溅射靶和光信息记录介质及其制造方法

文档序号:6736531阅读:321来源:国知局
专利名称:溅射靶和光信息记录介质及其制造方法
技术领域
本发明涉及一种光信息记录介质用薄膜(特别是用作保护膜)及其制造方法和适用于这些的溅射靶,该光信息记录介质用薄膜的非晶态性稳定,成膜速度快,与记录层的密合性、机械特性优良,且透过率高,此外,由于它由非硫化物类构成,不容易使相邻的反射层、记录层发生老化。
背景技术
一直以来,主要是相变型光信息记录介质的保护层通常使用的ZnS-SiO2,具有优良的光学特性、热特性、与记录层的密合性等特性,使用非常广泛。
然而,今天以Blue-Ray为代表的可重写型DVD,对重写次数的增加、大容量化、高速记录化有了进一步的强烈要求。
作为光信息记录介质的重写次数等减少的原因,列举其中之一是,保护层ZnS-SiO2中的硫成分向被夹在其中的记录层材料的扩散。
此外,为了达到大容量化、高速记录化,使用具有高反射率、高热传导特性的纯Ag或Ag合金作反射层材料,但也将此反射层置于与保护层材料ZnS-SiO2相邻的位置。
因此,这种情况下,ZnS-SiO2中硫成分的扩散,也同样是导致纯Ag或Ag合金反射层材料被腐蚀老化、光信息记录介质的反射率等特性变差的一个主要原因。
为防止硫成分扩散这种情况,也采用在反射层和保护层、记录层和保护层之间设置以氮化物或碳化物为主要成分的中间层的构造。然而,随着层压的增加,产生生产量下降,成本增加的问题。
为了解决上述问题,仅用不含硫化物的氧化物的材料替换保护层材料,找出与ZnS-SiO2具有相同或以上光学特性、非晶态稳定性的材料成为当务之急。
而且,由于ZnS-SiO2等陶瓷靶的体电阻值高,不能用直流溅射装置成膜,而通常使用高频溅射(RF)装置。
但是,此高频溅射(RF)装置不仅本身价格高,而且有溅射效率差,电力消耗量大,操作复杂,成膜速度慢的很多缺点。
此外,为了提高成膜速度而加高电力时,基板的温度上升,存在聚碳酸酯制基板变形的问题。
根据上述情况,提出了使用不含ZnS即不含硫成分的透明导电材料的方法(参照专利文献1、专利文献2)。
但是,专利文献1存在包含光学特性以及非晶态性差的领域的问题,专利文献2存在包含不能得到很好的成膜速度,非晶态性差的领域的问题。
专利文献1特开2000-256059号公报专利文献2特开2000-256061号公报发明内容本发明涉及一种光信息记录介质用薄膜(特别是用作保护膜)及其制造方法和适用于这些的溅射靶,该光信息记录介质用薄膜的非晶态性稳定,成膜速度快,与记录层的密合性、机械特性优良,且透过率高,此外,由于它由非硫化物类构成,不容易使相邻的反射层、记录层发生老化,由此,本发明的目的在于,提高光信息记录介质的特性及大幅度改善其生产率。
为了解决上述课题,本发明人进行了认真的研究,结果发现,仅用下文提到的不含硫化物的氧化物材料替换原来的保护层材料ZnS-SiO2,可以确保其与ZnS-SiO2具有相同的光学特性以及非晶态稳定性,进而可以高速成膜,改善光信息记录介质的特性、提高生产率。
本发明以此发现为基础,提供1)溅射靶,其特征在于,由向以SnO2为主要成分的In2O3-ZnO-SnO2类复合氧化物中添加SiO2、B2O3中的任何一种或两种氧化物所得的材料组成。
2)根据1)所记载的溅射靶,其特征在于,添加SiO2时,是各种元素比为In/(In+Zn+Sn+Si)=0.01~0.43、Zn/(In+Zn+Sn+Si)=0.02~0.47、Sn/(In+Zn+Sn+Si)=0.19~0.82、Si/(In+Zn+Sn+Si)=0.04~0.50的氧化物。
3)根据1)或2)所记载的溅射靶,其特征在于,添加SiO2时,是(Sn+Si)/(In+Zn+Sn+Si)=0.45~0.90的氧化物。
4)根据1)所记载的溅射靶,其特征在于,添加B2O3时,是各种元素比为In/(In+Zn+Sn+B)=0.01~0.41、Zn/(In+Zn+Sn+B)=0.02~0.45、Sn/(In+Zn+Sn+B)=0.13~0.81、B/(In+Zn+Sn+B)=0.09~0.66的氧化物。
