五做法如下:
[0058]首先设置D=l,对切换点前一个数据分别设置区间,分配符号。该系统中,设置区间(2.6,2.7)对应符号si,(0.4,0.5)对应符号s2,(0.9,1)对应符号S3。[〇〇59]步骤六做法如下:
[0060]根据实际遥测数据,得到单个模式转移元组分别为〈Sl,a,f3>、〈S2,f3, y>、〈s3, y,a>〇[〇〇61 ] 步骤七做法如下:
[0062]统计可以得到模式概率转移元组:
[0063]<a,sl,l,P>
[0064]<P,s2,l,y>
[0065]< y ,s3,l,a>[〇〇66]步骤八做法如下:[〇〇67]得到模型为如图7所示。[〇〇68]通过以上步骤,能够实现使用卫星遥测数据对系统建立混合模型。
【主权项】
1.一种基于支持向量回归的建模方法,其特征在于:步骤如下:步骤一:对卫星遥测数据进行小波分解,获取其奇异点;步骤二:将卫星遥测数据通过奇异点分割为多个数据段;步骤三:对各个数据段分别使用支持向量回归建模,得到定量模型;步骤四:对各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持 向量回归模型,即定量模型;步骤五:对在卫星遥测数据奇异点附近的原始数据进行量化,分配数据符号,得到数据 符号集合;步骤六:根据卫星遥测数据,与步骤五中得到的数据符号集合,生成多维数据符号序 列,结合模式符号集合,生成模式转移元组;步骤七:对得到的模式转移元组进行D-Markov重构,得到D-Markov机定性模型;所述的 D-Markov机指每个状态代表一个或多个长度为D的数据序列的有限状态自动机;步骤八:将D-Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型。2.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤一中, 所述的对卫星遥测数据进行小波分解,获取其奇异点,具体为:当卫星遥测数据为单维时, 使用小波对其进行分解,并重构得到各细节层,当细节层在某处的幅值明显高于其附近时, 即为一个奇异点;当卫星遥测数据为多维时,需要对所有的维度单独进行小波分解,所有奇 异点之集合即为总的奇异点。3.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤二中, 所述的通过奇异点分割为多个数据段,具体为:卫星遥测数据以奇异点为分界点,划分为多 个数据段。4.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤三中, 所述的使用支持向量回归建模,具体为:对任意数据段,当数据为单维度数据时,以时间为 输入,该数据段为输出,使用支持向量机进行建模;当数据为多维度时,则以历史数据中标 记的输入输出为准使用支持向量机建模。5.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤四中, 所述的各个数据段分配模式符号,得到模式符号集合,每个模式符号对应一个支持向量回 归模型,即定量模型,具体为:在步骤三中对所有数据段使用了支持向量回归建模,每个数 据段对应于一个支持向量回归模型,即定量模型;当任意两个定量模型参数的相对误差均 在5%之内时,即认定两者为相同的定量模型,两个定量模型将通过参数取平均值的方式融 合成为一个新的定量模型;将所有可融合的定量模型进行融合,并分配给各个定量模型唯 一的模式符号;各个数据段的模式符号与其所对应的定量模型的模式符号一致,此时一个 模式符号即对应卫星遥测数据中蕴含的一个工作模式;后面对系统的模式与其对应的模式 符号不加区分。6.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤五中, 所述的对在卫星遥测数据奇异点附近的原始数据进行量化,分配数据符号,得到数据符号 集合,具体为:首先选择D-Markov的长度D,随后对卫星遥测数据模式切换点前D个数据点进 行量化,即将卫星遥测数据幅值所在区间划分为多个子区间,随后对落入不同区间的数据分配数据符号,落入同一区间的数据分配相同数据符号。7.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤六中, 所述的根据卫星遥测数据,与步骤五中得到的数据符号集合,生成多维数据符号序列,结合 模式符号集合,生成模式转移元组,具体为:依次分析卫星遥测数据,当出现一个模式切换 点时,将该模式切换点前D个数据点所对应的数据符号依次记录,得到一个数据符号序列, 该数据符号序列和模式切换前后所处模式对应的模式符号一起构成一个模式转移元组。8.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤七中, 所述的对得到的模式转移元组进行D-Markov重构,得到D-Markov机定性模型,具体为:统计 所有模式转移元组,由模式a转移到模式抑勺模式转移元组出现次数记为Nae,在这Nae个模式 转移元组中,数据符号序列s出现的次数记为Nsae,那么当当前模式为a,当前数据量化得到 的序列为s时,模式转移为的概率为NWNae,一起组成模式概率转移元组〈a,s,NWNae, >;所有模式概率转移元组一起组成D-Markov机定性模型。9.根据权利要求1所述的一种基于支持向量回归的建模方法,其特征在于:步骤八中, 所述的将D-Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型,具 体为:将D-Markov机定性模型中模式符号与所对应的定量模型相关联,得到混合模型;在该 混合模型中,D-Markov机的模式代表了卫星遥测数据所蕴含的模式,D-Markov机的切换条 件代表了卫星遥测数据模式切换的条件,各个模式所对应的支持向量回归模型代表卫星遥 测数据在该模式下的连续行为。10.根据权利要求4所述的一种基于支持向量回归的建模方法,其特征在于:当数据为 单维度时,需要将时间轴平移到〇时刻开始。
【文档编号】G06K9/62GK105956615SQ201610266154
【公开日】2016年9月21日
【申请日】2016年4月26日
【发明人】赵琦, 孙泽斌, 冯文全, 赵洪博, 张文峰, 周淦
【申请人】北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1