一种基于大数据的皮纹分析处理装置的制造方法

文档序号:10687370阅读:687来源:国知局
一种基于大数据的皮纹分析处理装置的制造方法
【专利摘要】本发明公开了基于大数据的皮纹分析处理装置,包括:控制模块和数据库模块,控制模块,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;控制模块还用以,根据统一分析模型进行数据分析,分析结果得到自适应模型;所述数据库模块,用以存放并同步上述数据;皮纹分析处理装置还包括模型评估模块,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。本发明基于计算机软件和互联网技术的大数据方法,可处理千万量级被试者的数据。并通过建立统一分析模型和自适应模型对结果进行分析,并不断迭代进行分析模型优化。
【专利说明】
一种基于大数据的皮纹分析处理装置
技术领域
[0001 ]本发明涉及计算机领域,特别涉及基于大数据的皮纹分析处理和装置。
【背景技术】
[0002]皮纹心理学是指以皮纹学、心理学、脑神经科学、遗传学和行为学为基础的一门综合性学科。它的成果也是辅助心理学研究的一个重要工具。而且在经历了多年的发展和行业应用之后,皮纹心理学已被广泛应用在儿童教育、心理咨询、升学择业、职业规划、人才培养等众多领域。
[0003]皮纹心理学的研究方法就是传统心理学研究所应用的统计分类的方法。通常就是以几十名到上百名被试者为样本群体,根据皮纹的特征数据和实验所关注的被试者的心理和行为学特征进行相关性研究,从而给出具有哪些皮纹特征的被试者在某种心理和行为学特征上表现是一致的。而心理和行为学特征的评定则通常是通过主观测试题来实现的。这样,通过逐步的积累就形成了皮纹心理学的核心模型,即包括了皮纹信息和心理、行为学特征的关联关系模型。有了这样的核心模型,就可以指导心理学研究人员或心理咨询师全方位地了解目标被试者的心理和行为特征。
[0004]但目前的模型存在如下几方面的缺点:
[0005]1.被试群体的样本量太小:在如今纷繁复杂的社会环境中,几十甚至几百的被试者群体所呈现出的规律无法可靠地扩展到更有应用价值和意义的目标群体中。几十万、几百万甚至更高数量级的被试群体所呈现的结果才更有统计学意义。
[0006]2.被试群体的变化导致隐含的问题:在目前所发表的各种研究成果中,每一次实验都是以一个时间和空间聚集在一起的小群体作为被试,比如一个学校几个班级的学生,一个养老院的若干老人,一个体育训练队的若干运动员等等。而每一次实验的研究目标又是不同的。所以,如果把所有研究的结果组合成一个系统化的模型,从严格意义上来讲必然是存在一定偏差的。这种偏差的根源就在于每个单独的研究成果是在彼此独立和割裂的时空环境下产生的。
[0007]3.研究的效率过于低下。有些传统的研究方法会跟踪一个被试群体几个月甚至若干年的时间来搜集其心理和行为的发展变化的情况。这一漫长的过程中会存在诸多不可预测的环境因素影响实验的进程和结果,比如被试者减少,不同的成长环境带来的噪声因素等。这样就会导致几年的研究投入毫无结果,或者结果可信度不够。
[0008]而大数据对于解决心理学领域的问题,有着以下几点特殊意义:
[0009]第一,是指被试群体数量非常巨大,一般是以百万量级起步的;
[0010]第二,是搜集到的信息量非常巨大,通常要比被试群体的数量多一个量级;
[0011]第三,就是各种用于分析的数据的来源是多样的,比如被试者的遗传信息、主观评测数据、社交网络数据、消费行为数据等等。

【发明内容】

[0012]本发明要解决的技术问题是,基于大数据分析、处理,皮纹心理学的装置,能够解决被试群体的样本量较小、被试群体的变化以及处理效率低下的问题。
[0013]解决上述技术问题,本发明提供了一种基于大数据的皮纹心理学分析处理装置包括:控制模块和数据库模块,
[0014]所述控制模块,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;
[0015]所述控制模块还用以,根据统一分析模型进行数据分析,分析结果得到自适应模型;
[0016]所述数据库模块,用以存放并同步皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据;
[0017]所述控制模块在建立模型时,对存放在数据库模块中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型;
[0018]还包括模型评估模块,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。
[0019]更进一步,所述控制模块包括:
[0020]皮纹数据采集模块,用以采集被试者的皮纹信息并通过网络服务器上传至后台服务器;
[0021]测评和被试档案模块,用以通过在线和/或线下测评的方式采集被试者的心理行为数据,以以对被试者的互联网访问行为得到行为特征数据;
[0022]外部数据收集模块,用以对被试者的互联网访问行为得到行为特征数据。用以采集
