一种基于迭代法的流场图像预处理算法

文档序号:10656846阅读:1368来源:国知局
一种基于迭代法的流场图像预处理算法
【专利摘要】本发明公开了一种基于迭代法的流场图像预处理算法。该算法可以根据尺度信息,利用高斯滤波特点将微小粒子信息完全滤除,然后对处理后的图像利用可迭代的边缘恢复算法,将模糊化的大尺度结构信息不断恢复,恢复后的大尺度结构信息就是流场图像的噪声信息。最后,利用图像背景相减法即可得到实际粒子图像信息。按照本发明实现的流场图像预处理算法可以根据粒子尺寸信息设置距离权重来实现微小粒子去除,并且采用基于迭代方法的边缘恢复获得背景噪声图像具有较好的收敛特性,采用减去噪声背景的方法可以很好地消除由于光照、粒子不均等引起的噪声,因此最终获得的粒子图像具有很好的边缘特性且对比度较高。
【专利说明】
-种基于迭代法的流场图像预处理算法
技术领域
[0001] 本发明属于图像处理技术领域,具体地,设及一种基于迭代法的流场图像预处理 算法。
【背景技术】
[0002] 流场图像在进行实际粒子图像测速算法之前,由于图像本身的一些噪声,都要进 行图像的预处理操作。预处理的基本目的是通过图像滤波和增强技术W减小噪声、激光反 射、粒子聚团等所造成的速度误测,其根本目的就是获得更强对比度的粒子图像。图像预处 理可W提高粒子图像的质量,减小后期算法的消耗,较好的预处理算法可W很好地提高后 期流场处理的精度。
[0003] 流场中粒子图像具有W下特点,粒子尺寸相对均匀,分布散乱无具体分布规律,实 际背景噪声更不可避免,为提高图像处理的质量,对预处理算法速度要求较高。
[0004] 在现有技术中,一般通过高斯滤波的方式进行图像处理,在二维高斯滤波中,目标 点上的像素值是通过如下方式获得的:对所在位置周围一定范围内的像素值分别赋予不同 的高斯权重值,并在加权平均后得到当前的结果,但此种方法仅考虑到了位置权重信息,却 没有考虑到像素间的相似程度信息,因此单纯使用高斯滤波模板通常会使整张图片变得模 糊,应用在流场预处理算法的应用中具有一定局限性。由此,亟待设及一种针对流场图像的 预处理方法,来提高图像处理质量。

【发明内容】

[0005] 针对现有技术的不足,本发明提出了基于迭代的、距离权重和像素相似信息权重、 背景相减法的流场图像预处理算法,旨在去除流场图像中的噪声,最终达到增强粒子数据 对比度的目的。
[0006] 为实现W上发明目的,本发明采用W下技术方案:
[0007] 本发明提出一种基于迭代法的流场图像预处理算法,其特征在于,该算法包括如 下步骤:
[0008] (1)采集流场原始图像函数I;
[0009] (2)利用高斯滤波对所述原始图像函数I进行处理进而去除小尺度结构信息获得 输出图像函数0,其中所述小尺度结构信息为低于4像素的图像信息;
[0010] (3)利用双边滤波函数迭代获取大尺度结构信息恢复函数G。",其中n为迭代次数, 所述迭代次数满足设定的阔值精度则停止迭代,其中所述大尺度结构信息为高于15像素的 图像信息;
[0011] (4)获得最终图像信息为J = I-GD+1。
[0012] 进一步地,所述步骤(2)的滤波过程为:
[OOU]
(1)
[0014] 其中,
巧来实现归一化,N(a)为a点邻域的像素集合。
[0015] 进一步地,所述步骤(3)的迭代过程为:
[0016] (克)
[0017] i果归一化,N(a)为a点 邻域的像素集合,其中Os和Or分别为基于空间距离和像素间相似程度的权重参数。
[0018] 进一步地,在所述步骤(2)中,其中可通过调节Os,消除不同尺寸的所述小尺寸结 构信息粒子。
[0019] 本发明具有W下有益效果:
[0020] 1.利用高斯滤波算法对小尺度轮廓信息进行消除,因为流场中示踪粒子的尺寸大 小较为均匀,因此具有很好的滤除效果;
[0021] 2.基于迭代的边缘恢复,对小尺度轮廓信息完全无影响,且可W通过原始图像信 息对模糊化的大尺度轮廓信息恢复;
[0022] 3.基于迭代的流场图像预处理算法具有很好的收敛性,且收敛于输入图像信息。
【附图说明】
[0023] 图1是按照本发明实现的算法流程示意图;
[0024] 图2是本发明实现的算法具体实施过程效果图。
【具体实施方式】
[0025] 为了使本发明的目的、技术方案及优点更加清楚明白,W下结合附图及实施例,对 本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用W解释本发明,并 不用于限定本发明。此外,下面所描述的本发明各个实施方式中所设及到的技术特征只要 彼此之间未构成冲突就可W相互组合。
[0026] 实际上在现有的图像处理领域中,双边滤波在实际处理时不仅考虑了图像像素在 空间距离上的信息,同时考虑到了像素间的相似程度信息,因而可W保持原始图像的大体 分块信息,进而保持边缘信息。
[0027] 基于背景相减原理的预处理算法在图像的预处理中具有较为广泛的应用,对于去 除背景噪声具有很好的实际应用效果。
[0028] 本发明主要是在W上几种算法的研究基础上,提出了一种基于迭代的流场图像预 处理算法。可很好在保持粒子轮廓信息的基础上,达到较好效果地滤除流场图像中非粒子 图像的大尺度结构信息。
[0029] 在本实施例中,图像数据通过行列方向的二维数组来表示,每个数组元素的值代 表该点的像素灰度值,W图像左上角为图像坐标的原点,垂直向下方向为Y正方向。
[0030] 总体而言,本发明所描述的流场图像预处理算法主要分为如下步骤:
[0031] (1)去除小尺度结构信息;
[0032] (2)大尺度结构信息迭代恢复;
[0033] (3)图像背景相减。
[0034] 本发明所提出的流场图像预处理算法中,对于高斯滤波的尺度一般是根据标准差 来决定的,实际的流场图像处理中实际粒子大小在8个像素大小左右,所W在本算法设及的 步骤中,进行图像处理时,将高于15像素的图像信息称为大尺度结构信息,低于4像素的为 小尺度结构信息。
[0035] 下面对本发明提出的流场图像预处理算法作详细说明,具体步骤如下:
[0036] (1)去除小尺度结构信息
[0037] 第一步先通过高斯滤波滤除小尺度结构信息,尺度算子通过加权平均的形式表 述,在公式中采用I为输入图像,0为输出图像,a和0分别表示图像坐标系中的像素坐标,Os 表示标准差,决定高斯滤波器的宽度,滤波器函数表达式为:
[00 測 (1)
[0039] >]结果归一化,N(Ci)为a点邻域的像素集合。
[0040] 使用运个滤波器可W将小的边缘信息全部都滤除,而大轮廓边缘信息被模糊化, 注意,此步骤中通过对Os的调节,即通过不同尺寸粒子的消除设置不同的标准差来完成调 节,可W很好地适用于不同尺寸的小尺寸结构信息粒子的消除,将尺度小于Os的粒子信息 全部滤除,使该预处理算法在粒子尺寸不同时中也有很好的适用性。
[0041] (2)大尺度结构信息恢复
[0042] 基于迭代方法的大轮廓边缘恢复是该算法的关键之一。在该过程中,图像G被不断 迭代更新,用GD+1表示第n+1次的迭代输出图像,Gi就是公式(1)中的0,即公式(1)中高斯滤 波处理后的输出图像数据。第n次的迭代结果GD+1的是通过双边滤波函数获得的,该函数的 输入由最初原始图像I和上一次的迭代输出结果GD,该双边滤波函数公式为:
[0043] (2)
