一种路面交通流量检测设备可信度评估的方法
【专利摘要】本发明公开了一套各类采集设备的可信度评估体系,对于各类现有的各类交通流量采集设备(线圈、微波、地磁、视频等)建立一套相互校验的机制,通过在原采集点位同路段上增加视频流量采集的设备,来做采集数据的验证,以及长期的数据比对,从而相互验证设备是否正常工作。最终得到一个适用于城市流量检测系统采集流量数据的汇总公式,得到相对准确、稳定的道路交通实时流量数据。
【专利说明】
_种路面交通流量检测设备可信度评估的方法
技术领域
[0001] 本发明涉及智能交通控制领域,具体涉及一种路面交通流量检测设备可信度评估 的方法。
【背景技术】
[0002] 交通流量是交通信息中一个重要的参数,交通流量采集及预测是控制车流出入, 是交通控制的基本依据,是确保道路安全畅通的重要手段,对城市交通控制与管理有着重 要的作用和意义。
[0003] 现有的交通流量的获取是靠各种交通流量检测设备来完成的。现有的交通流量检 测主要有微波检测、感应线圈检测、地磁检测和视频检测等多种方法。微波检测的造价较 高,感应线圈检测或地磁检测因施工维护,需要中断交通、施工量大、对路面有损坏。目前, 在较发达的城市,约建设交通流量采集点位1000多点位,其中约400多路点位为微波检测 器,约600多路的地感线圈以及地磁检测器。
[0004] 微波检测,是利用数字雷达波检测技术实时检测交通流量、平均车速、车型及车道 占用率等交通数据。感应线圈检测或地磁检测,是在路面以下埋设感应线圈或地磁感应装 置,通过检测磁场的变化判断是否有车通过;视频检测,是通过视频对目标路段进行实时观 测 。
[0005] 现有的专利号为ZL201010289784.6的中国发明专利,公开了一种"可选择使用高 清视频、微波检测获得交通流量的检测系统",结合上述多种检测方式,在正常状态下,只开 启所述高清视频采集模块,当所述交通流量数据异常时,自动开启微波数据采集模块,解决 了使用单一检测器时存在不足的问题,在能见度很低的恶劣环境下也可获得准确的车流 量即时数据信息。
[0006] 然而,对于现有的检测设备检测得到的数据,其准确性和有效性并没有保障。因为 维护检测成本较大、频率较低,而不同检测设备本身存在的误差,导致检测得到的数据也并 不完全可信。举例来说,微波检测器安装调试完成之后,每年只有1次人工排查机会来检查 安装位置是否移动、是否有遮挡、采集数据是否准确等,由于排查人工工作量非常大,又是 集中进行,而在非排查时期,设备是否能够准确采集数据(因为路面震动导致安装位置变 动,树木、其他设施遮挡等问题存在,会影响采集准确性)设备管理部门是无法得知的。另一 方面,感应线圈检测的地感线圈由于施工维护工作量大,目前正常在线的设备仅占总数的 20%-30%。
[0007] 各类交通检测设备在不同的天气情况、车流情况、安装位置情况等不同条件下,客 观存在不可避免的误差。那么在不同的环境因素下,何种采集手段的可信度更高?目前没有 出现进行此类评估的方法,致使业务单位盲目的迷信某种采集手段所采集数据的准确性, 或者仅仅凭着经验判断数据的可靠性,从而可能影响城市交通控制与管理的效率。
【发明内容】
[0008] 本发明所要解决的技术问题是针对现有技术中存在的上述问题,提供了一种通过 建立一套相互校验的机制,对采集的数据进行相互校验和修正,从而得到相对准确、稳定的 道路交通实时流量数据的路面交通流量检测设备可信度评估的方法。
[0009] 为解决上述问题,本发明的一种技术方案是:
[0010] -种路面交通流量检测设备可信度评估的方法,包括如下步骤:
[0011] S1,交通流量数据采集:将同一地点的各个交通流量检测设备分别与视频检测器 配对,并按监测点的不同进行分组;检测在特定条件下,通过各个交通流量检测设备采集到 的原始数据以及通过视频检测器进行人工计数的真值;采用抽样率n对原始数据和真值进 行抽样分析,得到抽样数据;
