一种适用于报警领域的红外探测系统的制作方法

文档序号:6704411阅读:315来源:国知局
专利名称:一种适用于报警领域的红外探测系统的制作方法
技术领域
本发明涉及红外探测领域,特别涉及一种集成度高、功耗小的红外探测系统。背景技术
目前,市场上很多主动式红外探测设备被用于报警领域,譬如保险柜或者固定物体的监控等等。以一种现有的保险柜为例,其内部设置了一个主动式红外探测设备,可以探测所述保险柜的柜门是否打开,当在被恶意打开时发出报警信号。其中主动式红外探测设备是一种通过主动发出红外线,然后接收物体反射回的红外线进行探测的红外探测设备。 传统主动式红外探测设备的缺点是抗干扰能力很弱,在探测或者工作环境变化的情况下, 比如探测环境受光照影响、工作环境不同温度差异等,都会引起所述主动式红外探测设备探测能力大大下降的情况,因为此时所述主动式红外探测设备接收到的红外线不仅包含主动发出的红外线,还包括外界的红外线。对于传统的主动式红外探测设备,现有一种方案是对其发射的红外线进行调制处理,然后再将反射回的红外线进行解调。这样就可以大大加强所述主动式红外探测设备的抗干扰能力。对所述红外线进行调制解调的过程,也可以理解为将某种基准信号加载在所述红外线上传播,以利用所述基准信号识别所述红外线的过程,采用这种方案可以排除掉外界红外线对主动式红外探测设备的干扰。但是这种方案需要相应的编码解码装置来生成所述基准信号和识别所述基准信号。而现有技术中的编码解码装置都存在功耗较大的缺点,不适合长期不间断探测的应用环境。另一方面,现有的主动式红外探测设备通常包括多个分离元件,譬如包括音频解码系统、运算放大器系统、MCU和功率管等等。最终的产品体积比较大,集成度不高,对于一些应用环境狭小或者对集成度要求较高的场合不具备良好的适用性。因此,亟待提出一种先进的、可以克服上述缺点的技术方案。

发明内容本发明的目的在于提供一种具有抗干扰能力和容错能力强、成本低廉、功耗较小和集成度较高的红外探测系统。为了达到本发明的目的,本发明提供一种适用于报警领域的红外探测系统,所述包括信号产生模块,产生一基准信号,所述基准信号隔预定空闲时长包含预定工作时长的固定占空比的脉冲信号;红外发射模块,利用所述基准信号激励红外发光二极管发出红外线;红外接收模块,利用红外接收二极管接收红外线以获得目标信号;接收放大模块,放大所述目标信号;信号识别模块,每隔预定空闲时长采样一个预定工作时长内的所述目标信号以获得一系列采样点,将对应于所述脉冲信号内每个周期内正脉冲的采样点和对应于所述脉冲信号内每个周期内负脉冲的采样点分别输入积分电路,然后判断所述积分电路的输出电压值是否超过预定阀值,当超过预定阀值时,输出代表判定探测到物体的判断结果,当未超过预定阀值时,输出代表未探测到物体的判断结果;报警判断模块,根据若干个预定工作时长的判断结果产生报警信号。进一步地,所述信号产生模块包括脉冲信号生成模块和基准信号生成模块,脉冲信号生成模块,生成一固定占空比的脉冲信号;和基准信号生成模块,隔预定空闲时长采样预定工作时长的所述脉冲信号以生成基准信号。进一步地,所述基准信号生模块包括方波信号生成单元和基准信号生成单元,所述方波信号生成单元将高频的所述脉冲信号分频为低频的方波信号;和所述基准信号生成单元隔预定空闲时长采样预定工作时长的所述方波信号以生成基准信号。进一步地,所述信号产生模块还包括采样信号生成模块,所述采样信号生成模块生成采样信号,所述采样信号内包括正脉冲,且所述采样信号内的正脉冲对应于所述基准信号内的正脉冲和/或负脉冲,所述采样信号内的正脉冲长度小于或等于基准信号内的正脉冲和/或负脉冲长度。进一步地,所述信号生成模块还包括判断信号生成模块,所述判断信号生成模块生成判断信号,所述判断信号内包括正脉冲,所述判断信号内的正脉冲对应时刻属于区间 (A,A+T),所述A为每个预定工作时长的末时刻,所述T为所述预定空闲时长的时间长度。