一种静脉轮廓识别装置的制造方法

文档序号:10908057阅读:433来源:国知局
一种静脉轮廓识别装置的制造方法
【专利摘要】本实用新型公开一种静脉轮廓识别装置,根据图像质量评价获得指定区域的最优图像,能有效地排除周围环境的干扰,选取出最优的静脉图像作为原始数据;采用图像处理方法,获得指定区域的手指静脉轮廓线,其他则设为背景;根据双目原理,将其转换为三维视差图像;将视差图像转换为三维点云;采用基于迭代最近点的点云匹配算法进行匹配,设置匹配阈值,实现身份认证和识别本实用新型基于手指静脉轮廓的全部三维点云进行匹配,能有效地提高目前基于特征点的相关信息匹配精度和灵敏度,并有效地消除了因手指扰动造成的二维图像误判以及现有的三维特征不明显的问题,可以根据点云匹配程度阈值来自定义调整识别的灵敏度。
【专利说明】
一种静脉轮廓识别装置
技术领域
[0001] 本实用新型涉及一种生物特征识别技术,特别涉及一种静脉轮廓识别装置。
【背景技术】
[0002] 现有的静脉方法和装置主要是基于二维静脉图像进行识别为主。在实际应用中, 由于光照条件的变化、手指位置不一致、手指扰动等问题,造成模板与待识别图像之间的失 配,从而极大程度地影响了静脉识别方法的性能。解决基于二维静脉图像的识别问题的根 本途径是米用二维识别。
[0003] 因此,如何解决三维静脉识别已经成为当今静脉识别技术的一个亟待解决的问 题。 【实用新型内容】
[0004] 本实用新型为解决上述技术问题,提出了一种静脉轮廓识别装置。利用双目视觉 的原理构建基于嵌入式或计算机的手指静脉三维识别装置,获取到手指静脉的初始三维图 像;结合图像处理技术实现手指静脉三维识别。
[0005] 本实用新型采用的技术方案是:一种静脉轮廓识别装置,包括:红外光源、红外滤 光片、手指槽、轻触电源开关、左右两台摄像机、电源、电源控制电路以及外部处理设备;所 述外部处理设备为:PC机或ARM接口板或DSP处理板;
[0006]红外光源设置于底部,左右两台摄像机设置于顶部,中间为放置手指的手指槽,手 指槽一端设有一个轻触开关;在左右两个摄像机镜头上都加了红外滤光片,用以滤除非红 外光;
[0007] 手指槽、红外光源和左右两台摄像机处于同一水平面上;
[0008] 手指与红外光源垂直且距离为lcm,摄像机与手指的垂直距离大约8cm;
[0009]左右两个摄像头之间的距离大约3cm。
[0010] 进一步地,所述红外光源为:白炽灯或氙灯或红外发光二极管LED。
[0011] 更进一步地,所述红外光源排布成阵列形式。
[0012] 本实用新型的有益效果:一种静脉轮廓识别装置,包括:红外光源、红外滤光片、手 指槽、轻触电源开关、左右两台摄像机、电源、电源控制电路以及外部处理设备;所述外部处 理设备为:PC机或ARM接口板或DSP处理板;利用双目视觉的原理构建基于嵌入式或计算机 的手指静脉三维识别装置,获取到手指静脉的初始三维图像;结合图像处理技术实现手指 静脉三维识别。
【附图说明】
[0013] 图1为本实用新型提供的识别装置结构图。
[0014] 图2为本发明提供的方案流程图。
[0015] 图3为本发明提供的检测轮廓所用的掩膜;
[0016]其中,(a)为手指上边界,(b)为手指下边界。
[0017]图4为本发明提供的手指静脉三维识别流程图。
【具体实施方式】
[0018] 为便于本领域技术人员理解本实用新型的技术内容,下面结合附图对本实用新型 内容进一步阐释。
[0019] 本实用新型通过如图1所示的静脉轮廓识别装置,获取手指静脉初始图像,该装置 主要包括:红外光源(1)、红外滤光片(2)、手指槽(3)、轻触电源开关(4)、左右两台摄像机 (5)、电源(6)、电源控制电路(7)、PC机(或ARM接口板和DSP处理板)(8),其中两台摄像机水 平放置在装置顶部,为了防止非红外光,在镜头上加了红外滤光片。手指槽置于装置中间, 在手指槽的顶端放有轻触开关(4),装置底部安放红外光源(1)。
