与uv激光束一同使用的光学记录载体的制作方法

文档序号:6753108阅读:313来源:国知局
专利名称:与uv激光束一同使用的光学记录载体的制作方法
技术领域
本发明涉及一种使用UV(紫外)波长范围内的光束来记录信息的光学记录载体,尤其是使用具有从230~270nm范围内的波长的光束来记录信息的光学记录载体。
背景技术
通过增加物镜的数值孔径(NA)并减少激光的波长,光学记录载体在数据容量方面已经有了革命性的提高。总的数据容量从650Mb(CD,NA=0.45,λ=780nmm)增加到4.7Gb(DVD,NA=0.65,λ=670nmm),再到蓝光光盘的25Gb(BD,NA=0.85,λ=405nm)。BD数据密度是通过光学定标由DVD容量得出的。为了获得数据密度的进一步增加,一种可能就是进一步降低激光波长到UV波长范围。适宜的UV激光在不久的将来会成为可能。
EP0731454A1公开了一种供UV激光使用的光学记录方法、光学记录设备和光学记录介质。应该使用波长在190至370nm范围内的UV激光和数值孔径为0.4或更小的透镜,在记录着音频、视频或字符数据的信息记录区之外的辅助信息记录区内记录所述记录介质的识别信息。

发明内容
本发明的目的是提供一种光学记录载体,通过应用UV光束来记录信息从而能够很好的增加数据容量。
依据本发明这一目标是通过如权利要求1所述的光学记录载体实现的,所述记录载体包括一个基底层(S)和一个记录叠层(R),记录叠层包括两个介电层(I1、I2),以及夹在所述介电层(I1、I2)之间的一信息层(P),所述信息层(P)包括有这样的记录材料,该记录材料用于通过UV光束的照射形成代表信息的标记和间隔,其中所述记录材料是包括包含Ge、Sb、Te、In、Se、Bi、Ag、Ga、Sn、Pb、As的材料组中的至少两种材料的合金。
在诸如CD、DVD和BD之类的公知光学记录载体中,光盘通常包括夹在聚碳酸酯基底层与塑料覆盖层之间的记录叠层。数据是通过盘的透明聚碳酸酯基底层或覆盖层而写入和读出的。但是,就230到270nm范围内的波长而言,所述基底层和覆盖层目前所采用的材料对于激光辐射是不透明的。依据本发明,空气入射或者覆盖层入射优选地用于数据的记录和读取,其中覆盖层是由对入射UV光束透明的材料制成的。在空气入射的情况下,没有覆盖层或者基底层设置在信息层和入射UV光束之间。
依据本发明提出的记录叠层主要包括仅仅两个介电层和夹在所述介电层之间的一个信息层。在所述信息层中用作记录材料的物质是根据这种材料的光学和热特性选择出来的,从而使得它适合于使用UV光束来进行记录。这样,已经表明,掺杂Sb-Te相变组合物是一种适宜的材料,因为通过适当选取掺杂物和叠层设计,可以实现满意的热学和光学性能。
本发明的优选实施方式在从属权利要求中予以限定。用在信息层和介电层中的优选材料在权利要求3和5中予以限定。信息层和介电层的厚度范围在权利要求2和4中予以限定。
依据另一个优选实施方式,另外提供了一个或更多的金属散热层,如权利要求6到11中所定义的。在进行写入以形成标记期间,要求这些散热层快速排热(冷却)。同时这些金属散热层也能够用作反射体来增强数据的读出和/或增加记录层对入射UV光束的吸收。可以将这种金属散热层设置在两个介电层的上面。如果将金属散热层设置在UV光线入射的一侧,该层应当是半透明或全透明的。
在另一个实施方式中,如权利要求12和13中所限定的,可以预见由间隔层和/或额外的介电层分隔开的另外的记录叠层或者多层结构。
再进一步,如权利要求14所限定的,在面对入射UV光束的介电层上面设置一个另外的覆盖层可能是较佳的方案,该权利要求中提到了用于所述覆盖层的适当的材料和厚度范围。所述覆盖层用作保护性涂层,以保护信息层免受刮擦或类似损伤。
再进一步,如权利要求15所限定的,可优选的在面对入射UV光束的介电层上面或覆盖层上面设置一个额外的硬涂层,该权利要求中限定了用于所述覆盖层的适当的材料和厚度范围。所述覆盖层用作保护性涂层,以保护信息层免受刮擦或类似损伤。


