专利名称:一种即插即用的交通综合检测系统的制作方法
技术领域:
本发明涉及一种即插即用的交通综合检测系统。
背景技术:
交通综合检测器是基于视频检测技术,通过将摄像机拍摄的模拟/数字视频信号 输入到检测设备,由检测设备进行处理,进行目标跟踪与模型匹配,实现实时交通参数统计 调查和自动监视摄像机视野内异常交通事件的功能。使用户能够轻松掌握路段的交通情况 并及时发现路段异常事件。目前,市面上已有一些交通综合检测器产品,并能实现交通流量 和事件的检测,例如citilog公司提出的MediaTunnel、MediaRoad等系列产品。但是目前市面上的产品更多的是适用于固定式摄像机,在系统工作前,需要进行 繁琐的系统配置,系统配置完成之后,就不能改变摄像机的视域,一旦视域发生改变,则需 要工程人员根据新的视域重新进行系统配置,因而达不到即插即用的便捷性要求。而有些 少量的能够实现即插即用适用于云台式摄像机的产品也只能进行简单的停车事件检测,而 无法实现包括流量检测、逆行事件检测等交通综合检测过程中不可缺少的内容。现有的交通综合检测系统通常是基于固定摄像机视频的,通过将摄像机拍摄的模 拟/数字视频信号输入到检测设备(即视频检测器),由检测设备(视频检测器)进行处理, 进行目标跟踪与模型匹配,实现实时交通流量统计调查和自动监视摄像机视野内异常交通 事件的功能,其中视频检测器往往需要配置道路的实际区域用于检测器车辆,即通过划定 检测线圈得到检测器区域,并通过手动配置车辆的运动方向,从而进行逆行检测。为了统计 各个车道的流量和车辆速度,需要在各个车道关键位置放置检测线圈。在检测过程中,通过 检测器线圈内车辆的通过情况给出检测结果。传统的交通视频检测方案基本上包括以下几个步骤(1)根据当前检测视域,进行系统配置,这里的系统配置主要是进行检测视域的标 定,检测范围的设定,在关键位置放置检测器以及检测参数的配置等。(2)获取检测视频帧,并进行运动目标检测和运动目标跟踪。(3)根据运动目标检测和运动目标跟踪结果,得到检测结果,如交通流量、车辆速 度以及车辆行为等。其处理流程图如图1所示。对于固定式摄像机,现有检测方法具有一定的可行性,因此目前广泛应用的就是 这种方案。其最大的缺点是灵活性较差,摄像机安装后视域就固定了,这大大限制了摄像机 的视觉功能。目前越来越多的高速公路、城市道路和隧道中采用了云台式摄像机(或者球 机),其能够在监控中心通过云台控制摄像机,实现视域的放大缩小,变焦变倍,并能进行水 平和俯仰的旋转等,从而使得摄像机的可视范围大大增强,可视能力大大提高。而这种摄像机的应用给传统的视频检测带来了新的挑战,由于其视域不固定,因 此不能再应用传统的通过设定检测范围的方法进行检测。特别的,在应用了这种云台式摄 像机之后,传统的交通检测内容也大大缩减,目前市面上多数基于这种云台式摄像机的交 通检测往往仅限定在停车检测、异常事件检测等方面,因而不能很好的满足当前的应用需求。本发明提出一种能够适用于云台模式摄像机(当然也能适用于固定式摄像机)的即 插即用交通综合检测方案,其既能很好的检测停车事件、异常事件等,还能进行车辆逆向行 驶、车辆流量等多方面的检测。本发明就是基于如上问题,给出了一种能够适用于包括云台式摄像机在内的即插 即用的视频检测系统,其能够方便的实现云台模式下的流量检测、逆行事件检测等,并能实 现高效的常规异常事件检测。
发明内容
本发明就是基于如上问题,给出了一种能够适用于包括云台式摄像机在内的即插 即用的视频检测系统,其能够方便的实现云台模式下的流量检测、逆行事件检测等,并能实 现高效的常规异常事件检测。本发明的目的是通过以下技术方案来实现的。一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如下步骤一,通过视频采集系统进行对视频进行采集,所述采集方式是通过当前通用 的视频采集卡直接采集模拟的视频、通过网络端口接收远程发送的视频流并解码得到视 频、直接通过设备自带的摄像头进行采集,三种采集方式的任意一种或多种。通过视频采集 得到视频帧序列。步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别。步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动 目标跟踪。步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检 测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。可选的,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方 向检测结果改进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车 道范围和车道方向的检测结果。