[0023]更进一步,所述数据库模块包括:
[0024]皮纹数据库,用以组织和存储采集到的皮纹信息数据;
[0025]测评和被试档案模块数据库,用以组织和存储被试者的心理行为数据行为特征数据;
[0026]外部数据库,用以组织和存储被试者的行为特征数据。
[0027]更进一步,分析处理装置还包括数据集成和清洗模块,用以将控制模块中采集得到的皮纹信息数据和行为特征数据,按照统一分析模型为框架进行组织并存储在数据库中时,进行数据集成、清洗,以及在统一分析模型中标记上述控制模块中数据的约束条件。
[0028]更进一步,所述统一分析模型包括:元模型层、集成模型层以及分析模型层,
[0029]在所述元模型层中,定义统一分析模型的基本元数据;
[0030]在所述集成模型层中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;
[0031]在分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。
[0032]更进一步,分析处理装置还包括数据分析模块,用以根据统一分析模型中的数据集合作为对象执行多维度数据分析,得到各维度概念的具体分类,以及不同维度之间的关联关系和因果规则。
[0033]更进一步,述自适应模型按照如下方式进行建立:
[0034]根据所述统一分析模型获得被试者多维度数据;
[0035]按照多维度数据中的行为特征,进行被试者的分析结论、效度以及相关性的自适应更改;
[0036]在上述处理过程中基于不同的目标或者应用场景建立自适应模型。
[0037]更进一步,所述控制模块还包括,优化采集模块,用以修正采集过程中的粒度,以及调整采集目标。
[0038]更进一步,所述模型评估模块还用以对采集数据进行迭代分析,对所述统一分析模型和自适应模型进行优化;
[0039]优化过程包括,调整上述模型中的参数,以及调整上述模型概念、相互关系。
[0040]更进一步,所述控制模块中用以采集皮纹信息的采集装置设置于移动终端或者PC端,
[0041]所述数据库模块中用以组织和存放采集数据通过互联网上传至云端或者储存在本地。
[0042]本发明的有益效果:
[0043]I)由于在本发明中的基于大数据的皮纹心理学分析处理装置,包括:控制模块和数据库模块,其中所述控制模块,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;通过采用基于计算机软件和互联网技术的大数据方法,可以轻松处理千万量级被试者的数据。
[0044]2)由于所述控制模块还用以,根据统一分析模型进行数据分析,分析结果得到自适应模型。所述控制模块不论是主观评测还是外部数据,都是一个持续性的过程,而且完全不受地域的限制,因此从宏观上看,时间和空间上都可以形成一个常态。这样得出的分析结果就更有意义。
[0045]3)由于所述数据库模块,用以存放并同步皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据;所述控制模块在建立模型时,对存放在数据库模块中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型;还包括模型评估模块,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。大数据的方法执行高效。即便是数据量如此庞大,也可以在很短时间内完成一轮分析,所以不会引入噪声因素。而且独特数据积累和迭代优化的能力使得模型能够不断进化。
[0046]4)由于所述统一分析模型包括:元模型层、集成模型层以及分析模型层,在收集的数据因为来源复杂、无法对其统一地管理和分析时,需要构建一个统一的数据分析模型,同时随着数据源和数据格式的变动,模型的扩展能力也需要得到保障。
【附图说明】
[0047]图1是本发明一实施例中的基于大数据的皮纹分析处理装置结构关系示意图。
[0048]图2是图1中的操作时序图。
[0049]图3是图1中的控制模块结构示意图。
[0050]图4是图3中的操作时序图。
[0051]图5是图1中的数据库模块结构示意图。
[0052]图6是图5中的操作示意图。
[0053]图7是图1中的统一分析模型结构示意图。
[0054]图8是本发明一优选实施例中的基于大数据的皮纹分析处理装置的结构示意图。
[0055]图9是本发明另一优选实施例中的基于大数据的皮纹分析处理装置的结构示意图。
【具体实施方式】
[0056]为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
[0057]图1是本发明一实施例中的基于大数据的皮纹分析处理装置结构关系示意图。
[0058]在本实施例中,基于大数据的皮纹分析处理装置,包括:控制模块101和数据库模块 100,