[0020] 手指在手指槽中就位后,指尖抵住轻触开关(4),则启动设备电源(6),开启红外光 源(1)和摄像机(5),硬件设备开始工作。通过预定的成像参数,获得初始图像,通过结构特 征来定量描述图像质量,如果满足要求,则采用该图像;否则采用PWM波调整光源电压,重新 采集图像,直至图像质量满足要求;将获得的最优图像裁剪为统一大小的图像。
[0021 ]所述红外光源为排布成阵列形式的白炽灯或氙灯或红外发光二极管LED。白炽灯 或氙灯发出的其他光在摄像机(5)采集的时候,因为在镜头上加了红外滤光片,可将除红外 光意外的其他光线滤除,白炽灯或氙灯为常见光源,用于制造本申请的装置可降低制造成 本。
[0022]如图2所示为基于本实用新型装置的一种静脉轮廓三维点云匹配的身份识别方 法,包括:
[0023] S1、通过识别装置获取手指静脉初始图像;
[0024] 所述识别装置包括:红外光源、红外滤光片、手指槽、轻触电源开关、左右两台摄像 机、电源、电源控制电路以及外部处理设备;所述外部处理设备为:、PC机或ARM接口板或DSP 处理板;
[0025] 其中,红外光源在底部,左右两台摄像机在顶部,中间为放置手指的手指槽,手指 槽顶部有一个轻触开关,并且手指槽,红外光源和左右两台摄像机处于同一水平面上; [0026] 红外光源,手指槽和左右两台摄像机在同一水平面上,手指与红外光源垂直且距 离为1 cm,摄像机与手指的垂直距离大约8cm;
[0027]左右两个摄像头之间的距离大约3cm;
[0028]在左右两个摄像机镜头上都加了红外滤光片,用以滤除非红外光;
[0029] S2、对于步骤S1获取的手指静脉初始图像,首先结合静脉图像质量评价获得最优 的采集图像,能有效地排除周围环境的干扰;然后采用图像处理获得感兴趣区域内的手指 静脉轮廓图像;再采用双目视觉原理获得手指静脉轮廓图像的三维信息,将其转换为三维 点云;具体包括以下分步骤:
[0030] S21、采用基于图像内容的结构相似性来描述图象质量,即选择一幅标准图像作为 参考,将每次采集的图像与标准图像从亮度、对比度和结构相似性三个方面进行对比,构造 基于这三个要素的评价模型如下:
[0031] S(x,y) = [l(x,y)]a. [c(x,y)]p. [s(x,y)]Y
[0032]其中,l(x,y)为亮度比较函数,a为亮度权重,c(x,y)为对比度权重,0为对比度权 重,s(x,y)为结构相似性比较函数,y为结构相似性权重,x表示参数图像,y采集的图像。为 了便于后期图像处理算法设计,这里的质量评价的三个因素的权重均为1,即a=P= y =1。
[0034] 这里,
.表示参考图像和采集图像的平均亮度,
表示参考图像和采集图像的标准差,
表示参考图像和采集图像的协方差,C1、 C4PC3分别是避免分母 为零的最小常数。
[0035] 依据S (x,y)的计算结果,越接近于1,说明与参考图像质量越接近,则表示越可接 受。这里设置S(x,y)的阈值为0.8,则S(x,y)大于等于0.8,表示该采集图像可接受并采用, 如果S(x,y)小于0.8,则表示该图像质量不符合要求,则调整PWM波,重新采集图像,直至采 集图像与参考图像的S(x,y)值大于等于0.8,为止。
[0036] S22、采用张正友标定法对两台摄像机进行标定,得到两摄像机间的旋转矩阵R和 平移向量T以及它们的内参数矩阵K; ? ? r ?〇
[0037] K- 0 ar v0 ;. 0 0 1