[0012] S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定 条件X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度;
[0013] S3,异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到 的交通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据 判断,如数据异常,则使用排序所得的中值替换人工计数的真值;
[0014] S4,数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与 人工计数的真值进行综合处理。
[0015] 作为进一步地优选,所述的各个交通流量检测设备包括地感线圈检测器S、或微波 检测器W、或地磁检测器G以及视频检测器V。
[0016] 作为进一步地优选,所述的步骤S1交通流量数据采集,包括如下步骤:
[0017] S101,各个交通流量检测设备包括地感线圈检测器S、或微波检测器W、或地磁检测 器G以及视频检测器V的数量集合分别表示为{S a}、{Wa}、{Ga:^P{Va},每个交通流量检测设 备都和视频检测器配对统计,a表示对应的第几组;
[0018] S102,设置交通流量采集设备采集数据的时间段的集合为1,地感线圈检测器S、 微波检测器W、地磁检测器G以及视频检测器V在1内统计的流量用f s(tn)、fw(tn)、fG(t n)和fv (tn)表示,人工计数统计得到的交通流量用f^(tn)表示;
[0019] S103,所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集 合{Sa}、{W a}、{GaWP{Va}中的第a组在tn采集时间段内采集到的流量分别表示为f s(tn) =fs (n,a)、fw(tn) =fw(n,a)、fG(tn) =fG(n,a)和fv(tn) =fv(n,a);对应的第a组视频检测器V在 tn采集时间段内,由人工计数得到的采集流量表示为f^(tn)=f^(n,a);
[0020] S104,选择特定条件进行流量采集,检测在特定条件X下,所述的地感线圈检测器 S、微波检测器W、地磁检测器G以及视频检测器V的集合{53}、{13}、{63}和{¥ 3}通过各个交通 流量检测设备采集到的原始数据分别以及通过视频检 测器进行人工计数的真值采用抽样率n对原始数据和真值进行抽样分析,得到各个 交通流量检测设备的抽样数据H t] rH (T,)、7; r"(T\)、q r'frTj 〇
[0021] 作为进一步地优选,所述的步骤S2置信度计算中,设对于N个时间段内在特定条件 X下分别抽样的数据有(n*N*a)个,通过下列公式分别计算各个交通流量检测设备的均误 方差,
[0023] 其中,i为S,或W,或G,或V;MSg分别用以表示地感线圈检测器的均误方差MS纪, 微波检测器的均方误差,地磁检测器的均方误差MSSf以及视频检测器的均方误差 MSE: .入',
[0024] 由各个交通流量检测设备计算的结果得到[0,1]之间的均方误差表示为: rnn"n = MSE: / ( MSEs + MSEn + MSE:; + MSE' ) _5] v A A ' (公式:)
[0026] 其中,i为S,或W,或G,或V;右分别用以表示地感线圈检测器的[0,1]均误方差《|, 微波检测器的[0,1 ]均方误差<,地磁检测器的[0,1 ]均方误差af以及视频检测器的[0, 1]均方误差< .