[0059]所述控制模块101,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;所述控制模块101的功能在于提供大数据的采集和分析模型的建立,实现大数据的基本方法首先就是从多种渠道广泛搜集数据,然后整合到一个统一的体系或模型下,再利用各种统计和数据挖掘的工具对数据进行操作,从而发现其内在的若干模式和规律。所述采集得到的皮纹信息数据,可通过人的指纹、掌纹和足纹信息,来分析人的性格特征、学习能力、思维方式、智能特点、人格特征等,目标是让人能够更好地了解和认识自己。从心理测量的角度来看,皮纹信息数据具有极高的信度和较高的效度。原因在于,人的皮纹信息是遗传信息,几乎终生不变,尤其是指纹信息,不受时间和环境的影响,多次测量的结果都是一致的,所以信度极高。在经历了多年的发展和行业应用之后,皮纹信息数据已被广泛应用在儿童教育、心理咨询、升学择业、职业规划、人才培养等众多领域。所述心理行为数据的采集,比如通过主观测试的题目,让用户答题并将答题结果自动上传到云端或者后台服务器。所述行为特征数据的采集,通过与被试者相关的互联网使用记录来搜集用户的一些日常行为数据,比如购物数据、投资数据、出行数据、社交行为数据等。实现这种方式首先要参与研究的被试者提供互联网应用的授权,然后再对接相关系统自动化地获取数据。通过心理咨询的方式获取被试者深度的心理状态数据。这些数据也可通过软件系统上传到云端。
[0060]在一些实施例中,基于Ouath协议,得到第三方授权和认证后,进行被试者网络访问记录、数据的获取。
[0061]在一些实施例中,通过解析URL地址进行被试者访问服务,获取得到访问记录和被试者行为数据。
[0062]在一些实施例中,通过网络爬虫,Larbin、Nutch、Heritrix、WebSPHINX、Mercator、PolyBot等,抓取被试者的行为数据。
[0063]在一些实施例中,所述采集皮纹信息数据包括但不限于,指纹信息,掌纹信息等,并上传到云端数据库。
[0064]在一些是实施例中,所述统一分析模型包括:元模型层、集成模型层以及分析模型层,在所述元模型层中,定义统一分析模型的基本元数据;比如,个人信息相关:
[0065]{性别}、{生日}、{血型}、{学历}、{专业}、{职业}
[0066]再比如,智力相关:
[0067]{语言}、{记忆}、{逻辑}、{空间想象能力}
[0068]在所述集成模型层中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;
[0069]在集成模型层中构建分为三个层次,第一个层次就是针对单个被试者的核心数据的组织;第二个层次就是组织单个被试者的后天成长数据;第三个层次就是组织被试者的社会化信息。
[0070]在分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。在所述分析模型层中会有很多个独立的分析模型,形成分析模型
口 O
[0071]所述控制模块101还用以,根据统一分析模型进行数据分析,分析结果得到自适应模型。
[0072]在一些实施例中,基于统一分析模式和各种分析工具,装置可以通过不断处理和分析数据得出一系列有意义的结论。这些结论都是面向某类或某几类研究目标或应用场景的,就构成了自适应模型。
[0073]所述数据库模块100,用以存放并同步皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据。
[0074]在一些实施例中,所述数据库模块100包括至少一个总控节点和多个数据节点的分布式数据库服务管理系统,其中所述总控节点一般用以将来自用户的命令和/或配置文件管理运行于至少一个数据节点上的数据库服务,以及接收来自外部应用的数据库访问请求,并随之将所接收到的数据库访问请求传送到目的数据库服务以执行所请求的数据库服务;所述数据节点,用以将来自上述的总控节点中的管理指令管理和配置运行于其上的数据库服务实例以及与其相关联的资源。
[0075]在一些实施例中,数据库模块100为分布式数据库系统,本领域技术人员能够明了,通常使用较小的计算机系统,每台计算机可单独放在一个地方,每台计算机中都可能有数据库管理系统中的一份完整拷贝副本,或者部分拷贝副本,并具有自己局部的数据库,位于不同地点的许多计算机通过网络互相连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。
[0076]在一些实施例中,基础信息数据包括但不限于,姓名、性别、生日、血型、学历、专业、职业、是否已婚、是否有小孩儿、所住区域、出生地、工作地。通过增加基础信息数据保证了分析处理的多种维度,以及可能存在的关键参数。
[0077]比如,通过待测者{姓名、所住区域、出生地、工作地},可以得到待测者社会层面的维度。
[0078]比如,通过待测者{性别、生日、是否已婚、是否有小孩儿},可以得到待测者的年龄区间维度。
[0079]比如,通过待测者{工作地、学历、专业、职业}可以得到待测者的受教育程度的维度。
[0080]比如,通过待测者{姓名、性别、所住区域、出生地}可以得到待测者的就业流向的维度。