[0038] 其中,au = -f ku,civ = _f kv表不在水平和垂直像素上的焦距,ku和kv是沿u轴轴(水平 轴)和 ¥轴(垂直轴)上每毫米的有效像素数,(UQ,VQ)是主点(光轴与视网膜平面交点)的坐 标,Y是扭曲因子。
[0039]则相机投影矩阵可表示为P=K[R | T]。
[0040]采用Fusiello方法进行极线校正,使摄像机的光轴平行,从而得到只有水平位移 差异的一对图像以及校正后的相机投影矩阵。
[0041] S23、使用CLAHE算法进行直方图均衡化,采用自适应阈值分割技术,获得静脉目 标,然后采用Sobel边缘检测算子获得静脉轮廓,再采用8邻域追踪以获得手指静脉的单值 轮廓,并将得到静脉轮廓点为关键点。具体为:
[0042] 首先,使用Contrast Limited Adaptive Histogram Equalization(CLAHE)算法 通过限制局部直方图的高度来限制局部对比度的增强幅度,从而实现限制噪声及局部对比 度的过增强。详细过程为:将原图像划分成更小的窗口,计算各窗口内的累积直方图函数。 用预先定义的阈值来裁剪直方图以达到限制放大幅度的目的并将这些裁剪掉的部分均匀 的分布到直方图的其他部分。基于此直方图做均衡化,以均衡化后窗口中心点的灰度为作 为中心点的灰度值。然后移动窗口,不断重复上述过程,直到对每一个像素点进行灰度变 换。由此增强了图像对比度。在实际应用中,对比度限制限制值为在范围[0,1]内的一个数 值,本实验选择对比度限制为〇. 〇 1。
[0043] 然后,用中值滤波法滤掉图像中的噪声。中值滤波原理是把图像中一点的灰度值 用该点的一个邻域中各点值的中值代替,使周围的像素值接近的真实值,从而消除孤立的 噪声点。方法是用二维滑动模板,将模板内像素按照像素灰度值的大小进行排序,生成单调 上升的为二维数据序列。二维中值滤波输出为8(1,7)=1116(1{;^1-1^,7-1),(1^,1£1)},其中, 以1, 7)^(1,7)分别为原始图像和处理后图像。1是大小为7\7的模板。
[0044] 再者,采用灰度拉伸来增强图象质量。灰色线性变换使得较小的灰度空间通过线 性关系扩展到更大的灰度空间。灰度线性变换后,增加了像素的动态范围,增强了图像的对 比度。使图像变得更加清晰,易于识别。假定原始图像f(x,y)的灰度范围为[a,b],线性变换 后,图像f(x,y)的灰度空间扩展到[c,d],公式如下所示。在本方法中,原图像归一化灰度值 在[0.15,0.9]范围内的像素点被扩展至[0,1]。
[0046] 最后,分别采用自适应阈值分割技术,获得静脉目标,然后再采用轮廓提取和追踪 以获得手指静脉的单值图像轮廓。二次Sobel边缘检测得到静脉轮廓和手指边界轮廓并将 其作为关键点。
[0047] 首先,用如图3所示的掩膜检测手指轮廓
[0048] 通过计算每个x在y方向上掩模和图像的卷积,最大卷积值出现的位置即为边界 线。令手指区域外的像素灰度值等于0。使用自适应阈值算法从背景中分离静脉。进行此步 后得到的二值图像仍然有噪声区域被错误地提取为手指静脉或背景,因此需要对图像进行 腐蚀并且统计每个联通区域的大小。面积小的黑色连通区域被白色像素填充,面积小的白 色区域被剔除。最后使用sobel算子提取出手指和静脉的轮廓。Sobel边缘检测器使用一个3 X3领域的行和列之间的离散差来计算梯度,其中,每行或列的中心像素用2来加权,以提供 平滑效果:
[0050]式中,z项代表灰度。因此,如果在(x,y)处Af?彡T(T是自适应阈值),那么在该位置 的像素是边缘像素。提取出轮廓后,将其作为匹配使用的关键点。
[0051] S24、使用SAD算法做立体匹配并生成视差图,选择使SAD值最小的平移距离为滑动 窗中心点的视差值,以从左往右从上往下的顺序依次计算每一个像素点的视差值,最终得 到视差图。