5)根据1)或2)所记载的溅射靶,其特征在于,添加B2O3时,是(Sn+B)/(In+Zn+Sn+B)=0.45~0.90的氧化物。
此外,本发明还提供6)根据1)~5)中任何一项所记载的溅射靶,其特征在于,相对密度在90%以上。
7)使用上述1)~6)中任何一项所记载的溅射靶,至少形成作为薄膜的光信息记录介质构造的一部分为特征的光信息记录介质及其制造方法。
8)使用上述1)~7)中任何一项所记载的溅射靶,至少形成作为薄膜的光信息记录介质构造的一部分,且置于与记录层或反射层相邻位置为特征的光信息记录介质及其制造方法。
发明效果如上所述,本发明能够提供一种光信息记录介质用薄膜(特别是用作保护膜)及其制造方法和适用于这些的溅射靶,通过仅用不含硫化物的氧化物替换保护层材料ZnS-SiO2,在抑制相邻的反射层、记录层等由于硫的扩散而老化的同时,还具备了与ZnS-SiO2相同或以上的光学特性以及非晶态稳定性,使高速成膜成为可能,与记录层的密合性、机械特性优良,且透过率高。
此外,通过使用本材料,取得了使改善光信息记录介质特性、大幅度提高生产率成为可能的良好效果。
具体实施例方式
本发明的溅射靶,由向以SnO2为主要成分的In2O3-ZnO-SnO2类复合氧化物中添加SiO2、B2O3中的任何一种或两种氧化物所得的材料组成。
这种材料的光学特性及膜的非晶态性稳定,适合作相变型光记录介质的保护层材料,利用高频溅射靶溅射成膜的速度也很快。
通过向本材料中进一步添加适量SiO2、B2O3,其非晶态性更稳定,透过率进一步提高,因此适合用作重写速度快的相变记录介质和蓝激光系列的相变记录介质用保护层材料。
此外,尤其是本发明的溅射靶,在添加SiO2时,希望是各种元素比为In/(In+Zn+Sn+Si)=0.01~0.43、Zn/(In+Zn+Sn+Si)=0.02~0.47、Sn/(In+Zn+Sn+Si)=0.19~0.82、Si/(In+Zn+Sn+Si)=0.04~0.50的氧化物,优选(Sn+Si)/(In+Zn+Sn+Si)=0.45~0.90的氧化物。
这样能够改善非晶态稳定性及光学特性(折射率、透过率)。当数值脱离上述范围时,上述特性有变差的倾向。
此外,本发明的溅射靶,在添加B2O3时,希望是各种元素比为In/(In+Zn+Sn+B)=0.01~0.41、Zn/(In+Zn+Sn+B)=0.02~0.45、Sn/(In+Zn+Sn+B)=0.13~0.81、B/(In+Zn+Sn+B)=0.09~0.66的氧化物,优选(Sn+B)/(In+Zn+Sn+B)=0.45~0.90的氧化物。这样能够进一步改善非晶态稳定性及光学特性(折射率、透过率)。
而且,本发明的溅射靶,相对密度可以达到90%以上。密度增加,溅射膜的均匀性提高,而且有能够抑制溅射时产生颗粒的效果。
使用上述溅射靶,能提供至少形成作为薄膜的光信息记录介质构造的一部分的光信息记录介质。而且,使用上述溅射靶,能制造至少形成作为薄膜的光信息记录介质构造的一部分,且置于与记录层或反射层相邻位置的光信息记录介质。
这样,本发明通过采用由In2O3、ZnO和SiO2的氧化物构成的以SiO2为主成分的材料,可以确保一定的导电性,由此,通过高频溅射可以提高成膜速度。
另外,利用调整光学特性可以使保护膜本身的厚度变薄,所以更能发挥提高生产率、防止加热基板的效果。
此外,使用本发明的溅射靶形成的薄膜,形成光信息记录介质构造的一部分,置于与记录层或反射层相邻的位置,但如上所述,由于没有使用ZnS,而没有S的污染、没有硫成分向被夹在保护层中的记录层材料扩散而导致记录层老化的情况,此效果显著。
而且,为了达到大容量化、高速记录化,使用具有高反射率、高热传导特性的纯Ag或Ag合金作反射层材料,同样,也没有硫成分向此相邻反射层的扩散,清除了引起反射层材料腐蚀老化、光信息记录介质的反射率等特性变差的原因,此效果良好。