[0081]比如,通过待测者{姓名、出生地、生日、血型}可以得到待测者的身份的维度。
[0082]然后通过所述皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据,得到统一分析模型。在所述统一分析模型的元模型层定义统一分析模型的基本元数据;在所述统一分析模型的集成模型层根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;以及在所述统一分析模型的分析模型层在分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。
[0083]上述基础信息数据的有益效果在于:通过了增加了基础信息数据的统一分析模型,能够对统一分析模型的建立起到更加优化的作用,同时有效解决了待测者群体样本多样化的问题,基于几十万、几百万甚至更高数量级的被试群体所呈现的结果。同时保证了每一次待测者是不同的,从而减少了偏差,每个单独的测试结果是在彼此独立和割裂的时空环境下产生的。基础信息数据还考虑到了不同的成长环境带来的噪声因素,提高分析结果的可信度。
[0084]所述控制模块1I在建立模型时,对存放在数据库模块100中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型。控制模块101中还包括了建立模型,对存放在数据库模块100中的数据进行调用,作为建立统一分析模型的基础。然后再对所述统一分析模型就行分析,得到自适应模型,所述自适应根据不同的场景和维度进行自适应调整。
[0085]还包括模型评估模块102,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块101中统一分析模型的结构及参数。所述评估的方式包括但不限于:迭代分析,优化模型。在这一过程中,可以启发式地调整所述统一分析模型中的参数,甚至调整模型概念和相互关系,这就是优化模型的过程。这一过程需要反复多次进行,以便得到更有意义的结果。这里的一个重要关键就是结果的可靠性验证。
[0086]所述迭代包括:a)考虑整个系统的采集是持续且自动化进行的,所以数据量在不断增大,也就是说被试者的群体在不断扩大;b)将上一轮的分析结果在下一轮可以用更大的数据集合来验证;c)具体分析判断时如果某个结果是有意义的,则在更大数据集中就应该表现出更高的得分,比如更强的统计相关性;通过上述迭代思路就可以将验证和优化过程统一起来了,使得整个评估过程非常高效。
[0087]图2是图1中的操作时序图。
[0088]在控制模块101中,主要进行如下的操作:
[0089]采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;
[0090]根据统一分析模型进行数据分析,分析结果得到自适应模型;
[0091]在建立模型时,对存放在数据库模块中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型。
[0092]在数据库模块100中,存放并同步皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据。
[0093]在模型评估模块102中,评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。
[0094]图3是图1中的控制模块结构示意图。
[0095 ]在所述控制模块1I包括:皮纹数据采集模块1011、测评和被试档案模块1012以及外部数据收集模块1013。
[0096]在一些实施例中,皮纹数据采集模块1011通过采集被试者的指纹、掌纹、虹膜信息、脸部信息等,作为皮纹数据采集的依据。
[0097]在一些实施例中,测评和被试档案模块1012包括但不限于,通过主观评测和用户咨询过程中回答问题得到的相关数据,以及被试者的自身数据。测试包括但不限于:性格特征测试、学习能力测试、思维方式测试、智能特点测试、人格特测试征等。将测试结果通过选择项或者判断项的方式在本地或者云端进行存放。
[0098]在一些实施例中,测评和被试档案模块1012包括但不限于,基于几名到上百名被试者为样本群体,根据皮纹的特征数据和实验所关注的被试者的心理和行为学特征进行相关性研究,从而给出具有哪些皮纹特征的被试者在某种心理和行为学特征上表现是一致的。
[0099]在一些实施例中,测评和被试档案模块1012包括但不限于,通过主观测试题来实现心理和行为学特征的评定样本,直接采集样本中的数据作为测评和被试档案模块1012的数据来源。
[0100]在一些实施例中,所述外部数据收集模块1013包括互联网访问行为数据,比如用户在社交网络、电商、视频网站等上的行为数据。通过访问URL或者第三方授权的方式进行外部数据收集。
[0101]图4是图3中的操作时序图。
[0102]在皮纹数据采集模块1011中,进行采集被试者的皮纹信息并通过网络服务器上传至后台服务器的操作;
[0103]在测评和被试档案模块1012,进行通过在线和/或线下测评的方式采集被试者的心理行为数据的操作;