[0052] 使用SAD算法做立体匹配并生成视差图。计算公式图下:
[0053] SAD(u, v,d) = V;_ \l, (.v -t-/. v + ./)- /,. (x + i + d,y + j)\
[0054]式中,ijPIr分别表示左右图像素点的灰度值,d代表视差距离,w是滑动窗大小,x 和y表示滑动窗中心像素坐标。选择使SAD值最小的平移距离为滑动窗中心点的视差值。以 从左往右从上往下的顺序依次计算每一个像素点的视差值,最终得到视差图。
[0055] S25、使用三角测量原理计算点的三维坐标。
[0056]左摄像机获得的图像(以下简称"左图")中点和右摄像机获得图像(以下简称"右 图")中的对应点坐标在相机坐标系下分别为X和V。两个相机的投影矩阵分别为P和P'。由 此我们得到了两个等式:x = PX和YiP'X,将它们合并成一个关于X的线性方程AX = 0。通过 计算叉积,可得到每个点的三个方程,并消掉了齐次尺度因子。对于左图,式xX (PX)=0可 以被写成为: ..v(/,,/\Y)-(/5i/\Y) = 0
[0057] , x)-y(Pu X) = Q [0058]其中,PlT^P的行向量。
[0059] 对于右图,可以把上述方程组的x和y代换为Y,y'得到右图的方程。
[0060] 矩阵A为: ~xPiT -PXT _ vPiT-P2T
[0061] , xP,31 -PnT -P'nr
[0062] X=( ' [是其次方程,X即为AX = 0的最小二乘解。从而获得对应点X的三维坐 标系。
[0063] S3、如图4所示为本实用新型的识别流程图。首先将待匹配点云和模版点云平移至 各自重心,然后计算两点云中的最近点对,得到误差和坐标变换向量,把坐标变换向量代入 原待匹配点云数据得到变换后的点云。判断误差是否大于第二阈值以及现迭代次数是否大 于最大迭代次数,若否,则返回计算最近点,进行下一次迭代。若是,则将数据点云配准至模 版点云,再比较误差是否小于第二阈值,若是,则匹配成功;若否,则匹配失败。
[0064]本实用新型基于手指静脉轮廓的全部三维点云进行匹配,能有效地提高目前基于 特征点的相关信息匹配精度和灵敏度,并有效地消除了因手指扰动造成的二维图像误判以 及现有的三维特征不明显的问题,可以根据点云匹配程度阈值来自定义调整识别的灵敏 度。
[0065] 根据步骤S2得到的三维点云,通过改进的ICP匹配算法实现手指静脉的三维识别。 假设Pi(i = l,2-_NP)是模版点云,xi(i = l,2-_Nx)是待匹配的点云,i表示点云中点的编号。 使用单位四元数法来计算运动参数,得到用四元数法表示旋转矩阵% ,其中 qoX)且q〇2+qi2+q22+q32 = l。以及平移向量各=[^4 ,最终通过计算矩阵A来得到旋转 矩阵R。 2 (斯)
[0066] R= 2(q^qz+ql)q:, ) 2{q,qs-q{)L!\) 2(qiqrqtlq::) 2(q2q,+(M[) _
[0067] 配准状态向量为# = 由此将匹配问题转化为寻找函数/(f)的最小值
[0068] /(^) = E;lP1|[x/-(/?fe)i3;.4-^)||2 (5)
[0069]具体包括以下分步骤:
[0070] 1 )、计算模版点云和待匹配点云的重心 。并将其移 动到同一坐标下的相同位置;
[0071] 2)、计算两组点云的最小矩形包围盒,旋转点云使得最小包围盒的朝向一致;
[0072] 3)、得到两个点云集合的互协方差矩阵;
[0074] 4)、利用反对称矩阵Aij = ( E PX E PXT) ij构造列向量A = (A23A31A12)T,并用该列向量 生成一个4*4的对称矩阵Q( EPX); _5]昨".'卜 ,,T_fjy;