[0044] 虽果归一化,N(a)为a点 邻域的像素集合,其中Os和Or分别为基于空间距离和像素间相似程度的权重参数。
[0045] 利用上述式子进行迭代处理,直到达到所需精度终止算法迭代,例如流场测量互 相关算法中,我们算法迭代至0.1 pixel精度终止运行,从而获得最终图像函数Gn"W供下一 步处理。
[0046] 同时,在公式(2)中,由于小尺度结构信息已经被公式(1)完全去除,因此IlGD(Q)- GD(P) I I约等于0,运也导致基于像素间相似程度的权重对小的轮廓信息完全不起作用。也 就是说,之后的所有的迭代操作所具有的边缘恢复对小的轮廓信息都不起作用,小的轮廓 信息将无法被恢复。
[0047] 在大尺度结构信息迭代恢复的过程中,模糊化的大尺度结构信息被逐渐恢复,最 终输出的结果为恢复具有大尺度结构信息的图像,小尺度结构信息完全被滤除。因此,获得 的图像数据为去除粒子信息的噪声数据。
[0048] (3)背景相减,获得粒子图像
[0049] 在PIV图像中,由于示踪粒子尺寸相对较小且尺寸相似,因此利用公式(1)的高斯 滤波将示踪粒子轮廓从图像中滤除。此时,获得的图像就是去除了所有小的轮廓信息(粒子 图像)和部分大轮廓信息的数据图像,将模糊后的一些噪声信息重新进行边缘恢复,最终公 式(2)中所获得的图像数据就是滤除所有示踪粒子的噪声信息。下面,就需要利用原始图像 数据减去边缘恢复后图像噪声数据,即可获得示踪粒子轮廓信息,具体如下公式:
[0050] J = I-G""! (3)
[0051] J即为最终获得的流场图像中的示踪粒子图像信息。
[0052] 如图2所示,是按照本发明实现的流场迭代图像处理方法中的图像处理的具体执 行之后的图像效果图,可W看出在经过了上述的高斯滤波和迭代之后获得的图像能够获得 较好的效果,并且能够实现。
[0053] 本领域的技术人员容易理解,W上所述仅为本发明的较佳实施例而已,并不用W 限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含 在本发明的保护范围之内。
【主权项】
1. 一种基于迭代法的流场图像预处理算法,其特征在于,该算法包括如下步骤: (1) 采集流场原始图像函数I; (2) 利用高斯滤波对所述原始图像数据I进行处理进而去除小尺度结构信息获得输出 图像数据〇,其中所述小尺度结构信息为低于4像素的图像信息; (3) 利用双边滤波函数迭代获取大尺度结构信息恢复函数Gn+1,其中η为迭代次数,所述 迭代次数满足设定的阈值精度则停止迭代,其中所述大尺度结构信息为高于15像素的图像 信息; (4) 获得最终图像彳目息为J = ]>Gn+1。2. 如权利要求1所述的基于迭代法的流场图像预处理算法,其特征在于,所述步骤(2) 的滤波过程为:(1) :现归一化,α和β为图像坐标系中的像素坐标,N (α)为α点邻域的像素集合。3. 如权利要求2所述的基于迭代法的流场图像预处理算法,其特征在于,所述步骤(3) 的迭代过程为:化,Ν(α)为α点邻域 的像素集合,其中Os和%分别为基于空间距离和像素间相似程度的权重参数。4. 如权利要求3所述的基于迭代法的流场图像预处理算法,其特征在于,在所述步骤 (2)中,其中可通过调节〇s,消除不同尺寸的所述小尺寸结构信息粒子。
【文档编号】G06T5/00GK106023097SQ201610307839
【公开日】2016年10月12日
【申请日】2016年5月11日
【发明人】杨华, 冯佳乐, 欧阳振兴
【申请人】华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1