[0104]在外部数据收集模块1013,进行对被试者的互联网访问行为得到行为特征数据的操作。
[0105]图5是图1中的数据库模块结构示意图。
[0106]所述数据库模块包括:皮纹数据库1001、测评和被试档案模块数据库1002、外部数据库1003。
[0107]在一些实施例中,皮纹数据库1001,将根据皮纹数据的采集需求建立的表中的字段分别进行存放,便于在控制模块101中建立统一分析模型时进行调用。
[0108]在一些实施例中,测评和被试档案模块数据库1002,通过建立在样本模型或者测试结果中的表和索,控制模块101进行直接调用。
[0109]图6是图5中的操作示意图。
[0110]皮纹数据库1001,用以组织和存储采集到的皮纹信息数据;即存放皮纹数据采集模块1011中的皮纹信息。
[0111]测评和被试档案模块数据库1002,用以组织和存储被试者的心理行为数据;即存放测评和被试档案模块数据库1002中的测评结果或者样本数据。
[0112]外部数据库1003,用以组织和存储被试者的行为特征数据,即存放用户在互联网上产生的数据,比如用户在社交网络、电商、视频网站等上的行为数据,其中数据的获取方式需要第三方授权。
[0113]图7是图1中的统一分析模型结构示意图。
[0114]在本实施例中,所述统一分析模型包括:元模型层700、集成模型层701以及分析模型层702,
[0115]在所述元模型层中700,定义统一分析模型的基本元数据;在所述元模型层中定义了用户描述整个数据模型概念的基本元素。比如对于一个被试个体来说,若需要描述他的皮纹信息,就需要手指、指纹纹型、脊线数量、手掌ADT角度等;又比如,若需要描述他的个人基本信息,就需要姓名、性别、生日、血型、学历、专业、职业等信息;再比如,若需要评估他智能特征和水平,就需要语言、记忆、逻辑、空间想象能力等信息;再比如,若需要描述他的性格特点,就需要内向、外向,直觉、感觉,理性、感性等信息。
[0116]在所述集成模型层701中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;基于元模型层建立的概念体系,就可以在集成模型层建立以被试者为核心的集成模型层。
[0117]第一个层次就是针对单个被试者的核心数据的组织,其中核心数据主要包括元模型层中所定义的个人基本信息、皮纹信息,以及通过皮纹信息推导出的先天智能、人格特征、学习类型和风格等信息。核心数据表示了单个被试者先天所拥有的属性,不会随着时间的变化而变化。
[0118]第二个层次就是组织单个被试者的后天成长数据。
[0119]第三个层次就是组织被试者的社会化信息。
[0120]在分析模型层702中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。在分析模型层702中,一个分析模型是为了一个或一系列研究或分析目标专门设计的,所以在分析模型层中会有很多个独立的分析模型,形成分析模型集合。
[0121]图8是本发明一优选实施例中的基于大数据的皮纹分析处理装置的结构示意图。
[0122]本发明提供了一种基于大数据的皮纹分析处理装置包括:控制模块101和数据库模块100,
[0123]所述控制模块101,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型;
[0124]所述控制模块100还用以,根据统一分析模型进行数据分析,分析结果得到自适应丰旲型;
[0125]所述数据库模块100,用以存放并同步皮纹信息数据、心理行为数据、行为特征数据、基础信息数据;
[0126]所述控制模块101在建立模型时,对存放在数据库模块中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型;
[0127]还包括模型评估模块102,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。
[0128]作为本实施例中的优选,所述控制模块101包括:
[0129]皮纹数据采集模块1011,用以采集被试者的皮纹信息并通过网络服务器上传至后台服务器;
[0130]测评和被试档案模块1012,用以通过在线和/或线下测评的方式采集被试者的心理行为数据,以以对被试者的互联网访问行为得到行为特征数据;
[0131]外部数据收集模块1013,用以对被试者的互联网访问行为得到行为特征数据。
[0132]作为本实施例中的优选,所述数据库模块100包括:
[0133]皮纹数据库1001,用以组织和存储采集到的皮纹信息数据;
[0134]测评和被试档案模块数据库1002,用以组织和存储被试者的心理行为数据行为特征数据;
[0135]外部数据库1003,用以组织和存储被试者的行为特征数据。
[0136]作为本实施例中的优选,还可以包括被试者基本信息数据库1004,用以组织和存放被试者的基本信息,包括但不限于:姓名、性别、生日、血型、学历、专业、职业等信息。