进一步地,,所述信号识别模块包括信号采样模块、积分解码模块和解码判断模块,信号采样模块,根据采样信号采样所述目标信号得到采样点,所述采样点按照采样顺序依次包括奇数采样点和偶数采样点;积分解码模块,包括一积分电路,所述积分电路包括有两个输入端,其中一个输入端接收所述奇数采样点,另一个输入端接收偶数采样点;和解码判断模块,判断所述积分电路的输出电压值是否达到预定阀值,如果达到预定阀值,则判定探测到物体;如果未达到预定阀值,则判定未探测到物体。进一步地,所述信号采样模块在所述采样信号为正脉冲时,采样所述目标信号;所述解码判断模块在所述判断信号为正脉冲时,判断所述积分电路的输出电压值是否达到预
定阀值。进一步地,所述积分电路为差分积分电路,所述差分积分电路包括两个输入端和两个输出端,所述输出电压值为两个输出端的电压差值。进一步地,所述红外发射模块连接红外发光二极管和所述红外接收模块连接红外接收二极管,所述红外发光二极管和红外接收二极管按照红外反射或者红外对射的方位安置,当采用红外对射方位安置时,所述信号识别模块在所述积分电路的输出电压值未超过预定阀值时,判定探测到物体,所述红外探测系统同时还包括报警模块,所述报警模块在接收到所述报警信号后报警。进一步地,所述报警判断模块在连续若干个预定工作时长的判断结果都代表探测到物体时发出报警信号,所述若干个为预先设定的某一整数;或所述报警判断模块在连续M个预定工作时长的判断结果中有N个判断结果代表探测到物体时发出报警信号,所述M > N,且M,N为预先设定的某一整数。与现有技术相比,本发明提供的红外探测系统利用积分电路来完成解码过程,实现时不需要太多的复杂器件,具有结构简单和成本低廉的特点,同时由于所述正脉冲在基准信号内所占有的时间较少,当使用所述基准信号来激励发射红外线时,可以节省很多能量,所以本发明同时具有功耗较小的特点。而且当所述预定工作时长内包含很多个周期的脉冲信号时,具有良好的抗干扰能力。此外,所述报警判断模块是根据连续多个预定工作时长的判断结果来发出报警信号,进一步地增强了报警信号的抗干扰能力和容错能力。
结合参考附图及接下来的详细描述,本发明将更容易理解,其中同样的附图标记对应同样的结构部件,其中图1为本发明的一个实施例中的红外探测系统的结构方框图;图2为本发明的一个实施例中的信号产生模块的结构方框图;图3A-图3D分别为本发明的一个实施例中的脉冲信号、基准信号、另一种基准信号和普通的目标信号;图4为本发明的一个实施例中的基准信号、目标信号、高频信号、采样信号和判断信号的波形示意图;图5为本发明的一个实施例中的基准信号生成模块的结构方框图;图6为本发明的一个实施例中的信号识别模块的结构方框图;图7为本发明的一个实施例中的差分积分电路的结构示意图;和图8为本发明的一个实施例中的红外探测系统的结构示意图。
具体实施方式为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式
对本发明作进一步详细的说明。请参考图1,其示出了本发明的一个实施例中的红外探测系统100的结构方框图。 所述红外探测系统100包括信号产生模块110、红外发射模块120、红外接收模块130、接收放大模块140、信号识别模块150和报警判断模块160。信号产生模块110产生用于调制红外线的基准信号,所述基准信号隔预定空闲时长包含预定工作时长的固定占空比的脉冲信号。也即所述基准信号内包含若干段空闲信号和工作信号,所述空闲信号和工作信号互相隔开,所述工作信号内包括若干个周期的脉冲信号,一个周期的脉冲信号内包括正脉冲和负脉冲。在一个实施例中,所述基准信号可以参考图:3B中所示的基准信号B,所述基准信号B每隔IOOms的预定空闲时长包含30ms的预定工作时长的方波信号,所述方波信号的周期为10ms。红外发射模块120利用所述基准信号激励红外发光二极管发出红外线。所述红外探测系统100外部通常包含有信号输出端子(也称引脚),通过所述信号输出端子连接红外发光二极管后,利用所述信号输出端子输出所述基准信号以激励所述红外发光二极管发出包含所述基准信号信息的红外线。