具体修正方法,包括但不限于以下示例所述方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡 进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可 以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视 频帧序列。方法三,直接通过本地摄像头采集得到视频帧序列。步骤二所述的车道范围和车道方向的识别过程,其具体步骤说明如下步骤一,进行视频场景的背景建立,得到干净场景背景图。目前背景建立的方法已 有很多的研究成果,有些将背景建立过程称之为背景建模或者背景生成,其主要方法是通 过若干帧视频得到一张无前景目标(或者近似无前景目标)的场景背景图。下面简要介绍 几种背景建立方法一,通过采 集卡进行视频采集。例如可以通过目前市面上已有的数字采集 卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。方法二,通过 Internet网络接收视频进行视频采集。这里通过网络接收的方式可以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视频帧序列。方法三,直接通过本地摄像头采集得到视频帧序列。但这里所提到的方法并限于 如下举例,目前已有的任何一种背景建模方法均可以用于这里的背景建立过程。通过背景建立得到一种无前景目标的干净背景图,对于前景目标特别少的场景, 则还直接可以将获取的当前帧作为背景图。步骤二,对场景背景进行道路边缘标线识别,得到道路范围。众所周知,目前的道路特别是高速公路,在道路上都有明显的标识线,如用于区分 车道的车道线和虚实线,这里车道两侧的实线能够用于识别道路范围,而车道中间的虚线 则不仅可以用于进 一步细分车道,更能用于对道路进行自动标定。在高速公路场景中,由于道路的结构特征非常明显,画面中经常会存在大量的道 路边缘线以及白色的道路路标线,这些直线在实际场景中通常是平行的,在经过摄像机的 透视投影以后,理想情况下这些平行的直线会在图像平面中相交于一点,该交点被称作消 失点(Vanishing Point)。道路消失点有个重要性质道路上的任意行道线或与行道线平 行的任意直线具有相同的消失点。可以根据这一性质对检测得到的直线进行约束,从而检 测所有有效的车道线。这里我们自动标定时也利用了这个有效性质。综上,边缘标线识别识别和自动识别过程如下首先对车道范围内的直线进行检测,这里检测直线的方法有很多种,例如可以通 过边缘检测后进行hough变换,检测得到的边缘图中的直线,然后通过检测得到的直线进 行结构分析得到道路边缘线。通过道路边缘线即能得到道路范围;步骤三,根据道路行驶的规则一靠右行驶还是靠左行驶,判断车辆在道路上的运 行方向。例如中国大陆地区的道路均为靠右行驶,而英国的道路均为靠左行驶。步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定。根据摄像机 标定理论,只需要知道图像中的四个点的像素坐标和实际大地参考坐标,即能对整个图像 进行标定,并可以将一幅斜视角的图像影射俯瞰视角的图像。步骤五,进行运动目标的检测与跟踪;结合步骤一中得到的背景,本发明采用背景差分法或者帧间差分法进行运动目标 的检测和提取。也可采用混合高斯模型等其他方法直接提取前景目标,随后采用Meanshift 等目标跟踪算法进行目标跟踪。步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根 据运动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速 度判定交通事件是否发生。此外,结合跟踪结果,判定目标在每个车道内的运动方向,判定 方法如下对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否 则认定车道逆行运动计数器加一,当车辆通过数量大于N时,如果车道正向运动计数器值/车道逆向运动计数器值> K则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向(计 数器值偏大的车流方向)为车道方向。通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识 别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云台摄像机条件下的检测性能。 本发明提出了一种全新的即插即用交通视频检测方案及设备,其在摄像机视域发 生更改后无需再进行重新配置,并独创性的实现了基于云台式摄像机的车辆逆行检测和分 车道流量检测,并在异常事件检测等方面远优于目前已有的解决方案。
下面根据附图和实施例对本发明作进一步详细说明。图1是传统的交通视频检测方案流程图;图2是本发明所述即插即用交通视频检测系统的基本处理流程图。图3是坐标分析示例图像;图4是将图3影射为俯瞰视角的图像。