本发明的溅射靶可以通过常压烧结或高温加压烧结平均粒径为5μm以下的各构成元素的氧化物粉末制造。这样能得到相对密度为90%以上的溅射靶。这种情况下,烧结前,优选在800~1300℃下煅烧以氧化锡为主要成分的氧化物粉末。该煅烧后,粉碎至3μm以下,作为烧结用的原料。
而且,通过使用本发明的溅射靶,有如下显著的效果,即,生产率提高,能够得到质量优良的材料,能稳定地以低成本制造具有光盘保护膜的光记录介质。
本发明的溅射靶随着密度的增加,有如下显著的效果,细孔减少、晶粒细小化,靶的溅射面变得均匀而且平滑,因此减少了溅射时的颗粒和结核,而且靶的寿命延长,质量偏差小、提高了批量生产性。
实施例下面以实施例以及比较例为基础进行说明。当然,本实施例只是一例,本发明并不受此例的任何限制。也就是说,本发明只受权利要求范围的限制,也包含本发明的实施例以外的各种变形。
(实施例1-3)将相当于4N的5μm以下的In2O3粉、ZnO粉、SiO2粉,以及相当于4N的平均粒径5μm以下的SnO2粉,按表1所示的组成调合,用湿法混合,干燥后在1100℃下煅烧。
然后,将此煅烧粉湿法细粉碎,达到平均粒径为1μm后,添加粘合剂,用喷雾干燥器制粒。再将此制粒粉冷压成形,在1200℃下氧气环境中常压烧结,最终将此烧结材料机械加工成靶的形状。此靶的构成成分、组成比(In/(In+Zn+Sn+Si)、Zn/(In+Zn+Sn+Si)、Sn/(In+Zn+Sn+Si)、Si/(In+Zn+Sn+Si))如表1所示。
表1

非晶态性是以相对于经退火(600℃×30min、氩气环境)处理的成膜样品在XRD测定中2θ=20-60°范围内的未成膜玻璃基板的最大峰强度比表示。
使用上述最终加工得到的直径大小为6英寸的靶进行溅射。以RF溅射方式、1000W溅射能、0.5Pa氩气压为溅射条件,以1500为目标膜厚成膜。
成膜样品的透过率(波长633nm)%、折射率(波长633nm)、非晶态性(以相对于经退火(600℃×30min、氩气环境)处理的成膜样品在XRD(Cu-Kα、40kV、30mA)测定中2θ=20-60°范围内的未成膜玻璃基板的最大峰强度比表示)、还有溅射方式以及成膜速度(/sec)的测定结果等,总结如表1所示。
以上结果表明,实施例1-3中任何一种溅射靶,相对密度都达到90~99%、能够稳定的进行RF溅射。而且,成膜速度达到1.5~3.2/Sec,具有极好的溅射性。
溅射膜的透过率达到92~98%(633nm)、折射率为1.9~2.2,而且看不到特定的结晶峰,具有稳定的非晶态性(1.0~1.2)。
本实施例的靶由于没有使用ZnS,不会发生因为硫的扩散、污染而导致光信息记录介质的特性变差的情况。此外,与下述的比较例相比,成膜样品的透过率、折射率、非晶态的稳定性、靶密度、成膜速度均显示出良好的数值。
(比较例1-3)如表1所示,准备具有与本发明的条件不同的原料粉的成分和组成比的材料,特别是比较例4中的ZnS原料粉,在与实施例相同的条件下制作靶,并用此靶形成溅射膜。对一部分的材料采用DC(直流)溅射。
该结果同样如表1所示。
脱离本发明组成比的比较例的成分、组成,例如在比较例1中,由于Sn氧化物含量多,Si氧化物含量少,虽然成膜速度快,但会导致透过率为84%、折射率为2.3以及非晶态性为3.4这样差的结果。
在比较例2中,由于In氧化物含量少,Si氧化物含量多,即使使用高频溅射,成膜速度仍然极差,为0.3/sec。
在比较例3中,由于In氧化物含量多,非晶态性结果较差,为4.2。
而且,特别是比较例4,ZnS含量较多,是有硫污染危险的材料。
(实施例4-6)将相当于4N的5μm以下的In2O3粉、ZnO粉、B2O3粉,以及相当于4N的平均粒径5μm以下的SnO2粉,按表2所示的组成调合,用湿法混合,干燥后在1100℃下煅烧。
然后,将此煅烧粉用与实施例1-3相同的方法最终加工成靶的形状。此靶的构成成分、组成比(In/(In+Zn+Sn+B)、Zn/(In+Zn+Sn+B)、Sn/(In+Zn+Sn+B)、B/(In+Zn+Sn+B))如表2所示。
表2