具体的,所述信号输出端子还通过可调电阻来连接红外发光二极管(未具体示出)。红外接收模块I30利用红外接收二极管接收红外线以获得目标信号。所述红外接收二极管与所述红外发光二极管通常为红外对管,在安装设置时通常也并列排布,以便易于接收到物体反射回的红外线信号。所述红外探测系统100外部通常还包含有信号输入端子,所述红外接收二极管通常通过电阻与所述信号输入端子相连(未具体示出)。此时,所述红外接收模块130即可利用红外接收二极管接收红外线以获得目标信号。接收放大模块140放大所述目标信号。所述接收放大模块140可以为场效应管、运算放大器或者多级放大电路中的一种。用于将所述目标信号放大输出后传输给所述信号识别模块150,由于信号放大技术为本领域技术人员所熟知的内容,可以若干不同的实现方式,在此不再累述。信号识别模块150每隔预定空闲时长采样一个预定工作时长内的所述目标信号以获得一系列采样点,将对应于所述脉冲信号内每个周期内正脉冲的采样点和对应于所述脉冲信号内每个周期内负脉冲的采样点分别输入积分电路,然后判断所述积分电路的输出电压值是否超过预定阀值,当超过预定阀值时,判定探测到物体;当未超过预定阀值时,判断没有探测到物体。由于积分电路具有将两个输入端之间的电压差值累积并放大输出的作用,故可以对每次输入的采样点之间的电压差值进行累积并放大输出,如果所述目标信号为所述基准信号的反射信号,则所述对应于所述脉冲信号内每个周期内正脉冲的采样点和对应于所述脉冲信号内每个周期内负脉冲的采样点之间存在着较为明显的电压差值,经过若干个周期的累计,所述积分电路的输出电压值将会超过预定阀值,即可判定所述红外探测系统探测到了物体。报警判断模块160根据若干个预定工作时长的判断结果产生报警信号。由于所述信号识别模块150对于每个预定工作时长进行一次判断,将会持续产生多个判断结果,为了避免某一次判断结果是错误的情况。故所述报警判断模块160根据若干个预定工作时长的判断结果产生报警信号。具体地,在一个实施例中,所述红外探测系统100用于探测保险柜的门是否打开,则所述报警判断模块160在连续η次判断结果都为探测到所述保险柜的门为打开时才发出报警信号,其中η为预设的某一个整数。在另一个实施例中,所述红外探测系统100用于探测某一位置是否存在可疑物体,则所述报警判断模块160在连续m次判断结果中,探测到存在可疑物体的判断结果个数大于η个时发出报警信号,所述m>n,且 m,η都为预设的某一个整数。应当认识到,一方面,所述红外探测系统100产生的基准信号并不是连续的信号, 而是间歇性的信号,由于主动式红外探测装置中的功耗主要是发射红外线造成的,反而系统的功耗相对而言非常小。每当基准信号为正脉冲时将发射较强的红外线会造成较大的功耗,如果所述基准信号内的正脉冲较少,那么就会减少功耗,所以采用间隔一段空闲时长发射一段脉冲信号的方式可以获得较低的功耗,非常适合于长期不间断探测的应用环境。但是所述基准信号内的空闲时长也不适宜太长,以免单位时间内发射的红外线太少,而导致应用所述红外探测系统的主动式红外探测装置的反应速度给用户“反应迟钝”的感觉,通常所述空闲时长可以取100ms-300ms,当然不同的实施例中所述预定空闲时长可以是其他值。 另一方面,在实际应用中,所述一个预定工作时长内包括的若干个周期的脉冲信号是指几十个或者几百个,以使所述积分电路能够积累到足够多的电压差值为准,图示中一段脉冲信号内只包含三个或者几个脉冲只是为了便于画图和便于理解。再一方面,所述红外探测系统100识别目标信号是否是基准信号的反射信号时, 是根据基准信号的每段预定工作时长中成对出现的正脉冲和负脉冲之间存在较为明显的电压差值这个特点来利用积分电路进行识别。当然对于包含很多正脉冲和负脉冲的基准信号来讲,并不严格要求每段预定工作时长中正脉冲和负脉冲都是成对出现的,此点不应当成为制约本发明的保护范围的理由。