现在将参照附图对本发明进行更加详细的解释说明,其中附图1表示作为厚度的函数的ZnS∶SiO2(80∶20)的透射率;附图2表示连续激光加热所得到的CD、DVD、BD以及UV条件下的径向温度曲线图;附图3表示激光脉冲加热所得到的CD、DVD、BD以及UV条件下的径向温度曲线图;附图4表示作为厚度的函数的某些介电材料的透射率;附图5表示作为厚度的函数的某些金属的反射率;附图6a-f表示按照本发明的记录载体的不同的实施方式;附图7表示附图6a中所示的光学记录载体的光学特性;附图8表示附图6d中所示的光学记录载体的光学特性,以及附图9表示按照本发明的记录载体中的标记形态仿真的模拟结果。
具体实施例方式
在目前(DVD)和第三代(BD)相变光学记录载体中通常采用的大多数介电材料在处于230至270nm范围内的UV记录波长下会吸收过多的激光。这对热和光学性能都会造成影响。例如,ZnS-SiO2(通常在光学记录叠层中采用的材料)在这一波长范围内具有相当高的吸收系数。附图1表示在266nm波长下作为层厚度的函数的处于空气当中的ZnS-SiO2层的透射率(n=2.655;k=0.527)。在传统的IPIM记录叠层中(这里I表示由ZnS-SiO2制成的介电层,P表示相变信息层而M表示金属散热层),两个介电层中的明显吸收导致了比在光学定标条件(optical scaling conditions)的基础上预测的温度分布宽得多的温度分布。由于较宽的温度分布将会导致较宽的标记,并且进而会导致交叉写入现象,因此所达到的数据容量将与第三代BD记录载体同样大。
这在附图2、3中进行了图示说明。其中示出了作为连续激光加热(代表数据擦除)(附图2)以及脉冲加热(代表数据写入)(附图3)的结果的针对CD、DVD、BD和UV条件的径向温度分布。在附图2和附图3b中,径向坐标使用光斑的半径标度。在附图3a中,将数据标绘为径向坐标的函数。如果对于UV条件下的记录而言假设在介电层中没有吸收,则温度曲线随光斑变化,其它三种系统的情况(CD、DVD和BD)也是这样。但是在有吸收的情况下,即对于ZnS-SiO2的情况,可以见到,由于在相邻的介电层中有吸收,所以相变层中的温度分布变宽。这同样可以在附图3看出,其中如果应用了ZnS-SiO2介电层,则BD曲线与UV曲线相重叠。
如果考虑了对于短脉冲的温度响应,则热扩散是不关联的,且热响应差不多就是光响应。但是对于数据的直接重写或擦除而言,擦除电平总是需要的。即使考虑在单独的擦除周期内擦除数据,相邻轨迹中的数据也会遭到擦除,这是由于这样的实际情况造成的温度分布要比作为定标问题的基础的轨迹间距宽得多。
记录叠层的敏感度还取决于介电层中的吸收。在除了相变信息层以外的其它层中所吸收的全部光能在第一级中被看作是丧失了。实际上,热阻将会增加,并且因此少量的热量将流向绝热的介电层,但将此看作是二阶效应。要达到针对写入功率的最佳敏感度,激光应当最好在信息层得到吸收。
数据的读出需要相对较低的功率来完成。如果介电层的吸收过高,读出信号的信噪比将会过低。
这说明要与UV光相结合使用的光学记录载体最好需要除了ZnS-SiO2之外的其它介电材料。可能的材料是通过包括溅射沉积和光学分析的检验获得的。这样,我们发现从下述材料组中选出的材料可以很好地用作按照本发明的光学记录载体中的介电层Al2O3、SiO2、C、NaCl、ZrO、Si3N4、LiF、KCl。可以对这些材料进行掺杂,以进一步改善光学、热学和机械特性。附图4表示某些介电材料在266nm波长下作为厚度函数的透射率。
我们已经发现了包括Ge、Sb、Te、In、Se、Bi、Ag、Ga、Sn、Pb、As中的至少两种的合金,可以作为信息层中使用的适当的相变记录材料。
除介电层和相变层外,还可以设置在用以实现标记形成的写入期间实现快速排热(冷却)所需的金属散热层。这种金属层还作为反射体,用以增强数据的读出和/或由记录层对入射光的吸收。下述材料或它们的合金可以在用于在UV波长范围内进行光学记录的记录叠层中使用Al、Ag、Cu、Ag、Ir、Mo、Rh、Pt、Ni、Os、W。在附图5中,给出了这些材料的一部分在266nm波长下作为层厚度的函数的反射率。
