一种基于虹膜识别的自动控制装置的制造方法

文档序号:10656106阅读:458来源:国知局
一种基于虹膜识别的自动控制装置的制造方法
【专利摘要】本发明一种基于虹膜识别的自动控制装置,包括自动控制装置和与自动控制装置电信号连接的虹膜识别器,所述虹膜识别器包括:(1)采样模块;(2)预处理模块;(3)特征编码模块,用于对虹膜图像的特征进行提取和编码,其包括第一次LBP算子处理子模块、第二次LBP算子处理子模块、第三次LBP算子处理子模块和第四次LBP算子处理子模块;(4)编码匹配模块。本发明增加了中心点与周围其它邻域的关联性,能够满足不同尺度和频率的图像纹理,经过多次LBP算子处理子模块处理后,在不影响中心点与周围邻域的关联性下,不断降低编码长度,节约了存储空间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性。
【专利说明】
-种基于虹膜识别的自动控制装置
技术领域
[0001] 本发明设及自动控制装置设计领域,具体设及一种基于虹膜识别的自动控制装 置。
【背景技术】
[0002] 相关技术中,具有身份验证功能的自动控制装置通常采用基本LBP(局部二值模 式)算子对虹膜图像特征进行提取和编码,LBP算子是一种描述图像灰度范围内纹理特征的 方法,对于光照变化来说有很强的鲁棒性,从而被广泛地应用在图像的纹理特征提取上。
[0003] 基本LBP算子一般定义为:在3X3窗口内由中屯、点nc和其周围8个邻域no,.. .m组 成,其中定义纹理T为:T=(n〇-nc,ni-nc, . . .,n7-nc),对其进行二值化处理,Wnc为阔值,邻 域的8个点与n。比较,若大于中屯、点的值标记为1,否则标记为0。二值化后的纹理T为:T = (sgn(no-nc) ,sgn(ni-nc),. . .,sgn(n7-nc)),其中
经过计算,将得到Wn。为 中屯、的8个二进制数,然后对不同像素位置进行加权求和便得到中屯、点的LBP值,其中LBP值 的计算公式为:
,对图像中每个像素都进行LBP运算,便可W得 到图像的LBP纹理描述。
[0004] 然而,由于基本LBP算子只覆盖了中屯、点的8个邻域像素,使其与周围其它邻域的 关联性不够全面,无法满足不同尺度和频率的图像纹理。

【发明内容】

[0005] 针对上述问题,本发明提供一种识别速度快、识别范围广的一种基于虹膜识别的 自动控制装置,解决相关技术中采用基本LBP算子对虹膜图像特征进行提取和编码的自动 控制装置系统不能处理不同尺度和频率的图像纹理的问题。
[0006] 本发明的目的采用W下技术方案来实现:
[0007] -种基于虹膜识别的自动控制装置,包括自动控制装置和与自动控制装置电信号 连接的虹膜识别器,所述自动控制装置包括:
[000引一个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0009] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0010] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0011] 优选地,其特征是,所述虹膜识别器包括:
[0012] (1)采样模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得的 虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹膜 图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0013]
[0014] 其中,Kx,y)A表示实际获得的虹膜图像,Kx,y)B表示标准采集的虹膜图像,实际 获得的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0015] (2)预处理模块,用于对获取的虹膜图像进行定位和归一化处理,其包括光斑点填 充子模块,所述光斑点填充子模块用于对虹膜图像中检测出的每个光斑点进行填充,填充 时利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰 度值,定义虹膜图像中的一个光斑点为Po(XO,yo),所述四个包络点依次为Pi (Xi,yi)、P2 (X2, y2)、P3(X3,y3)、P4(X4,y4),定义光斑点的灰度值计算公式为:
[0016]
[0017] 优选地,其特征是,所述虹膜识别器还包括:
[0018] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0019] a、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点n。与5 X 5窗内的K个 像素点进行比较来计算LBP值,所述K个像素点W点nc为中屯、分布在点nc外围,设nc的坐标为 (xc,yc)丄BP估的计算公式为:
[0020]
[0021] 其中,所述K个像素点标记为n日~nK,K的取值范围为[20,24],lst-LBP(Xc,yc)的取 值范围为[0,K];
[0022] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X3窗,用窗内全体像素的均值心;,记,...,心代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[0023]
[0024] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3 X 3的窗口中根据自定义函数{nvcj,I nvcj-nc = rank4( |nvci-nc I,i = 0,1,. . .,7), j = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为:
[0025]
[0026] 其中,rank4( Invci-Dc I,i = 0,1,...,7)表示对7个Invci-Dc I的值进行从小到大排列 后取前4个数,nvw表示选取的4个副中屯、点;