由于一个预定工作时长内包括若干个周期的脉冲信号是指几十个或者几百个,即便目标信号中发生了一定程度的失真和变形,也不会对最终判断结果造成大的影响。再由于报警判断模块是根据多个判断结果来产生报警信号,故所述红外探测系统100具有非常强的抗干扰能力和防误报能力。为了便于描述本发明的各个方面,下文将对所述红外探测系统100的各个模块或者说各个方面进行详细地描述。请参考图2,其示出了本发明的一个实施例中的信号产生模块110的结构方框图。 所述信号产生模块110包括脉冲信号生成模块112、基准信号生成模块114、采样信号生成模块116和判断信号生成模块118。所述采样信号用于帮助所述信号识别模块150对目标信号进行采样,所述判断信号用于帮助所述信号识别模块150在合适的时刻判断所述积分电路的输出电压值。所述脉冲信号生成模块112生成一固定占空比的脉冲信号。所述固定占空比的脉冲信号的产生有很多种方法,比如可以利用一电压比较器将正弦波变为方波,又或在一有源晶振内部加入整形电路以输出脉冲,还可以利用环路振荡器产生脉冲等等。在具体的实施例中,所述脉冲信号生成模块112可以是环路振荡器直接产生的是高频信号,所述高频信号的波形可以参考图4中波形C所示。当然,现有技术中用于产生固定占空比的脉冲信号的任何方法都可以采用。所述基准信号生成模块114包括方波信号生成单元502和基准信号生成单元504。 所述方波信号生成单元502用于将所述高频信号分频而产生方波信号,所述基准信号生成单元504隔预定空闲时长采样预定工作时长的所述方波信号以生成基准信号。也即所述基准信号内包含若干段空闲信号和工作信号,所述空闲信号和工作信号互相隔开,所述工作信号内包括若干个周期的脉冲信号,一个周期的脉冲信号内包括正脉冲和负脉冲。应当认识到,所述基准信号的具体形式可以自由设定,也就是说,所述基准信号中间隔的每个预定空闲时长可以为等长或不等长的时间长度,间隔的每个预定工作时长也可以为等长或不等长的时间长度,但是在优选地实施例中,所述预定空闲时长大于等于所述预定工作时长。譬如,在一个实施例中,所述脉冲信号生成模块112生成的是周期恒定为IOms的方波,所述基准信号生成模块114每隔IOOms的空闲时长采样30ms的工作时长的方波信号以生成基准信号,如图:3B所示。在另一个实施例中,所述脉冲信号生成模块112生成的是周期恒定为 8ms的方波,所述基准信号生成模块114隔IOOms的空闲时长采样40ms的工作时长的方波信号后,隔200ms的空闲时长再采样的工作时长的方波信号;然后又隔IOOms的空闲时长采样40ms的工作时长的方波信号后,隔200ms的空闲时长再采样的工作时长的方波信号以形成基准信号,如图3C所示。所述基准信号被产生后用于主动式红外探测装置中调制红外线,所述红外线被物体反射并接收回主动式红外探测装置后,将会发生一定的衰减、移相和被干扰,譬如电路器件的干扰因素,具体的接收到的目标信号可能如图4中所示信号B,(此处假设所述基准信号采用的是图4中所示信号A,图4中所述信号A为图;3B所示基准信号的一个预定工作时长内的波形示意)。为了能够尽可能精确地采样所述目标信号。所述采样信号生成模块116用于生成采样信号,所述采样信号可以帮助所述信号识别模块150从目标信号中提取尽量有效的采样点而减少衰减和干扰对采样结果的影响。在一个实施例中,所述采样信号生成模块116根据所述高频信号生成采样信号,所述采样信号内的正脉冲对应于所述基准信号内的正脉冲和/或负脉冲。由于所述高频信号的周期为所述方波信号的周期的二分之一、四分之一、 八分之一或者十六分之一等,故所述采样信号的正脉冲长度也为所述基准信号内的正脉冲长度的二分之一、四分之一、八分之一或者十六分之一等。比如在一个实施例中,所述脉冲信号是所述脉冲信号生成模块112生成的方波信号,所述高频信号的频率为方波信号的频率的八分之一,如图4中所示信号C,而所述采样信号根据所述高频信号生成,所述采样信号中的每个正脉冲都与所述基准信号中的正脉冲和负脉冲对应,如图4中所示信号D。