[0027] 再计算各个交通流量检测设备的置信度,
[。_ 4=丨弋 (公式三)
[0029] 其中,i为S,或W,或G,或分别用以表示地感线圈检测器的置信度4;微波检测 器的置信度地磁检测器的置信度cf以及视频检测器的置信度。
[0030] 作为进一步地优选,所述的步骤S3异常数据检测中,对于第a组交通流量检测设备 i和人工计数统计在某一时刻检测到的交通流量分别为fUn,a)和f~n,a),该时刻检测时 段的历史流量值是fH(n,a);对f 1 (n,a),n,a)和fH(n,a)进行中值排序,得到中值流量数 fM(n,a);设0为流量阈值,通常按照该路段的历史最低流量得出;
[0031]若 |^(11,&)-尸(11,&)|<0,则数据无异常;
[0032] 若|产(1!,&)-户(11,&)|彡0,则数据有异常,则用中值产(11, &)替换视频人工计数统 计在该时刻检测到的交通流量f~n,a),即第a组交通流量检测设备i和视频人工计数统计 在该时刻检测到的交通流量分别为尸(11, &)和产(11,&),该时段的历史交通流量为严(11,&)。
[0033] 作为进一步地优选,在步骤S4数据融合中,采用指数函数来融合数据,
[0034] 设函数/((p):
[0036] 用梯度下降法求得函数最小值,计算方法如下:
[0037] S401,对函数)求它的各个参数(x,y,m,k)的偏导数;
[0038] S402,利用更新法则
来更新或者迭代各个参数,其中,A为步 长;由此获得一个新的参数来进行下一次梯度下降;
[0039] S403,当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数f(巾)取最 小值时为最优解,此时求得x,y,m,k的值。在一定准则下加以自动分析、研究以完成所需的 决策的数据融合处理能导出更多有效信息,通过数据融合将多个传感器检测到的交通流量 与人工计数得到真实数据进行科学、合理的综合处理,可以提高状态监测和故障诊断智能 化程度。
[0040]作为进一步地优选,所述的n取1〇%。
[0041]相比较于现有技术,本发明建立一套各类采集设备的可信度评估体系,对于各类 现有的各类交通流量采集设备建立一套相互校验的机制,通过在原采集点位同路段上增加 视频流量采集的设备,来做采集数据的验证,以及长期的数据比对,从而相互验证设备是否 正常工作,最终得到一个适用于城市流量检测系统采集流量数据的汇总公式,得到相对准 确、稳定的道路交通实时流量数据。
【附图说明】
[0042]图1是本发明的流程框图。
[0043] 图2是本发明各个交通流量检测设备计算的结果得到均方误差条形图。
[0044] 图3是本发明各个交通流量检测设备的置信度条形图。
【具体实施方式】
[0045]下面结合附图和实施例进一步详细说明本发明,但本发明的保护范围并不限于 此。
[0046] 参照图1,本发明一种路面交通流量检测设备可信度评估的方法,包括如下步骤:
[0047] S1,交通流量数据采集:将同一地点的各个交通流量检测设备分别与视频检测器 配对,并按监测点的不同进行分组;检测在特定条件下,通过各个交通流量检测设备采集 到的原始数据以及通过视频检测器进行人工计数的真值;采用抽样率n对原始数据和真值 进行抽样分析,得到抽样数据;
[0048] S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定 条件X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度;
[0049] S3,异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到 的交通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据 判断,如数据异常,则使用排序所得的中值替换人工计数的真值;
[0050] S4,数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与 人工计数的真值进行综合处理。
[0051] 本申请文献中的均方误差是衡量"平均误差"的一种较方便的方法,可以评价数据 的变化程度。本申请文献中所述的梯度下降法是一个最优化算法,梯度下降法的计算过程 就是沿梯度下降的方向求解极小值;而采用梯度下降算法进行最优化求解时,算法迭代的 终止条件是梯度向量的幅值收敛到一定数值。
[0052]以下将以几种交通流量检测设备包括地感线圈检测器、微波检测器、地磁检测器 和视频检测器为例,阐述本发明的实施方式。