[0027] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[002引
[0029] 计算完后输出表示虹膜图像特征的编码;
[0030] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0031] 其中,所述预处理模块还包括:
[0032] (1)粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0033] (2)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0034] (3)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0035] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0036] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0037] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0038] 本发明的有益效果为:
[0039] 1、设置图像校正子模块,并定义了校正公式,提高了图像处理的精度;
[0040] 2、设置光斑点填充子模块,并定义了光斑点的灰度值计算公式,很好地保留了虹 膜图像的结构信息,填充后的虹膜图像可W有效地进行定位;
[0041] 3、设置的初次定位单元,其通过改进的化nny边缘检测算子和化U曲圆检测对虹膜 内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;
[0042] 4、设置的第一次LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能 够满足不同尺度和频率的图像纹理;
[0043] 5、设置的第二次LBP算子处理子模块、第S次LBP算子处理子模块和第四次LBP算 子处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性。
【附图说明】
[0044] 利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限 审IJ,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可W根据W下附图获得 其它的附图。
[0045] 图1是本发明的虹膜识别器连接示意图。
[0046] 图2是本发明自动控制装置示意图。
【具体实施方式】
[0047]结合W下实施例对本发明作进一步描述。
[004引实施例1
[0049] 参见图1,图2,本实施例一种基于虹膜识别的自动控制装置,包括自动控制装置和 与自动控制装置电信号连接的虹膜识别器,所述自动控制装置包括:
[0050] 一个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0051] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0052] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0053] 优选地,其特征是,所述虹膜识别器包括:
[0054] (1)采样模块,用于获取虹膜图像并采集虹膜图像的信息;
[0055] (2)预处理模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得 的虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹 膜图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0化6]
[0057]其中,Kx,y)A表示实际获得的虹膜图像,Kx,y)B表示标准采集的虹膜图像,实际 获得的
[005引虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0059] 优选地,其特征是,所述虹膜识别器还包括:
[0060] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0061 ] a、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点nc与5 X 5窗内的20 个像素点进行比较来计算LBP值,所述20个像素点W点nc为中屯、分布在点nc外围,设nc的坐 标为^。,7。),18?值的计算公式为:
[0062]
[0063] 其甲,所还20个像素点你记刃n日~mo,1St-LBP(Xc,yc)的取值范围为[0,20 ];
[0064] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X補,用窗内全体像素的均值心;,心,代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[00 化]
[0066] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3 X 3的窗口中根据自定义函数{nvcj,I nvcj-nc = rank4( |nvci-nc|,i = 0,l,. . .,7),^' = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为: [0067]
[006引其中,rank4( Invci-ric I,i = 0,1,. . .,7)表示对7个Invci-ric I的值进行从小到大排列 后取前4个数,nvw表示选取的4个副中屯、点;
[0069] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[0070]
[0071] 计算完后输出表示虹膜图像特征的编码;
[0072] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0073] 其中,所述预处理模块包括:
[0074] (1)光斑点填充子模块:用于对虹膜图像中检测出的每个光斑点进行填充,填充时 利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度 值,定义虹膜图像中的一个光斑点为Po(XO,yo),所述四个包络点依次为Pi (Xi,yi)、P2 (X2, 72)、P3(X3,y3)、P4(X4,y4),定义光斑点的灰度值计算公式为:
[0075]
[0076] (2)粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0077] (3)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0078] (4)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0079] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0080] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0081] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0082] 本实施例设置光斑点填充子模块,很好地保留了虹膜图像的结构信息,填充后的 虹膜图像可W有效地进行定位;设置的初次定位单元,其通过改进的化nny边缘检测算子和 化U曲圆检测对虹膜内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;设置的第一次 LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能够满足不同尺度和频率的 图像纹理;设置的第二次LBP算子处理子模块、第=次LBP算子处理子模块和第四次LBP算子 处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性,使用CASIA Vl. O虹膜库进行测试时,结果如下:
[0083]
[0084] 实施例2
[0085] 参见图1,图2,本实施例一种基于虹膜识别的自动控制装置,包括自动控制装置和 与自动控制装置电信号连接的虹膜识别器,所述自动控制装置包括:
[0086] 一个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0087] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0088] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0089] 优选地,其特征是,所述虹膜识别器包括:
[0090] (1)采样模块,用于获取虹膜图像并采集虹膜图像的信息;
[0091] (2)预处理模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得 的虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹 膜图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0092]
[0093] 其中,Kx,y)A表示实际获得的虹膜图像,Kx,y)B表示标准采集的虹膜图像,实际 获得的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0094] 优选地,其特征是,所述虹膜识别器还包括:
[00M] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0096] a、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点nc与5 X 5窗内的21 个像素点进行比较来计算LBP值,所述21个像素点W点nc为中屯、分布在点nc外围,设nc的坐 标为^。,7。),18?值的计算公式为:
[0097]
[009引其中,所还21个像素点称记刃no~n2i,lst-LBP(Xc,yc)的取值范围为[0,21];
[0099] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X3窗,用窗内全体像素的均值心,万,...,而代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[0100]
;
[0101] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3X3的窗口中根据自定义函数{nvcj」nvcj-nc = rank4( |nvci-nc|,i = 0,l,. . .,7),^' = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为:
[0102]
[0103] 其中,rank4( Invc广nc|,i = 0,l,. . .,7)表示对7个Invc广nc|的值进行从小到大排列 后取前4个数,nvcj表示选取的4个副中屯、点;
[0104] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[0105]
[0106] 计算完后输出表示虹膜图像特征的编码;
[0107] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0108] 其中,所述预处理模块包括:
[0109] (1)光斑点填充子模块:用于对虹膜图像中检测出的每个光斑点进行填充,填充时 利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度 值,定义虹膜图像中的一个光斑点为PoUo, yo),所述四个包络点依次为PiUi, yi)、P2(X2, y2)、P3(X3,y3)、P4(X4,y4),定义光斑点的灰度值计算公式为:
[0110]