同理地,所述判断信号生成模块118与所述采样信号生成模块116类似,用于生成一个判断信号,如图4中所示信号E,所述判断信号的每个正脉冲都与预定工作时长的末时刻对应,可以略微靠后但是应当在下一次预定工作时长来临以前,比如所述判断信号的时刻属于区间(A,A+T),所述A为每个预定工作时长的末时刻,所述T为所述预定空闲时长的时间长度。这是因为,此时一个预定工作时长内的采样点通常都已经输入给积分电路,可以认为积分电路的输出电压值已经累积到了合适的程度(实际应用中,一个预定工作时长内的脉冲个数为几十个或者几百个)。请继续参考图6,其示出了本发明的一个实施例中的信号识别模块150的结构方框图。所述信号识别模块150包括信号采样模块152、积分解码模块IM和解码判断模块 156。所述信号采样模块152根据采样信号采样所述目标信号以得到采样点,具体地, 所述信号采样模块152在所述采样信号为正脉冲时,采样所述目标信号以获得一系列的采样点,所述采样点按照采样顺序依次包括奇数采样点和偶数采样点。由于所述采样信号内包括正脉冲,且所述采样信号内的正脉冲对应于所述基准信号内的正脉冲和/或负脉冲。 此时得到的一系列的采样点中,奇数采样点恰好对应于基准信号内的正脉冲,而偶数采样点恰好对应于基准信号内的负脉冲。所述积分解码模块IM包括一积分电路,所述积分电路包括有两个输入端,其中一个输入端接收所述奇数采样点,另一个输入端接收偶数采样点。在本实施例中,所述积分电路可以为图7所示的差分积分电路700。所述差分积分电路700包括两个输入端和两个输出端,所述两个输入端包括正输入端701和负输入端702,其中正输入端701接收对应于正脉冲的采样点,负输入端702接收对应于负脉冲的采样点。所述两个输出端包括第一输出端707和第二输出端704,所述正输入端701通过第一电容Cl接地,所述负输入端702通过第二电容C2接地,所述正输入端701和第一输出端703之间通过第三电容C3相连,所述负输入端702和第二输出端704之间通过第四电容C4相连。当对应于正脉冲的采样点和对应于负脉冲的采样点以成对地方式分别输入所述两个输入端时,所述正输入端701将一个对应于正脉冲的采样点的电压储能在所述第一电容Cl,所述负输入端702将一个对应于正脉冲的采样点的电压储能在所述第二电容C2,当正输入端701接收到的电压值大于所述负输出端702接收到的电压值时,所述第一输出端703放大输出两个电压值的差值,并且将所述差值和所述第一电容Cl上的电压累积在所述第三电容C3上,所述第二输出端704放大输出两个电压值的差值,并且将所述差值和所述第二电容C2上的电压累积在所述第四电容C4上;具体表现为,随着符合基准信号特征的目标信号的采样点的输入,所述第一输出端703输出的电压值越来越高,所述第二输出端704输出的电压值越来越低;最终,多对对应于正脉冲的采样点和对应于负脉冲的采样点输入所述差分积分电路700后,所述第一输出端703和第二输出端704之间的电压差值代表按照一定的放大倍率累积输出的两个输入端的电压差值的积分。所述解码判断模块156判断所述积分电路的输出电压值是否达到预定阀值,如果达到预定阀值,则判定所述目标信号符合基准信号的特征;如果未达到预定阀值,则判定所述目标信号不符合基准信号的特征。具体地,所述解码判断模块156在所述判断信号为正脉冲时,判断所述积分电路的输出电压值是否达到预定阀值。此时,如果目标信号是不包含所述基准信号的杂乱信号, 比如类似于图3D中所示的目标信号,则所述差分积分电路700的两个输出端的电压不会超过预定阀值,这是因为杂乱信号中采样的奇数采样点和偶数采样点之间并不存在固定的电压差,故所述差分积分电路700即便是累积每对奇数采样点和偶数采样点之间的电压差值,也不会超过预定阀值。而如果接收到的所述目标信号为图4中所示信号B,则所述差分积分电路700的两个输出端的电压会超过预定阀值。