[0137]作为本实施例中的优选,分析处理装置还包括数据集成和清洗模块1014,用以将控制模块中采集得到的皮纹信息数据和行为特征数据,按照统一分析模型为框架进行组织并存储在数据库中时,进行数据集成、清洗,以及在统一分析模型中标记上述控制模块中数据的约束条件。对于可辨识的噪声数据进行清洗(去除、修正和补充)。
[0138]将上述通过控制模块100采集得到的数据,根据统一分析模型为框架进行组织并存储在数据库中。
[0139]在上述步骤中相对机械化,但关键是要做一些数据清洗的工作,以便后续的分析过程能够更加顺畅,结果更加准确。清洗数据主要是去除不必要的数据,修正有错误的数据和补充必要的数据。
[0140]在一些实施例中,统一分析模型中的模型会标记数据必要性约束和逻辑一致性约束,以保证数据的可分析性。如果违反逻辑一致性并且是必要的,就需要修正数据;如果违法逻辑一致性但不是必要的,那么可以酌情去除数据;如果是必要的,但数据缺失,那么就需要补充数据。
[0141 ]作为本实施例中的优选,在统一分析模型数据1005中的所述统一分析模型包括:元模型层、集成模型层以及分析模型层,
[0142]在所述元模型层中,定义统一分析模型的基本元数据。具体地,元模型层定义了用户描述整个数据模型概念的基本元素。比如针对一个被试个体来说,如果需要描述他的皮纹信息,就需要手指、指纹纹型、脊线数量、手掌ADT角度等;如果需要描述他的个人基本信息,就需要姓名、性别、生日、血型、学历、专业、职业等信息;如果需要评估他智能特征和水平,就需要语言、记忆、逻辑、空间想象能力等信息;如果需要描述他的性格特点,就需要内向、外向,直觉、感觉,理性、感性等信息。
[0143]在一些实施例中,可以通过将上述的概念在所述元模型层进行定义。
[0144]另外,还包括其它信息,比如被试个体在成长过程中所经历的事件,就需要时间、地点、环境、事件类别等数据来表达,上述概念同样需要在元模型层中定义清楚。
[0145]在本实施例中,对于每一个概念的定义都要包括如何对相应的信息进行量化,以便分析系统的执行。
[0146]具体地,比如,脊线数量和ADT的测量和数据存储方法,某一种性格特征倾向和打分等。在所述元模型层有了这些准确的概念定义,就可以无二义地表达下述的集成层的模型。
[0147]在所述集成模型层中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;基于上述元模型层建立的概念体系,就可以在集成模型层建立以被试者为核心的模型系统。所述的模型系统的构建分为三个层次:
[0148]第一个层次就是针对单个被试者的核心数据的组织,核心数据主要包括元模型层中所定义的个人基本信息、皮纹信息,以及通过皮纹信息推导出的先天智能、人格特征、学习类型和风格等信息。核心数据表示了单个被试者先天所拥有的属性,不会随着时间的变化而变化。
[0149]第二个层次就是组织单个被试者的后天成长数据。后天成长数据可以通过被试者所经历的时间、空间和关键事件来描述。比如一个30岁的成年人从出生到当下在时间维度上肯定是经历了发展心理学所定义的若干阶段(不同的学说定义的阶段往往不同,只要采用一套有意义的权威的理论即可,比如埃里克森的毕生发展的8个阶段,这在元模型层会有完整的定义);在空间维度上可能会经历若干次生活环境的变迀,比如,从出生的家乡到求学的城市再到工作的城市(对成长环境这种空间信息的描述也可以通过元模型所定义的概念来实现);最后是一些影响被试者身心成长的事件也需要组织起来,比如父母离异或一些较严重的疾病史等等。后天成长数据的来源主要就是主观测评和通过用户咨询所积累的被试者档案数据。
[0150]第三个层次就是组织被试者的社会化信息。这里主要包括被试者的社会行为和社会关系数据。社会行为如在网络上的消费和娱乐行为,以及日常生活中的工作、运动、旅游等行为。社会行为会被具体化为一系列的标签关联到被试者身上,比如剁手党、驴友、工作狂等等。社会关系就是被试者的家人、朋友、同事等建立起的社会关系网络。
[0151]在一些实施例中,如果关系网络中的若干个被试者的数据也在数据库中,那么就可以直接把他们建立起关联。社会化信息的数据来源主要是主观评测和被试者档案数据以及用户的互联网访问行为产生的数据。
[0152]在所述分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。
[0153]在上述分析模型层中,一个分析模型是为了一个、多个或者一系列皮纹信息研究或分析目标专门设计的,所以在分析模型层中会有很多个独立的分析模型,形成分析模型集合。比如,一个目标是分析有某种特殊指纹纹型的人在学前期之前经历父母离异的情况下的社会行为表现。那么在构建针对这一目标的分析模型的时候,就需要在集成模型层中提取具有三方面特定属性(有某种特殊指纹纹型,时间维度是学前期,关键事件是父母离异)的被试者数据,组织成一个简化模型。
[0154]在一些实施例中,所述简化模型,就是去除与该研究目标无关的信息,得到的模型相比集成层的模型更加简单,为的是更加快速有效的分析出结果。