[0076] 5)、计算步骤4)所得对称矩阵Q(EPX)的特征值和单位特征向量;
[0077] 其中,最大的特征估值对应的单位特征向量为最佳旋转矩阵:'+仏私;]、
[0078] 6)、计算最佳平移向量々,=|1,-尺(&)1。
[0079] 7)、根据步骤5)得到的旋转矩阵以及步骤6)得到的最佳平移向量,得到配准状态 向里=:[毛|务];
[0080] 8)、构建匹配识别目标函数:
[0081 ] /⑷=以|卜-(穴(《)/; +各)||%
[0082] 其中,及表示模版点云,Xl表示待匹配的点云,R表示旋转矩阵,心表示最佳旋转矩 阵,丞表示最佳平移向量,I I ? I I2表示欧式距离的平方。
[0083] 9)、根据步骤7)得到的配准状态向量,计算步骤8)匹配识别目标函数./如)的最小 均方误差七 =/(4);
[0084] 10)、根据多次匹配实验测定第二阈值,即匹配阈值I,第二阈值可根据识别的灵敏 度来调整。如果识别的灵敏度要求高,则该阈值则越小;反之,如果识别的灵敏度要求低,则 该阈值则越大,即通过该域值的设定,可以调整系统的识别的灵敏度。将步骤9)得到的最小 均方误差d ms与t进行比较,若dms大于I,则用计算出的平移向量和旋转矩阵得到的点云数据 阵代替原待匹配点云P = 1.2…A/,., ;) = /如+ "循环迭代直到dms小于等于t,或迭代次数大 于预设的最大迭代次数。如果在预设的最大迭代次数内,匹配失败,则说明识别失败,即身 份验证失败;如果在预设的最大迭代次数内,匹配成功,且dms小于等于t,则说明识别成功, 即身份验证成功。其中,最大迭代次数是根据点云的数目和识别的精度、实时性和灵敏性来 实验确定的。最大迭代次数的设置是根据匹配识别的实时性要求和精度要求,通过多次实 验来确定的。如果识别的实时性要求高,则最大迭代次数可设计为较少;如果识别的实时性 要求低,则最大迭代次数可设计为较多。如果识别的精度要求高,则最大迭代次数可设计为 较多;如果识别的实时性要求低,则最大迭代次数可设计为较少。
[0085]本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本实 用新型的原理,应被理解为本实用新型的保护范围并不局限于这样的特别陈述和实施例。 对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神 和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的权利要求范围 之内。
【主权项】
1. 一种静脉轮廓识别装置,其特征在于,包括:红外光源、红外滤光片、手指槽、轻触电 源开关、左右两台摄像机、电源、电源控制电路以及外部处理设备;所述外部处理设备为:PC 机或ARM接口板或DSP处理板; 红外光源设置于底部,左右两台摄像机设置于顶部,中间为放置手指的手指槽,手指槽 一端设有一个轻触开关;在左右两个摄像机镜头上都加了红外滤光片,用以滤除非红外光; 手指槽、红外光源和左右两台摄像机处于同一水平面上; 手指与红外光源垂直且距离为lcm,摄像机与手指的垂直距离大约8cm; 左右两个摄像头之间的距离大约3cm。2. 根据权利要求1所述的一种静脉轮廓识别装置,其特征在于,所述红外光源为:白炽 灯或氙灯或红外发光二极管LED。3. 根据权利要求2所述的一种静脉轮廓识别装置,其特征在于,所述红外光源排布成阵 列形式。
【文档编号】G06K9/00GK205594652SQ201620393918
【公开日】2016年9月21日
【申请日】2016年5月4日
【发明人】不公告发明人
【申请人】成都指码科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1