[0111] (2)粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0112] (3)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0113] (4)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0114] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0115] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0116] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0117] 本实施例设置光斑点填充子模块,很好地保留了虹膜图像的结构信息,填充后的 虹膜图像可W有效地进行定位;设置的初次定位单元,其通过改进的化nny边缘检测算子和 化U曲圆检测对虹膜内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;设置的第一次 LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能够满足不同尺度和频率的 图像纹理;设置的第二次LBP算子处理子模块、第=次LBP算子处理子模块和第四次LBP算子 处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性,使用CASIA Vl. 0虹膜库进行测试时,结果如下:
[011 引
[0119] 实施例3
[0120] 参见图1,图2,本实施例一种基于虹膜识别的自动控制装置,包括自动控制装置和 与自动控制装置电信号连接的虹膜识别器,所述自动控制装置包括:
[0121] -个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0122] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0123] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0124] 优选地,其特征是,所述虹膜识别器包括:
[0125] (1)采样模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得的 虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹膜 图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0126]
[0127] 其中,Kx,y)A表示实际获得的虹膜图像,Kx,y)B表示标准采集的虹膜图像,实际 获得的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0128] (2)预处理模块,用于对获取的虹膜图像进行定位和归一化处理;
[0129] 优选地,其特征是,所述虹膜识别器还包括:
[0130] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0131] 曰、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点nc与5X5窗内的22 个像素点进行比较来计算LBP值,所述22个像素点W点nc为中屯、分布在点nc外围,设nc的坐 标为(XE,y。),LBP值的计算公式为:
[0132]

[01削其中,所述22个像素点标记为no~rm,lst-LBP(Xc,yc)的取值范围为[0,22];
[0134] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X3窗,用窗内全体像素的均值心;,心,代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[0135]
[0136] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3 X 3的窗口中根据自定义函数{nvcj,I nvcj-nc = rank4( |nvci-nc I,i = 0,1,. . .,7), j = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为:
[0137]
[013引其中,rank4( Invc广nc|,i = 0,l,. . .,7)表示对7个Invc广nc|的值进行从小到大排列 后取前4个数,nvcj表示选取的4个副中屯、点;
[0139] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[0140] 4
[0141] 计算完后输出表示虹膜图像特征的编码;
[0142] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0143] 其中,所述预处理模块包括:
[0144] (1)光斑点填充子模块:用于对虹膜图像中检测出的每个光斑点进行填充,填充时 利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度 值,定义虹膜图像中的一个光斑点为PoUo, yo),所述四个包络点依次为PiUi, yi)、P2(X2, y2)、P3(X3,y3)、P4(X4,y4),定义光斑点的灰度值计算公式为:
[0145]
;:
[0146] (2)粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0147] (3)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0148] (4)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0149] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0150] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0151] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0152] 本实施例设置光斑点填充子模块,很好地保留了虹膜图像的结构信息,填充后的 虹膜图像可W有效地进行定位;设置的初次定位单元,其通过改进的化nny边缘检测算子和 化U曲圆检测对虹膜内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;设置的第一次 LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能够满足不同尺度和频率的 图像纹理;设置的第二次LBP算子处理子模块、第=次LBP算子处理子模块和第四次LBP算子 处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性,使用CASIA Vl. 0虹膜库进行测试时,结果如下:
[0153]
[0154] 实施例4
[0155] 参见图1,图2,本实施例一种基于虹膜识别的自动控制装置,包括自动控制装置和 与自动控制装置电信号连接的虹膜识别器,所述自动控制装置包括:
[0156] -个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0157] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0158] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0159] 优选地,其特征是,所述虹膜识别器包括:
[0160] (I)采样模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得的 虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹膜 图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0161]
[0162] 其中,IU,y)A表不买际巧得的虹膜图像,I (X,y)B表示标准采集的虹膜图像,实际 获得的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0163] (2)预处理模块,用于对获取的虹膜图像进行定位和归一化处理;
[0164] 优选地,其特征是,所述虹膜识别器还包括:
[0165] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0166] a、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点nc与5 X 5窗内的23 个像素点进行比较来计算LBP值,所述23个像素点W点nc为中屯、分布在点nc外围,设nc的坐 标为^。,7。),18?值的计算公式为:
[0167]
[016引其中,所述23个像素点标记为no~rm,1St-LBP(Xc,yc)的取值范围为[0,23 ];
[0169] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X3窗,用窗内全体像素的均值;心,...,而代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[0170]
[0171] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3 X 3的窗口中根据自定义函数{nvcj,I nvcj-nc = rank4( |nvci-nc I,i = 0,1,. . .,7), j = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为:
[0172]
[017;3] 其中,rank4( Invci-Dc I,i = 0,1,...,7)表示对7个Invci-Dc I的值进行从小到大排列 后取前4个数,nvw表示选取的4个副中屯、点;
[0174] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[0175]
[0176] 计算完后输出表示虹膜图像特征的编码;
[0177] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0178] 其中,所述预处理模块包括:
[0179] (1)光斑点填充子模块:用于对虹膜图像中检测出的每个光斑点进行填充,填充时 利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度 值,定义虹膜图像中的一个光斑点为PoUo, yo),所述四个包络点依次为PiUi, yi)、P2(X2, y2)、P3(X3,y3)、P4(X4,y4),定义光斑点的灰度值计算公式为:
[0180]
[0181] (2)粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0182] (3)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0183] (4)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0184] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0185] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0186] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0187] 本实施例设置光斑点填充子模块,很好地保留了虹膜图像的结构信息,填充后的 虹膜图像可W有效地进行定位;设置的初次定位单元,其通过改进的化nny边缘检测算子和 化U曲圆检测对虹膜内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;设置的第一次 LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能够满足不同尺度和频率的 图像纹理;设置的第二次LBP算子处理子模块、第=次LBP算子处理子模块和第四次LBP算子 处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性,使用CASIA Vl. 0虹膜库进行测试时,结果如下:
[018 引
[0189] 实施例5
[0190] 参见图1,图2,本实施例一种基于虹膜识别的自动控制装置,包括自动控制装置和 与自动控制装置电信号连接的虹膜识别器,所述自动控制装置包括:
[0191] 一个电流互感器、电压互感器、微机控制器、=相分接开关组成的控制系统;一个 调压器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控 制系统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。
[0192] 优选地,其特征是,所述的一个调压器、负荷开关和电容器组成的无功补偿系统是 由调压器的副边和负荷开关、电容器相连而组成的无功补偿系统。
[0193] 优选地,其特征是,所述的一个调压器、负载组成的供电系统是由调压器的副边和 负载相连而组成的供电系统。
[0194] 优选地,其特征是,所述虹膜识别器包括:
[0195] (1)采样模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得的 虹膜图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹膜 图像进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:
[0196]
[0197] 其中,Kx,y)A表示实际获得的虹膜图像,Kx,y)B表示标准采集的虹膜图像,实际 获得的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差;
[0198] (2)预处理模块,用于对获取的虹膜图像进行定位和归一化处理;
[0199] 优选地,其特征是,所述虹膜识别器还包括:
[0200] (3)特征编码模块,用于对虹膜图像的特征进行提取和编码,包括:
[0201] a、第一次LBP算子处理子模块:用于对虹膜图像中的任意一点nc与5 X 5窗内的24 个像素点进行比较来计算LBP值,所述24个像素点W点nc为中屯、分布在点nc外围,设nc的坐 标为(XE,yx),LBP值的计算公式为:
[0202]
[020;3]其中,所述24个像素点标记为n日~rm,lst-LBP(Xc,yc)的取值范围为[0,24];
[0204] b、第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点n。与周 围邻域的关联性,其W点nc的8个邻域像素点作为副中屯、点,记作nvc〇,nvci,. . .,nvc7,使用3 X3窗,用窗内全体像素的均值心,心,...,心;代替副中屯、点的值,再使用LBP算子对中屯、点 nc进行计算,计算公式为:
[0205]
[0206] C、第S次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的矩 形图像的特征编码长度,其W点nc为中屯、,在3X3的窗口中根据自定义函数{nvcj」nvcj-nc = rank4( |nvci-nc|,i = 0,l,. . .,7),^' = 0,1,2,3}选择4个副中屯、点进行计算,计算公式为:
[0207]
[020引其中,rank4( Invci-ric I,i = 0,1,. . .,7)表示对7个|n|ci-nc I的值进行从小到大排列 后取前4个数,nvw表示选取的4个副中屯、点;
[0209] d、第四次LBP算子处理子模块:用于在第S次LBP算子处理子模块处理后的基础上 继续降低编码长度,计算公式为:
[0210]
[0211] 计算完后输出表示虹膜图像特征的编码;
[0212] (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的 特征编码进行比对,完成对身份的识别。
[0213] 其中,所述预处理模块包括:
[0214] (1)光斑点填充子模块:用于对虹膜图像中检测出的每个光斑点进行填充,填充时 利用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度 值,定义虹膜图像中的一个光斑点为PoUo, yo),所述四个包络点依次为PiUi, yi)、P2(X2, y2 )、P3 (X3,Y3 )、P4(X4,Y4),定义光斑点的灰度值计算公式为:
[0215]
[0216] U巧甘足位于模巧:巧光巧点巧允于模巧连联,用于刈'BLL膜凶像巧化切割并初步定 位瞳孔位置,切割时W所述瞳孔位置为中屯、、5倍的半径来对填充光斑后的虹膜图像进行切 割;
[0217] (3)精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域;
[0218] (4)归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。
[0219] 其中,所述精定位子模块包括依次连接的下采样单元、初次定位单元和再次定位 单元,所述下采样单元用于对切割后的虹膜图像进行下采样,所述初次定位单元用于通过 改进的化nny边缘检测算子和化U曲圆检测对虹膜内外圆进行定位,所述再次定位单元用于 W初次定位单元定位的参数在虹膜图像上进行精确定位。
[0220] 其中,所述改进的Canny边缘检测算子为只对垂直方向进行非极大值的抑制的 化nny边缘检测算子。
[0221] 其中,所述改进的化nny边缘检测算子为只采用高阔值进行强边缘检测的化nny边 缘检测算子。