这是因为对于每对奇数采样点和偶数采样点之间都会存在电压差值,即便有很少几对奇数采样点和偶数采样点之间因为干扰或者衰减等原因导致不存在电压差值或者存在很小的电压差值,但是将所有奇数采样点和偶数采样点之间的电压差值累积起来后,仍然可以超过预定阀值。所以当所述差分积分电路 700的输出电压值未达到预定阀值时,则判定所述目标信号不符合基准信号的特征;当所述差分积分电路700的输出电压值达到预定阀值时,则判定所述目标信号符合基准信号的特征。此处所述的差分积分电路的输出电压值是指所述差分积分电路700的两个输出端之间的电压差值。对于所述基准信号中的每段预定工作时长进行一次判断,并在判断信号过后的时间到下一次预定工作时长来临之前复位所述差分积分电路700,以便对下一次预定工作时长对应段的目标信号重复上述判断过程。以所述基准信号为图:3B所示的基准信号B为例,所述基准信号B其实是一个周期为(预定空闲时长+预定工作时长)=130ms的周期信号,而对于所述基准信号B的每个周期,所述解码判断模块156都会判断一次是否探测到物体,当探测到物体时,可以输出相应的信号给所述报警判断模块160,比方说高电平信号,然后所述报警判断模块160再根据连续多个判断结果来产生报警信号。在具体的实施例中,所述红外探测系统100可以通过普通的四节AAA干电池供电,而能够持续使用两年之久,当然也可以选择将居民用电变压转换为直流电源供电。同时,所述红外探测系统100将大部分部件都集成与一块系统之内, 集成度较高导致安装使用非常简单,并且占用空间较小,在诸如保险柜之类的应用中,能够取得良好的效果。请参考图8,其示出了本发明的一个实施例中的红外探测系统100的结构示意图。 所述红外探测系统100包括一块芯片和芯片外部的10个端子(或称引脚):al端子、a2端子、a3端子、a4端子、bl端子、b2端子、b3端子、b4端子、VCC端子和GND端子。所述al端子和a2端子为信号输出端子,可以通过可控电阻与红外发光二极管相连;所述bl端子和1^2端子为信号输入端子,可以通过可控电阻与红外接收二极管相连;所述b3端子和b4端子为报警信号输出端子,可以连接报警蜂鸣器、或者触发短信发送设备之类的其他报警装置;所述a3端子和a4端子可以连接指示灯等等。显然,所述红外探测系统 100集成度较高,只需要结合红外对管、很少几个电阻或者电容等器件就可以安装实施,具有非常好的易用性和适用性。在具体的实施例中,所述红外探测系统100同时还可以包括用于报警的譬如蜂鸣器之类的报警模块,所述报警模块接收所述报警信号而报警。其中红外对管可以按照红外反射或者红外对射的方位安置,显然采用红外对射安装时,判断策略与采用红外反射安装时的判断策略正好相反,本文不再累述。 上述说明已经充分揭露了本发明的具体实施方式
。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式
所做的任何改动均不脱离本发明的权利要求书的范围。 相应地,本发明的权利要求的范围也并不仅仅局限于所述具体实施方式

权利要求
1.一种适用于报警领域的红外探测系统,其特征在于,其包括信号产生模块,产生一基准信号,所述基准信号隔预定空闲时长包含预定工作时长的固定占空比的脉冲信号;红外发射模块,利用所述基准信号激励红外发光二极管发出红外线; 红外接收模块,利用红外接收二极管接收红外线以获得目标信号; 接收放大模块,放大所述目标信号;信号识别模块,每隔预定空闲时长采样一个预定工作时长内的所述目标信号以获得一系列采样点,将对应于所述脉冲信号内每个周期内正脉冲的采样点和对应于所述脉冲信号内每个周期内负脉冲的采样点分别输入积分电路,然后判断所述积分电路的输出电压值是否超过预定阀值,当超过预定阀值时,输出代表判定探测到物体的判断结果,当未超过预定阀值时,输出代表未探测到物体的判断结果;报警判断模块,根据若干个预定工作时长的判断结果产生报警信号。
2.根据权利要求1所述的红外探测系统,其特征在于,所述信号产生模块包括脉冲信号生成模块和基准信号生成模块,脉冲信号生成模块,生成一固定占空比的脉冲信号;和基准信号生成模块,隔预定空闲时长采样预定工作时长的所述脉冲信号以生成基准信号。