具体实施例方式如图2所示,一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如 下步骤一,通过视频采集系统进行对视频进行采集,所述采集方式是通过当前通用 的视频采集卡直接采集模拟的视频、通过网络端口接收远程发送的视频流并解码得到视 频、直接通过设备自带的摄像头进行采集,三种采集方式的任意一种或多种。通过视频采集 得到视频帧序列。步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别。步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动 目标跟踪。步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检 测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。可选的,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方 向检测结果改进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车 道范围和车道方向的检测结果。具体修正方法,包括但不限于以下示例所述方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡 进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可 以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视 频帧序列。方法三,直接通过本地摄像头采集得到视频帧序列。步骤二所述的车道范围和车道方向的识别过程,其具体步骤说明如下步骤一,进行视频场景的背景建立,得到干净场景背景图。目前背景建立的方法已 有很多的研究成果,有些将背景建立过程称之为背景建模或者背景生成,其主要方法是通 过若干帧视频得到一张无前景目标(或者近似无前景目标)的场景背景图。下面简要介绍 几种背景建立方法一,通过采集卡进行视频采集。例如可以通过目前市面上已有的数字采集卡进行视频采集,这里的视频采集卡通过线缆外接高清或者标清的摄像机。方法二,通过Internet网络接收视频进行视频采集。这里通过网络接收的方式可 以通过接收数字摄像机或者专用的视频编码器设备发送的视频流,并解码或者解析得到视 频帧序列。方法三,直接通过本地摄像 头采集得到视频帧序列。但这里所提到的方法并限于 如下举例,目前已有的任何一种背景建模方法均可以用于这里的背景建立过程。通过背景建立得到一种无前景目标的干净背景图,对于前景目标特别少的场景, 则还直接可以将获取的当前帧作为背景图。步骤二,对场景背景进行道路边缘标线识别,得到道路范围。众所周知,目前的道路特别是高速公路,在道路上都有明显的标识线,如用于区 分车道的车道线和虚实线,这里车道两侧的实线能够用于识别道路范围,而车道中间的虚 线则不仅可以用于进一步细分车道,更能用于对道路进行自动标定。在高速公路场景中,由于道路的结构特征非常明显,画面中经常会存在大量的道 路边缘线以及白色的道路路标线,这些直线在实际场景中通常是平行的,在经过摄像机的 透视投影以后,理想情况下这些平行的直线会在图像平面中相交于一点,该交点被称作消 失点(Vanishing Point)。道路消失点有个重要性质道路上的任意行道线或与行道线平 行的任意直线具有相同的消失点。可以根据这一性质对检测得到的直线进行约束,从而检 测所有有效的车道线。这里我们自动标定时也利用了这个有效性质。综上,边缘标线识别识别和自动识别过程如下首先对车道范围内的直线进行检测,这里检测直线的方法有很多种,例如可以通 过边缘检测后进行hough变换,检测得到的边缘图中的直线,然后通过检测得到的直线进 行结构分析得到道路边缘线。通过道路边缘线即能得到道路范围;步骤三,根据道路行驶的规则一靠右行驶还是靠左行驶,判断车辆在道路上的运 行方向。例如中国大陆地区的道路均为靠右行驶,而英国的道路均为靠左行驶。步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定。根据摄像机 标定理论,只需要知道图像3中的四个点的像素坐标和实际大地参考坐标,即能对整个图 像进行标定,并可以将一幅斜视角的图像影射为俯瞰视角的图像,如图4所示。步骤五,进行运动目标的检测与跟踪;结合步骤一中得到的背景,本发明采用背景差分法或者帧间差分法进行运动目标 的检测和提取。也可采用混合高斯模型等其他方法直接提取前景目标,随后采用Meanshift 等目标跟踪算法进行目标跟踪。步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根 据运动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速 度判定交通事件是否发生。