[0155]作为本实施例中的优选,分析处理装置还包括数据分析模块1016,用以根据统一分析模型中的数据集合作为对象执行多维度数据分析,得到各维度概念的具体分类,以及不同维度之间的关联关系和因果规则。所述维度就是统一分析模型中的元模型层的多定义的不同层面。比如,一个被试者的皮纹信息就是一个维度,他的先天智能特征又是一个维度,他的性格特点也是一个维度等。多维分析就是要找出这些不同维度之间内在的因果或关联关系。比如,具有哪一种纹型特征的人群会在某一种或某几种先天智能方面独具优势,从而如何影响甚至塑造性格特征的。通过分析上述关系的技术手段包括但不限于:多元统计、时间序列分析、聚类挖掘、机器学习等。比如,针对一个被试者的皮纹信息就是一个维度,他的先天智能特征又是一个维度,他的性格特点也是一个维度的一个分析目标,通常可以采用多元统计的方法,以纹型特征作为自变量,智能特征作为因变量进行简单的相关性分析;或者也可以以纹型和智能特征分别作为自变量,以性格特征作为因变量进行复合的相关性分析。
[0156]在一些实施例中,如果相关性的分析不能得出有意义的结论,则再使用聚类挖掘的方法对先天智能或人格特征进行更加精细的分类。
[0157]作为本实施例中的优选,在皮纹知识模型数据库1006中的所述自适应模型按照如下方式进行建立:
[0158]根据所述统一分析模型获得被试者多维度数据;
[0159]按照多维度数据中的行为特征,进行被试者的分析结论、效度以及相关性的自适应更改;
[0160]在上述处理过程中基于不同的目标或者应用场景建立自适应模型。
[0161]基于统一分析模式和各种分析工具,可以通过不断处理和分析数据得出一系列有意义的结论。该些结论都是面向某类或某几类研究目标或应用场景的,就构成了自适应模型。比如,在面向儿童教育的应用场景中,具有某几种皮纹类型的处于学前期的儿童,在没有遭遇过家庭变故或疾病困扰的前提下,具有某些特殊的行为特征:好动,喜欢冒险等。而这一过程的自适应特征则体现在,随着处理数据的不断增加,有些结论会被增强,也就是相关性得分提高,效度提高;有些则可能会被减弱,相关性得分降低,效度降低等。当结论的效度降低到某一个阈值(典型的如50%)之后就需要调整参数、结构或彻底将其剔除。这样不仅可以去除不准确因素,也可以为新的结论留出更多的空间。因此,自适应模型就可以在这样的自适应过程中不断提高质量。
[0162]更进一步,所述模型评估模块102还用以对采集数据进行迭代分析,对所述统一分析模型和自适应模型进行优化;
[0163]优化过程包括,调整上述模型中的参数,以及调整上述模型概念、相互关系。所述优化过程包括了自适应模型的建立流程,根据所述统一分析模型获得被试者多维度数据;按照多维度数据中的行为特征,进行被试者的分析结论、效度以及相关性的自适应更改;在上述处理过程中基于不同的目标或者应用场景建立自适应模型。
[0164]更进一步,所述控制模块中用以采集皮纹信息的采集装置设置于移动终端或者PC端,这样可以方便对被试者的信息进行采集,被试者只要通过手机就能够实现皮纹信息的收集。所述数据库模块中用以组织和存放采集数据通过互联网上传至云端或者储存在本地,基于采集得到的大数据,进行面向云端的储放方式。
[0165]图9是本发明另一优选实施例中的基于大数据的皮纹分析处理装置的结构示意图。
[0166]所述控制模块还包括,优化采集模块1015,用以修正采集过程中的粒度,以及调整米集目标。
[0167]在本实施例中的皮纹知识模型数据库1006中的统一分析模型,在元模型层定义了用户描述整个数据模型概念的基本元素;
[0168]元模型层定义如下基本元素:
[0169]若需要描述皮纹信息,则需要手指、指纹纹型、脊线数量、手掌ADT角度等;
[0170]若需要描述他的个人基本信息,则需要{姓名、性别、生日、血型、学历、专业、职业}等信息;
[0171]若需要评估他智能特征和水平,就需要{语言、记忆、逻辑、空间想象能力}等信息;
[0172]若需要描述性格特点,就需要{内向、外向,直觉、感觉,理性、感性}等信息。
[0173]在所述集成模型层中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据;基于元模型层建立的概念体系,就可以在集成模型层建立以被试者为核心的模型系统。
[0174]在分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。在分析模型层中包括一个或一系列研究或分析目标专门设计的分析模型,所以在分析模型层中会有很多个独立的分析模型,形成分析模型集合。比如,一个目标是分析有某种特殊指纹纹型的人在学前期之前经历父母离异的情况下的社会行为表现。则在构建针对这一目标的分析模型的时候,就需要在集成模型层中提取具有三方面特定属性(有某种特殊指纹纹型,时间维度是学前期,关键事件是父母离异)的被试者数据,组织成一个“简化”的模型(所谓简化就是去除与该研究目标无关的信息,得到的模型相比集成层的模型更加简单,为的是更加快速有效的分析出结果)。