在附图6中,以截面图方式给出了按照本发明的光学记录载体的不同实施方式。附图6a表示这种记录载体的第一种设计方案,该记录载体包括M/I2/P/I1记录叠层R,其中M是反射体/散热层,P是相变信息层,I1和I2是保护/干涉层(介电层)或者多层结构。一般来说,记录叠层可以是低对高信号极性(此时记录态的反射高于未记录态的反射)或者高对低信号极性(此时未记录态的反射高于记录态的反射)。
一般来说,金属散热层M的厚度应大于10nm,特别地,要大于15nm。相变信息层P的厚度应当处于从3到50nm的范围内,特别地,是从5到25nm。第二介电层I2的厚度应该处于从2到50nm的范围内,特别地,是从3到25nm。第一介电层I1的厚度应大于5nm,特别地,应大于10nm。
例如,优选地提出了一种具有Si3N4作为介电层I1、I2、A1作为金属散热层M以及掺有In的Sb-Te合金作为相变信息层P的记录叠层。叠层设计为M/I2/P/I1,如附图6a所示,其中M是沉积在盘基底S上的第一层,并且其中最佳波长为266nm的UV激光束L从I1层一侧进入叠层。
在附图7中给出了这种光学记录载体的光学特性。作为I1层厚度的函数,计算结晶(未记录态)反射率Rc,光对比度C,以及反射差dR。该计算是针对具有100nm厚的M层、18nm厚的I2层和10nm厚的P层的叠层进行的。如果将I1层厚度选为14nm,则光学叠层在未记录态下有10.3%的反射、在盘上的未记录区与记录区之间具有90%的光对比度以及9.3%的反射差。
在附图6b中给出了按照本发明的记录载体的另一种实施方式。其中不包含金属散热层。I层可以是多层结构,该多层结构包括具有相对较高热传导率的介电材料。为了保护记录叠层,也就是所谓的IPI叠层,可以在该I1层的上面设置一个额外的覆盖层C。用于所述覆盖层的优选材料是聚二甲基硅氧烷(Sylgard 184硅氧烷弹性体),并且具有处于5到300μm范围内的厚度。
在附图6c中给出了包括两个金属散热层M1和M2的光学记录载体。通过这一实施方式,可以改善光对比度。激光束入射到其上的第一散热层M1需要是透明或者半透明的。同样第二散热层M2也需要是透明的。
在附图6d中给出了包括一个覆盖层C和一个硬涂层HC的光学记录载体。通过硬涂层,记录载体的机械抵抗力能够得到提高。硬涂层最好由含有Si-、C-或者S-的材料构成,并且厚度大于5nm。
在附图8中给出了这种记录载体(没有硬涂层)的光学性能。作为I1层厚度的函数,计算结晶(未记录态)反射(Rc)、光对比度(C)以及反射差(dR)。该计算是针对具有100nm厚的M层、30nm厚的I2层和8nm厚的P层的叠层进行的。如果将I1层厚度选为50nm,则该光学叠层在未记录态下具有6.8%的反射率、在盘上的未记录区和记录区之间具有92%的光对比度和6.3%的反射差。
在附图6e中给出了包括多于一个记录叠层的多层光学记录载体。如图所示,该载体具有两个由间隔层SP间隔开的记录叠层R1、R2。这样的记录载体比仅包括一个记录叠层的记录载体具有更高的容量(在这种情况下约为两倍)。在这样的记录载体中,所有的记录叠层由从记录载体的同一侧入射的UV光束L访问。
在附图6f中给出了包括位于基底每一侧上的记录叠层R1、R2的双面光学记录载体。如图所示,该记录载体在基底S的每一侧都有一个记录叠层R1、R2。这样的记录载体具有比仅包括一个记录叠层的记录载体更高的容量(在这种情况下为两倍)。在这样的记录载体中,位于基底S的任一侧上的记录叠层R1、R2由从它们所处的基底S的那一侧入射的UV光束L进行访问。还可以预见双面多层介质。
在所提出的记录载体中,使用了具有2ns写入脉冲的脉冲策略来研究标记形态。通道位长度设定为44nm。在附图9中给出了典型的模拟结果。应用了带有4ns的冷却间隔的6个写入脉冲组成的脉冲串。记录速率为10m/s。实线表示熔化边缘。斜线区域为已记录标记。由于下一次写入脉冲造成的非结晶材料的再结晶是显而易见的,并且与BD条件下的标记形成的认识相一致。如果减小冷却间隔,将发生更多的再结晶。
对于记录而言,可以采用用于BD载体的类似设备。
按照本发明,提出了一种供UV光束进行记录使用的可重写光学记录载体,其中UV光束的优选波长范围是从230到270nm。在数值孔径NA=0.85的情况下,具有λ=266nm的系统的有效光斑半径(接近高斯(Gaussian)分布的1/e)为R0=99nm。如果考虑了有效光斑区域,那么可以看到,对于这样的记录载体,60-65Gb的容量是可以达到的。可以进一步看到,对应于较低的数值孔径(例如NA=0.65),所获得的数据容量太低,并且需要NA=0.85的数值孔径。