此外,结合跟踪结果,判定目标在每个车道内的运动方向,判定 方法如下对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否 则认定车道逆行运动计数器加一,当车辆通过数量大于N时,如果车道正向运动计数器值/车道逆向运动计数器值> K则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向(计数器值偏大的车流方向)为车道方向。通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云 台摄像机条件下的检测性能。本发明提出了一种全新的即插即用交通视频检测方案及设备,其在摄像机视域发 生更改后无需再进行重新配置,并独创性的实现了基于云台式摄像机的车辆逆行检测和分 车道流量检测,并在异常事件检测等方面远优于目前已有的解决方案。
权利要求
一种即插即用的交通综合检测系统的实现方法,其主要处理步骤如下步骤一,通过视频采集系统进行对视频进行采集,通过视频采集得到视频帧序列;步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别;步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪;步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。
2.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,步骤一所述采集方式是通过当前通用的视频采集卡直接采集模拟的视频、通过网络端 口接收远程发送的视频流并解码得到视频、直接通过设备自带的摄像头进行采集,三种采 集方式的任意一种或多种。
3.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,所述步骤二和步骤三之间又存在一定的关联,即通过车道范围和车道方向检测结果改 进目标检测和跟踪的结果,或者,通过目标检测和跟踪的结果,反过来修正车道范围和车道 方向的检测结果。
4.根据权利要求1所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,步骤二所述的车道范围和车道方向的识别过程,其具体步骤包括步骤一,进行视频场景的背景建立,得到干净场景背景图; 步骤二,对场景背景进行道路边缘标线识别,得到道路范围; 步骤三,根据道路行驶的规则,判断车辆在道路上的运行方向; 步骤四,根据道路内虚线和道路边缘标线识别结果进行道路的标定; 步骤五,进行运动目标的检测与跟踪;步骤六,利用运动目标检测和跟踪的结果进行交通参数和交通事件的检测,并根据运 动结果修正道路的检测结果;基于目标跟踪结果统计交通流量,并根据目标的运动速度判 定交通事件是否发生。
5.根据权利要求4所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,步骤二所述边缘标线识别和自动识别过程如下首先对车道范围内的直线进行检测,然后通过检测得到的直线进行结构分析得到道路 边缘线,通过道路边缘线即能得到道路范围。
6.根据权利要求5所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,这里检测直线的方法,包括但不限于可以通过边缘检测后进行hough变换,检测得到 的边缘图中的直线。
7.根据权利要求4所述的一种即插即用的交通综合检测系统的实现方法,其特征在 于,步骤三所述的判定目标在每个车道内的运动方向,判定方法如下对于某车道,如果目标运动方向延预判方向,则认定车道正向运动计数器加一,否则认 定车道逆行运动计数器加一,当车辆通过数量大于N时,如果 车道正向运动计数器值/车道逆向运动计数器值> K则认定车道方向预判正确,否则认定车道方向预判错误,并以真实车流方向为车道方向。
全文摘要
一种即插即用的交通综合检测系统,包括步骤一,通过视频采集系统进行对视频进行采集,通过视频采集得到视频帧序列;步骤二,利用视频采集模块得到的帧序列,进行车道范围与车道方向的识别;步骤三,进行运动目标检测和目标跟踪。采用常规方法进行运动目标检测和运动目标跟踪;步骤四,结合运动目标检测结果、运动目标跟踪结果以及车道范围及车道方向检测结果,进行目标的行为分析,得到交通参数检测结果和交通事件检测结果。通过如上所述步骤,即能实现一种即插即用的交通综合检测系统,其通过自动识别车道范围和车道方向,并实现车辆流量、违章行为等方面的检测,从而大大提高了采用云台摄像机条件下的检测性能。
文档编号G08G1/056GK101937614SQ201010199179
公开日2011年1月5日 申请日期2010年6月12日 优先权日2010年6月12日
发明者吴柯维, 许松涛, 贾子杰, 魏周朝 申请人:北京中科卓视科技有限责任公司