[0053] 实施例一:
[0054] S1,交通流量数据采集交通流量数据采集:
[0055] S101.P城市的交通流量采集设备有地感线圈检测器S,微波检测器W,地磁检测器G 和视频检测器V,这些交通流量采集设备的数量集合分别是{Sa}、{Wa}、{Ga}和{Va}。每个检 测器都和视频检测器配对统计,a表示对应的第几组,其中依靠视频检测器V的人工计数作 为各个交通流量检测器校对的真值。
[0056] S102.人工设置交通流量采集设备的采集的时间为tn(采集时间可以是5分钟,10 分钟,30分钟,1小时,n为指定时间段内流量采集时段的数量),以采集时间1小时为例,则在 一天24小时内有24个的采集时段,即tn = {11,t2,t3"_t24},不同交通流量采集设备在tn内 统计的流量用fS(tn)、f w(tn)、fG(tn)和fv(t n)表示,由视频检测器人工计数统计得到的交通 流量用f^(tn)表示。
[0057] 3103.?城市地感线圈检测器仏}在1={^山,^24}的采集时间段内采集到的 流量是户(1^)=户(11,3);?城市微波检测器{1£1}在1:11={1:142 43^424}的采集时间段内采集 到的流量是#(1^) =fw(n,a) ;P城市地磁检测器{Ga}在tn= {1:1山43"七4}的采集时间段内 采集到的流量是户(1:11)=;^(11,3);?城市视频检测器{¥ £1}在1:11={1:1山,13 - 124}的采集时间 段内采集到的流量是fv(tn)=fv(n,a);在P城市对应这些检测器位置处的视频检测器{V a} 在tn= { tl,t2,t3'" t24}的采集时间段内由人工计数得到的采集流量是f^( tn) = f^(n,a)。 [0058] S104.选择特定条件(早高峰,晚高峰,晴天,雨天等)进行流量采集,这里以特定条 件X为早高峰T早(7点-9点)和晚高峰T晚(17点-19点)进行采集。P城市地感线圈检测器仏}在 早高峰采集到的流量的原始数据为f(Ty= ( /_v(7^),/s(8,u),尸(9,办)和晚高峰采集 到的流量的原始数据为/s'(i7w),/s(n'), /S_(1Q,")),在P城市对应地感线圈 检测器位置处的视频检测器|^3}在早高峰由人工计数得到的采集流量的原始数据为 ;^ = (/*(7,为,/*(8,幻,/*(9,为)和晚高峰由人工计数得到的采集流量的原始数据 为/*(&)=(.严(17.句,/、]9,0))。通常采用抽样率n(n-般取10%)对原始 数据进行抽样分析,得到地感线圈抽样数据*(/vac〇/s(^),/v(u)) 和".AO,? * (/s'(I7,c/) fs〇8,") /、(19,a)视频检测器人工统计的抽样数据 ? - ? 9 ' 7/^)=" * (严(7,<7),/裒(8,〇),/育(9,a))和"/%")="* (/*〇7,£〇:7 /?(18,a)? /*(19.a)), *表不乘号,下同。
[0059] P城市微波检测器{13}在早高峰采集到的流量的原始数据为7^3 = (/f(7,a), _T(8,W,./『(9,句)和晚高峰采集到的流量的原始数据为}^=: (/"(17,t〇,/"(184),/"(19,")),通常采用抽样率q(q-般取10% )对原始数 据进行抽样分析,得到微波抽样数据女r'(9,〇))m (广(17,《),/!1(18,"),/"(以"))。
[0060] P城市地磁检测器{Ga}在早高峰采集到的流量的原始数据为7^) = (/6(7,a),/e(M),/e(9,a))和晚高峰采集至ij的流量的原始数据为 (尸(iv),广<】8』>,rnu)),通常采用抽样率^一般取10%)对原始数据进行抽样分析,得到 地磁抽样数据.* (/%气/e(M>,/(机4 )和^/^>=" * (.产妒4
[0061] P城市视频检测器{Va}在早高峰采集到的流量的原始数据为7^)= (/(7,《),:/(8,《),/(9,《))和晚高峰采集到的流量的原始数据为7^ = (/'(17<:〇,/(丨8.幻,/1(丨1)4)),通常采用抽样率11(11一般取1〇%)对原始数 据进行抽样分析,得到视频抽样数据/7.7^)=7;女(/ (7,"),.广(8,"),/ (^))和 "/([.)="* (/G7,"),/(18,《),/ (19,"))。
[0062] S2置信度计算
[0063] S201.选择特定条件(早高峰,晚高峰,晴天,雨天等)进行流量采集,这里以早高峰 T早(7点-9点)和晚高峰T晚(17点-19点)为特定条件进行采集。由S02的步骤4得出,对于早高 峰和晚高峰分别抽样的数据有(n*3a)个。由于视频检测器采用人工方式计数,这样的采集 方式准确率高,所以经计算得出:
[0064] a.地感线圈在早高峰时期的均方误差是
地感线圈在晚高峰时期的均方误差是
[0065] b ?微波在早高峰时期的均方误差是
,微 波在晚高峰时期的均方误差是
[0066] c.地磁在早高峰时期的均方误差是
,地 磁在晚高峰时期的均方误差是
[0067] d.视频在早高峰时期的均方误差是
,地 磁在晚高峰时期的均方误差是
[0068] 由各个交通流量检测设备计算的结果得到[0,1]之间的均方误差表示为:
[0069] a.地感线圈在早高峰时期的[0,1]均方误差是:
[0070] ?\ = MSE/ ( MSE\ + MSE'1, + MSE({ + MSE\ )
[0071]地感线圈在早高峰时期的[0,1 ]均方误差是:
[0072] a\ - MSE; / ( MSE\ + MSE'l, + MSE(; + MSE;it )
[0073] b.微波在早高峰时期的[0,1 ]均方误差是:
[0074] al\ = MSE1', / ( MSE\ + MSEl\ + MSE({ + MSE!\ )
[0075] 微波在晚高峰时期的[0,1 ]均方误差是:
[0076] a'1: = MSEl i ( MSEl + MSE1!., + MSE(;t + MSE[,)
[0077] c.地磁在早高峰时期的[0,1 ]均方误差是:
[0078] ?(; = MSEr\ / ( MSE\ + MSE''\ + MSE1] + MSE1,)
[0079]地磁在晚高峰时期的[0,1 ]均方误差是:
[0080] ?'; = MSE1;, I ( MSEl + MSE\ + MSE';, + MSE\,)
[0081 ] d.视频在早高峰时期的[0,1 ]均方误差是:
[0082] al = MSEf^ / (.MSE^ + MSEl + MSE% + MSE^ )
[0083]视频在晚高峰时期的[0,1 ]均方误差是:
[0084] a:, = MSE\,! ( MSEi + MSE1:. + MSE(;, + MSE[,)
[0085] 由各个交通流量检测设备计算的结果得到均方误差图为:
[0086] S202.几种交通流量检测设备的置信度c计算方式为c = l_MSE,即地感线圈流量监 测设备在指定条件早高峰T早(7点-9点)和晚高峰T晚(17点-19点)下的置信度分别为 4 =1-和=1-微波流量监测设备在指定条件早高峰T早(7点-9点)和晚高峰T晚(17 点-19点)下的置信度分别为和地磁流量监测设备在指定条件早高峰 T早(7点-9点)和晚高峰T晚(17点-19点)下的置信度分别为4 = 1- af和cB| =1-ag ;视频流量 监测设备在指定条件早高峰T早(7点-9点)和晚高峰T晚(17点-19点)下的置信度分别为 4 = 1-£4和4=1-〇4,几种交通流量检测设备的置信度如图所示:
[0087] S3异常数据检测
[0088] S301.对于一组交通流量检测设备,第a组地感线圈检测器和视频人工计数统计在 ^时刻检测到的交通流量分别为fs(n,a)和£*(11,&),该1检测时段的历史流量值是f H(n, a)。对fs(n,a),f*(n,a)和fH(n,a)进行中值排序,得到中值流量数f M(n,a)。若| fM(n,a)_fs (11,3)|<0(0为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|产(11, a)_fs(n,a) |彡0,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在tn时刻检测到 的交通流量f~n,a),即第a组地感线圈检测器和视频人工计数统计在t n时刻检测到的交通 流量分别为户(11,&)和产(11,&),该时段的历史交通流量为严(11, &)。
[0089]作为一种实施方式,比如第3组地感线圈检测器和视频人工计数统计在t7时刻检 测到的交通流量分别为fs(7,3)和f~7,3),该t7检测时段的历史流量值是fH(7,3)。对f s(7, 3),产(7,3)和忾7,3)进行中值排序,得到中值流量数产(7,3)。若|产(7,3)-户(7,3)|<0(0 为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|f M(7,3)-fs(7,3) 多9,则数据有异常,则用中值fM(7,3)替换视频人工计数统计在t 7时刻检测到的交通流量 (7.3) ,即第3组地感线圈检测器和视频人工计数统计在t7时刻检测到的交通流量分别为fs (7.3) 和产(7,3),该时段的历史交通流量为严(7,3)。