[0175]在本实施例中的统一分析模型数据库1005中的自适应模型,包括了基于统一分析模式和各种分析工具,可以通过不断处理和分析数据得出一系列有意义的结论。这些结论都是面向某类或某几类研究目标或应用场景的。就构成了皮纹的核心知识模型。随着处理数据的不断增加,有些结论会被增强,也就是相关性得分提高,效度提高;有些则可能会被减弱,相关性得分降低,效度降低等。当某些结论的效度降低到某一个阈值之后就需要调整参数、结构或彻底将其剔除。这样一方面可以去除不准确因素,另一方面也可以为新的结论留出更多的空间。因此,皮纹心理学的核心知识模型就可以在这样的自适应过程中不断提高质量。
[0176]所属领域的普通技术人员应当理解:以上,所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
【主权项】
1.一种基于大数据的皮纹分析处理装置,其特征在于,包括:控制模块和数据库模块, 所述控制模块,用以采集皮纹信息数据、心理行为数据以及行为特征数据,并根据采集得到的数据进行建模,得到统一分析模型; 所述控制模块还用以,根据统一分析模型进行数据分析,分析结果得到自适应模型; 所述数据库模块,用以存放并同步皮纹信息数据、心理行为数据、行为特征数据以及基础信息数据; 所述控制模块在建立模型时,对存放在数据库模块中的数据进行调用,再根据调用的数据建立统一分析模型,以及对统一分析模型进行分析,得到自适应模型; 还包括模型评估模块,用以评估统一分析模型和自适应模型中的分析结果并根据需求调整数据库模块中采集数据的参数,以及控制模块中统一分析模型的结构及参数。2.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述控制模块包括: 皮纹数据采集模块,用以采集被试者的皮纹信息并通过网络服务器上传至后台服务器; 测评和被试档案模块,用以通过在线和/或线下测评的方式采集被试者的心理行为数据; 外部数据收集模块,用以对被试者的互联网访问行为得到行为特征数据。3.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述数据库模块包括: 皮纹数据库,用以组织和存储采集到的皮纹信息数据; 测评和被试档案模块数据库,用以组织和存储被试者的心理行为数据; 外部数据库,用以组织和存储被试者的行为特征数据。4.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,还包括数据集成和清洗模块,用以将控制模块中采集得到的皮纹信息数据和行为特征数据,按照统一分析模型为框架进行组织并存储在数据库中时,进行数据集成、清洗,以及在统一分析模型中标记上述控制模块中数据的约束条件。5.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述统一分析模型包括:元模型层、集成模型层以及分析模型层, 在所述元模型层中,定义统一分析模型的基本元数据; 在所述集成模型层中,根据皮纹信息数据和心理行为数据,按照被试者以时间和空间作为索引,进行被试者的完整肖像数据; 在分析模型层中,根据所述元模型层中的基本元数据和集成模型层中的完整肖像数据,得到分析模型集合。6.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,还包括数据分析模块,用以根据统一分析模型中的数据集合作为对象执行多维度数据分析,得到各维度概念的具体分类,以及不同维度之间的关联关系和因果规则。7.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述自适应模型按照如下方式进行建立: 根据所述统一分析模型获得被试者多维度数据; 按照多维度数据中的行为特征,进行被试者的分析结论、效度以及相关性的自适应更改; 在上述处理过程中基于不同的目标或者应用场景建立自适应模型。8.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述控制模块还包括,优化采集模块,用以修正采集过程中的粒度,以及调整采集目标。9.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述模型评估模块还用以对采集数据进行迭代分析,对所述统一分析模型和自适应模型进行优化; 优化过程包括,调整上述模型中的参数,以及调整上述模型概念、相互关系。10.根据权利要求1所述的基于大数据的皮纹分析处理装置,其特征在于,所述控制模块中用以采集皮纹信息的采集装置设置于移动终端或者PC端, 所述数据库模块中用以组织和存放采集数据通过互联网上传至云端或者储存在本地。
【文档编号】G06F19/00GK106055875SQ201610342263
【公开日】2016年10月26日
【申请日】2016年5月21日
【发明人】郑叔亮
【申请人】北京大脑智库教育科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1