3.根据权利要求2所述的红外探测系统,其特征在于,所述基准信号生模块包括方波信号生成单元和基准信号生成单元,所述方波信号生成单元将高频的所述脉冲信号分频为低频的方波信号;和所述基准信号生成单元隔预定空闲时长采样预定工作时长的所述方波信号以生成基准信号。
4.根据权利要求2所述的红外探测系统,其特征在于,所述信号产生模块还包括采样信号生成模块,所述采样信号生成模块生成采样信号,所述采样信号内包括正脉冲,且所述采样信号内的正脉冲对应于所述基准信号内的正脉冲和/或负脉冲,所述采样信号内的正脉冲长度小于或等于基准信号内的正脉冲和/或负脉冲长度。
5.根据权利要求2所述的红外探测系统,其特征在于,所述信号生成模块还包括判断信号生成模块,所述判断信号生成模块生成判断信号,所述判断信号内包括正脉冲,所述判断信号内的正脉冲对应时刻属于区间(A,A+T),所述A为每个预定工作时长的末时刻,所述 T为所述预定空闲时长的时间长度。
6.根据权利要求1至5任一所述的红外探测系统,其特征在于,所述信号识别模块包括信号采样模块、积分解码模块和解码判断模块,信号采样模块,根据采样信号采样所述目标信号得到采样点,所述采样点按照采样顺序依次包括奇数采样点和偶数采样点;积分解码模块,包括一积分电路,所述积分电路包括有两个输入端,其中一个输入端接收所述奇数采样点,另一个输入端接收偶数采样点;和解码判断模块,判断所述积分电路的输出电压值是否达到预定阀值,如果达到预定阀值,则判定探测到物体;如果未达到预定阀值,则判定未探测到物体。
7.根据权利要求6所述的红外探测系统,其特征在于,所述信号采样模块在所述采样信号为正脉冲时,采样所述目标信号;所述解码判断模块在所述判断信号为正脉冲时,判断所述积分电路的输出电压值是否达到预定阀值。
8.根据权利要求6所述的红外探测系统,其特征在于,所述积分电路为差分积分电路, 所述差分积分电路包括两个输入端和两个输出端,所述输出电压值为两个输出端的电压差值。
9.根据权利要求1所述的红外探测系统,其特征在于,所述红外发射模块连接红外发光二极管和所述红外接收模块连接红外接收二极管,所述红外发光二极管和红外接收二极管按照红外反射的方位安置,当采用红外对射方位安置时,所述信号识别模块在所述积分电路的输出电压值未超过预定阀值时,判定探测到物体,所述红外探测系统同时还包括报警模块,所述报警模块在接收到所述报警信号后报Sfc目。
10.根据权利要求1所述的红外探测系统,其特征在于,所述报警判断模块根据若干个预定工作时长的判断结果产生报警信号包括所述报警判断模块在连续若干个预定工作时长的判断结果都代表探测到物体时发出报警信号,所述若干个为预先设定的某一整数;或所述报警判断模块在连续M个预定工作时长的判断结果中有N个判断结果代表探测到物体时发出报警信号,所述M > N,且M,N为预先设定的某一整数。
全文摘要
本发明揭露了一种适用于报警领域的红外探测系统,所述系统包括信号产生模块、红外发射模块、红外接收模块、接收放大模块、信号识别模块和报警判断模块。其中信号识别模块每隔预定空闲时长采样一个预定工作时长内的所述目标信号以获得一系列采样点,将对应于所述脉冲信号内每个周期内正脉冲的采样点和对应于所述脉冲信号内每个周期内负脉冲的采样点分别输入积分电路,然后判断所述积分电路的输出电压值是否超过预定阀值,当超过预定阀值时,判定探测到物体并输出判断结果;报警判断模块,根据若干个预定工作时长的判断结果产生报警信号。本发明具有集成度高,功耗小等特点。
文档编号G08B13/181GK102236944SQ20111009705
公开日2011年11月9日 申请日期2011年4月19日 优先权日2011年4月19日
发明者冯向光, 孙海, 顾奇龙 申请人:无锡辐导微电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1