[0090] S302.对于第a组微波检测器和视频人工计数统计在1时刻检测到的交通流量分 别为#(11,3)和;^(11,3),该1: 11检测时段的历史流量值是;^(11,3)。对;^(11,3),;^(11,3)和;^(11, a)进行中值排序,得到中值流量数fM(n,a)。若|产(1^)-#(1!,&)|<0(0为流量_值,通常按 照该路段的历史最低流量得出),则数据无异常;若I fM(n,a)-fw(n,a) |彡0,则数据有异常, 则用中值产(11,&)替换视频人工计数统计在^时刻检测到的交通流量f~n,a),即第a组微波 检测器和视频人工计数统计在^时刻检测到的交通流量分别为f w(n,a)和fM(n,a),该时段 的历史交通流量为fH(n,a)。
[0091] S303.对于第a组地磁检测器和视频人工计数统计在1时刻检测到的交通流量分 另ll为fe(n,a)和f^(n,a),该t n检测时段的历史流量值是fH(n,a)。对fe(n,a),f^(n,a)和f H(n, a)进行中值排序,得到中值流量数fM(n,a)。若|产(1^)-忾1!,&)|<0(0为流量_值,通常按 照该路段的历史最低流量得出),则数据无异常;若|产(11, &)-#(11,&)|彡0,则数据有异常, 则用中值产(11,&)替换视频人工计数统计在^时刻检测到的交通流量f~n,a),即第a组地磁 检测器和视频人工计数统计在^时刻检测到的交通流量分别为f e(n,a)和fM(n,a),该时段 的历史交通流量为fH(n,a)。
[0092] S304.对于第a组视频检测器和视频人工计数统计在1时刻检测到的交通流量分 别为fV(n,a)和f^(n,a),该tn检测时段的历史流量值是fH(n,a)。对f v(n,a),f^(n,a)和fH(n, a)进行中值排序,得到中值流量数fM(n,a)。若|产(1^)-0(1!,&)|<0(0为流量_值,通常按 照该路段的历史最低流量得出),则数据无异常;若|产(11, &)-,(11,&)|彡0,则数据有异常, 则用中值产(11,&)替换视频人工计数统计在^时刻检测到的交通流量f~n,a),即第a组视频 检测器和视频人工计数统计在^时刻检测到的交通流量分别为f v(n,a)和fM(n,a),该时段 的历史交通流量为fH(n,a)。
[0093] S4数据融合
[0094]对于早高峰下的交通流量采集数据可以用指数函数来融合数据,设有函数 f(cp):
[0096] 用梯度下降法求得函数最小值,方法如下:
[0097] S401.对函数f ((p)求它的各个参数(x,y,m,k)的偏导数;
[0098] S402.利用更新法则
来更新或者迭代各个参数,获得一个新的 参数来进行下一次梯度下降;
[0099] S403.当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数f(Cp)取 最小值时为最优解,此时求得x,y,m,k的值。
[0100] 上述说明中,凡未加特别说明的,均采用现有技术中的技术手段。
【主权项】
1. 一种路面交通流量检测设备可信度评估的方法,其特征在于,包括如下步骤: Sl,交通流量数据采集:将同一地点的各个交通流量检测设备分别与视频检测器配对, 并按监测点的不同进行分组;检测在特定条件下,通过各个交通流量检测设备采集到的原 始数据以及通过视频检测器进行人工计数的真值;采用抽样率η对原始数据和真值进行抽 样分析,得到抽样数据; S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定条件 X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度; 53, 异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到的交 通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据判 断,如数据异常,则使用排序所得的中值替换人工计数的真值; 54, 数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与人工 计数的真值进行综合处理。2. 根据权利要求1所述的一种路面交通流量检测设备可信度评估的方法,其特征在于, 所述的各个交通流量检测设备包括地感线圈检测器S、或微波检测器W、或地磁检测器G以及 视频检测器V。