[0222] 本实施例设置光斑点填充子模块,很好地保留了虹膜图像的结构信息,填充后的 虹膜图像可W有效地进行定位;设置的初次定位单元,其通过改进的化nny边缘检测算子和 化U曲圆检测对虹膜内外圆进行定位,便于虹膜的定位且提高了虹膜的速度;设置的第一次 LBP算子处理子模块,增加了中屯、点与周围其它邻域的关联性,能够满足不同尺度和频率的 图像纹理;设置的第二次LBP算子处理子模块、第=次LBP算子处理子模块和第四次LBP算子 处理子模块,在不影响中屯、点与周围邻域的关联性下,不断降低编码长度,节约了存储空 间,减少了计算量,提高了识别速度,增强了识别准确率,得到了较高的鲁棒性,使用CASIA Vl. 0虹膜库进行测试时,结果如下:
[07731
[0224]最后应当说明的是,W上实施例仅用W说明本发明的技术方案,而非对本发明保 护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应 当理解,可W对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实 质和范围。
【主权项】
1. 一种基于虹膜识别的自动控制装置,包括自动控制装置和与自动控制装置电信号连 接的虹膜识别器,所述自动控制装置包括: 一个电流互感器、电压互感器、微机控制器、三相分接开关组成的控制系统;一个调压 器、负荷开关、电容器7组成的无功补偿系统;一个调压器、负载组成的供电系统,将控制系 统、无功补偿系统、供电系统连在一起制成高压配电系统无功自动控制装置。2. 根据权利要求1所述的一种基于虹膜识别的自动控制装置,其特征是,所述的一个调 压器、负荷开关和电容器组成的无功补偿系统是由调压器的副边和负荷开关、电容器相连 而组成的无功补偿系统。3. 根据权利要求2所述的一种基于虹膜识别的自动控制装置,其特征是,所述的一个调 压器、负载组成的供电系统是由调压器的副边和负载相连而组成的供电系统。4. 根据权利要求3所述的一种基于虹膜识别的自动控制装置,其特征是,所述虹膜识别 器包括: (1) 采样模块,用于获取、校正虹膜图像并采集虹膜图像的信息,由于实际获得的虹膜 图像与标准采集的虹膜图像之间在同一个平面上会略有偏差,需要对实际获得的虹膜图像 进行平面校正,设定图像校正子模块,所述图像校正子模块采用的校正公式为:其中,I(x,y)A表示实际获得的虹膜图像,I(x,y)B表示标准采集的虹膜图像,实际获得 的虹膜图像与标准采集的虹膜图像的各像素点值之间的标准差; (2) 预处理模块,用于对获取的虹膜图像进行定位和归一化处理,其包括光斑点填充子 模块,所述光斑点填充子模块用于对虹膜图像中检测出的每个光斑点进行填充,填充时利 用与光斑点相邻的非光斑区域中的上下左右四个包络点的灰度值来计算光斑点的灰度值, 定义虹膜图像中的一个光斑点为?(^(),7()),所述四个包络点依次为?1(11,71)、?2(12,72)、?3 (X3,y3 )、P4( X4,y4 ),定义光斑点的灰度值计算公式为:5. 根据权利要求4所述的一种基于虹膜识别的自动控制装置,其特征是,所述虹膜识别 器还包括: (3) 特征编码模块,用于对虹膜图像的特征进行提取和编码,包括: a、 第一次LBP算子处理子模块:用于对虹膜图像中的任意一点η。与5 X 5窗内的K个像素 点进行比较来计算LBP值,所述K个像素点以点η。为中心分布在点η。外围,设η。的坐标为(X。, yc),LBP值的计算公式为:其中,所述K个像素点标记为no~ηκ,Κ的取值范围为[20,24],lst-LBP(xc,yc)的取值范 围为[〇,K]; b、 第二次LBP算子处理子模块,用于在保证编码长度的前提下加强所述点η。与周围邻域 的关联性,其以点η。的8个邻域像素点作为副中心点,记作nrw,...,rw,使用3X3窗, 用窗内全体像素的均值^U代替副中心点的值,再使用LBP算子对中心点η。进行 计算,计算公式为:c、 第三次LBP算子处理子模块,用于缩短经第二次LBP算子处理子模块处理后的虹膜图 像的特征编码长度,其以点η。为中心,在3 X 3的窗口中根据自定义函数{ην。」,I nTCj-n。I = rank4( Irw-IiciI,i = 0,l,. . .,7),」=0,1,2,3}选择4个副中心点进行计算,计算公式为: 其中,rank4( Irw-n。I,i = 0,1,. . .,7)表示对7个I rw-n。I的值进行从小到大排列后取 前4个数,ην。」表示选取的4个副中心点; d、 第四次LBP算子处理子模块:用于在第三次LBP算子处理子模块处理后的基础上继续 降低编码长度,计算公式为:计算完后输出表示虹膜图像特征的编码; (4)编码匹配模块,用于接收所述表示虹膜图像特征的编码并将其与数据库中的特征 编码进行比对,完成对身份的识别。6. 根据权利要求5所述的一种基于虹膜识别的自动控制装置,其特征是,所述预处理模 块还包括: (1) 粗定位子模块:与光斑点填充子模块连接,用于对虹膜图像进行切割并初步定位瞳 孔位置,切割时以所述瞳孔位置为中心、5倍的半径来对填充光斑后的虹膜图像进行切割; (2) 精定位子模块:与粗定位子模块连接,用于精确定位虹膜区域; (3) 归一化子模块,用于将定位后的虹膜区域展开成固定分辨率的虹膜图像。7. 根据权利要求6所述的一种基于虹膜识别的自动控制装置,其特征是,所述精定位子 模块包括依次连接的下采样单元、初次定位单元和再次定位单元,所述下采样单元用于对 切割后的虹膜图像进行下采样,所述初次定位单元用于通过改进的Canny边缘检测算子和 Hough圆检测对虹膜内外圆进行定位,所述再次定位单元用于以初次定位单元定位的参数 在虹膜图像上进行精确定位。8. 根据权利要求7所述的一种基于虹膜识别的自动控制装置,其特征是,所述改进的 Canny边缘检测算子为只对垂直方向进行非极大值的抑制的Canny边缘检测算子。9. 根据权利要求8所述的一种基于虹膜识别的自动控制装置,其特征是,所述改进的 Canny边缘检测算子为只采用高阈值进行强边缘检测的Canny边缘检测算子。
【文档编号】G06K9/00GK106022320SQ201610547766
【公开日】2016年10月12日
【申请日】2016年7月8日
【发明人】不公告发明人
【申请人】钟林超
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1