权利要求
1.一种用于使用处于UV波长范围之内的光束记录信息的光学记录载体,其中所述光束具体来讲具有处于230至270nm的范围内的波长,该光学记录载体包括基底层和记录叠层,该记录叠层包括-两个介电层以及-夹在所述介电层之间的信息层,所述信息层包括这样的记录材料,该记录材料用于通过UV光束的照射形成代表信息的标记和间隔,其中所述记录材料是包括包含Ge、Sb、Te、In、Se、Bi、Ag、Ga、Sn、Pb、As的材料组中的至少两种材料的合金。
2.按照权利要求1所述的光学记录载体,其中所述信息层具有处于从3至50nm的范围的厚度,特别地,是从5至25nm。
3.按照权利要求1所述的光学记录载体,其中所述记录材料是掺有In的Sb-Te合金材料。
4.按照权利要求1所述的光学记录载体,其中面对入射UV光束的介电层具有大于10nm的厚度,并且另一个介电层I2具有处于从2nm至50nm的范围的厚度,特别地,是从3nm至25nm。
5.按照权利要求1所述的光学记录载体,其中所述介电层是由包含Al2O3、SiO2、C、NaCl、ZrO、Si3N4、LiF、KCl的材料组中的材料制成的。
6.按照权利要求1所述的光学记录载体,还包括金属散热层,该金属散热层介于所述基底层和所述不朝向入射UV光束的介电层之间。
7.按照权利要求6所述的光学记录载体,其中所述金属散热层具有大于5nm的厚度,特别地,为大于15nm。
8.按照权利要求1所述的光学记录载体,还包括处于面对入射UV光束的介电层顶部上的金属散热层,所述金属散热层是半透明的。
9.按照权利要求8所述的光学记录载体,其中所述金属散热层具有处于从3nm到50nm的范围内的厚度,特别地,是从5nm到15nm。
10.按照权利要求6或8所述的光学记录载体,其中所述金属散热层是由包含Al、Ag、Cu、Ag、Ir、Mo、Rh、Pt、Ni、Os、W的材料组中的材料或基于该组中的材料的合金制成的。
11.按照权利要求6或8所述的光学记录载体,其中所述金属散热层是半透明或者透明的。
12.按照权利要求1所述的光学记录载体,其中记录叠层在其任一侧或两侧上还包括另外的介电层或者多层结构。
13.按照权利要求1所述的光学记录载体,还包括至少一个额外的记录叠层和用于将所述记录叠层彼此间隔开的至少一个透明间隔层,所述间隔层特别地是由聚二甲基硅氧烷(Sylgard 184硅氧烷弹性体)制成的,并且具有处于从1μm到100μm的范围之内的厚度。
14.按照权利要求1所述的光学记录载体,还包括处于所述记录载体朝向入射UV光束一侧的顶部的透明覆盖层,所述覆盖层特别地是由聚二甲基硅氧烷(Sylgard 184硅氧烷弹性体)制成的,并且具有处于从5μm到300μm的范围之内的厚度。
15.按照权利要求1所述的光学记录载体,还包括处于所述记录载体朝向入射UV光束一侧的顶部的透明或者半透明硬涂层,所述硬涂层具有处于从5μm到300μm范围之内的厚度。
全文摘要
本发明涉及一种用于使用处于UV波长范围之内的光束记录信息的光学记录载体,其中所述光束具体来讲具有处于230至270nm的范围之内的波长,该光学记录载体包括基底层(S)和记录叠层(R),该记录叠层包括两个介电层(I1,I2)以及夹在所述介电层(I1,I2)之间的信息层(P),所述信息层(P)包括这样的记录材料,该记录材料用于通过UV光束的照射形成代表信息的标记和间隔,其中所述记录材料是包括包含Ge、Sb、Te、In、Se、Bi、Ag、Ga、Sn、Pb、As的材料组中的至少两种材料的合金。
文档编号G11B7/254GK1689087SQ03823623
公开日2005年10月26日 申请日期2003年9月17日 优先权日2002年10月2日
发明者A·米吉里特斯基, E·R·梅恩德斯 申请人:皇家飞利浦电子股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1