3. 根据权利要求2所述的一种路面交通流量检测设备可信度评估的方法,其特征在于, 所述的步骤Sl交通流量数据采集,包括如下步骤: SlOl,各个交通流量检测设备包括地感线圈检测器S、或微波检测器W、或地磁检测器G 以及视频检测器V的数量集合分别表示为{Sa}、{Wa}、{GaWP{V a},每个交通流量检测设备都 和视频检测器配对统计,a表示对应的第几组; 5102, 设置交通流量采集设备采集数据的时间段的集合为^,地感线圈检测器S、微波检 测器W、地磁检测器G以及视频检测器V在1内统计的流量用f s(tn)、fw(tn)、fG(t n)和0(^)表 示,人工计数统计得到的交通流量用f^( tn)表示; 5103, 所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集合 {Sa}、{Wa}、{G a_{Va}中的第a组在tn采集时间段内采集到的流量分别表示为fs(t n) =fs(n, a)、fw(tn) =fw(n,a)、fG(tn) =fG(n,a)和fv(tn) =fv(n,a);对应的第a组视频检测器V在tn采 集时间段内,由人工计数得到的采集流量表示Sf^(t n) = f^(n,a); S104,选择特定条件进行流量采集,检测在特定条件X下,所述的地感线圈检测器S、微 波检测器W、地磁检测器G以及视频检测器V的集合{53}、{13}、{63}和{¥ 3}通过各个交通流量 检测设备采集到的原始数据分别I7%I77Wj、I7r^i以及通过视频检测器进 行人工计数的真值采用抽样率η对原始数据和真值进行抽样分析,得到各个交通流 量检测设备的抽样数据// r(TY), ,Vfii (Tv), η P0(Tv)、η Γ丨(Τ' );4. 根据权利要求3所述的一种路面交通流量检测设备可信度评估的方法,其特征在于, 所述的步骤S2置信度计算中,设对于N个时间段内在特定条件X下分别抽样的数据有(ri* N * a)个,通过下列公式分别计算各个交通流量检测设备的均误方差,其中,i为S,或W,或G,或V; MST丨分别用以表示地感线圈检测器的均误方差,微波 检测器的均方误差¥5£厂,地磁检测器的均方误差以及视频检测器的均方误差; 由各个交通流量检测设备计算的结果得到[〇,1]之间的均方误差表示为:其中,i为S,或W,或G,或V;:c4分别用以表示地感线圈检测器的[0,1]均误方差微波 检测器的[〇,1]均方误差地磁检测器的[〇,1]均方误差以及视频检测器的[0,1]均方 误差< : 再计算各个交通流量检测设备的置信度, cx=l~ a\ (公式三.) 其中,i为S,或W,或G,或分别用以表示地感线圈检测器的置信度i微波检测器的 置信度4,地磁检测器的置信度4以及视频检测器的置信度4。5. 根据权利要求4所述的一种路面交通流量检测设备可信度评估的方法,其特征在于, 所述的步骤S3异常数据检测中,对于第a组交通流量检测设备i和人工计数统计在某一时刻 检测到的交通流量分别为fUn,a)和f~n,a),该时刻检测时段的历史流量值是f H(n,a);对 尸(11,&),产(11,&)和严(11, &)进行中值排序,得到中值流量数产(11,&);设0为流量阈值,通常 按照该路段的历史最低流量得出; 若|产(11,&)-尸(11,&)|<0,则数据无异常; 若|产(11,&)-户(11,&)|彡0,则数据有异常,则用中值产( 11,&)替换视频人工计数统计在 该时刻检测到的交通流量f~n,a),即第a组交通流量检测设备i和视频人工计数统计在该 时刻检测到的交通流量分别为尸(11, &)和产(11,&),该时段的历史交通流量为严(11,&)。6. 根据权利要求5所述的一种路面交通流量检测设备可信度评估的方法,其特征在于, 在步骤S4数据融合中,采用指数函数来融合数据,设函数/(φ):用梯度下降法求得函数最小值,计算方法如下: a.对函数/(φ)求它的各个参数(1,7,111,1〇的偏导数;来更新或者迭代各个参数,其中,λ为步长;由此获 得一个新的参数来进行下一次梯度下降; c .当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数f( Φ )取最小值时 为最优解,此时求得X,y,m,k的值。7. 根据权利要求3或4所述的一种路面交通流量检测设备可信度评估的方法,其特征在 于,所述的η取10 %。
【文档编号】G08G1/01GK105931458SQ201610296639
【公开日】2016年9月7日
【申请日】2016年5月5日
【发明人】张登
【申请人】杭州智诚惠通科技有限公司