非晶态性是以相对于经退火(600℃×30min、氩气环境)处理的成膜样品在XRD测定中2θ=20-60°范围内的未成膜玻璃基板的最大峰强度比表示。
使用上述最终加工得到的直径大小为6英寸的靶进行溅射。以RF溅射方式、1000W溅射能、0.5Pa氩气压为溅射条件,以1500为目标膜厚成膜。
成膜样品的透过率(波长633nm)%、折射率(波长633nm)、非晶态性(以相对于经退火(600℃×30min、氩气环境)处理的成膜样品在XRD(Cu-Kα、40kV、30mA)测定中2θ=20-60°范围内的未成膜玻璃基板的最大峰强度比表示)、还有溅射方式以及成膜速度(/sec)的测定结果等,总结如表2所示。
以上结果表明,实施例4-6中任何一种溅射靶,相对密度都达到90~95%、能够稳定的进行RF溅射。而且,成膜速度达到0.8~1.9/sec,具有良好且稳定的溅射性。
溅射膜的透过率达到93~98%(633nm)、折射率为1.9~2.1,而且看不到特定的结晶峰,具有稳定的非晶态性(1.0~1.2)。
本实施例的靶由于没有使用ZnS,不会发生因为硫的扩散、污染而导致光信息记录介质的特性变差的情况。此外,与下述的比较例相比,成膜样品的透过率、折射率、非晶态的稳定性、靶密度、成膜速度均显示出良好的数值。
(比较例5-7)如表2所示,准备具有与本发明的条件不同的原料粉的成分和组成比的材料,在与实施例相同的条件下制作靶,并用此靶形成溅射膜。对一部分的材料采用DC(直流)溅射。该结果同样如表2所示。
脱离本发明组成比的比较例的成分、组成,例如在比较例5中,由于B2O3氧化物含量比规定量少,虽然成膜速度快,但会导致透过率为84%、折射率为2.3以及非晶态性为3.4这样差的结果。
在比较例6中,由于Zn氧化物以及Sn氧化物含量少,B氧化物含量多,即使使用高频溅射,成膜速度仍然极差,为0.4/sec。
在比较例7中,由于Zn氧化物以及B氧化物含量少,Sn氧化物含量多,会导致透过率为83%、折射率为2.4以及非晶态性为3.1这样差的结果。
工业实用性使用本发明的溅射靶形成的薄膜,形成光信息记录介质构造的一部分,由于没有使用ZnS,故而没有硫成分向记录层材料扩散而导致记录层老化的情况,效果显著。而且,相邻的反射层材料使用具有高反射率、高热传导特性的纯Ag或Ag合金时,也没有硫成分向该反射层的扩散,清除了引起反射层材料腐蚀老化、特性变差的原因,效果良好。
此外,由于非晶态性稳定化,同时付与靶导电性,以及相对密度达90%以上的高密度化,可以进行稳定的RF溅射成膜。而且简化溅射操作、加快成膜速度、提高溅射效率的效果十分显著。此外,还有如下显著的效果减少了溅射成膜时颗粒(起尘)和结核的产生,质量偏差小、提高了批量生产性,能稳定地以低成本制造具有光盘保护膜的光记录介质。
权利要求
1.一种溅射靶,其特征在于,由向以SnO2为主要成分的In2O3-ZnO-SnO2类复合氧化物中添加SiO2、B2O3中的任何一种或两种氧化物所得的材料组成。
2.根据权利要求1所述的溅射靶,其特征在于,添加SiO2时,是各种元素比为In/(In+Zn+Sn+Si)=0.01~0.43、Zn/(In+Zn+Sn+Si)=0.02~0.47、Sn/(In+Zn+Sn+Si)=0.19~0.82、Si/(In+Zn+Sn+Si)=0.04~0.50的氧化物。
3.根据权利要求1或2所述的溅射靶,其特征在于,添加SiO2时,是(Sn+Si)/(In+Zn+Sn+Si)=0.45~0.90的氧化物。
4.根据权利要求1所记载的溅射靶,其特征在于,添加B2O3时,是各种元素比为In/(In+Zn+Sn+B)=0.01~0.41、Zn/(In+Zn+Sn+B)=0.02~0.45、Sn/(In+Zn+Sn+B)=0.13~0.81、B/(In+Zn+Sn+B)=0.09~0.66的氧化物。
5.根据权利要求1或2所述的溅射靶,其特征在于,添加B2O3时,是(Sn+B)/(In+Zn+Sn+B)=0.45~0.90的氧化物。
6.根据权利要求1~5中任一项所述的溅射靶,其特征在于,相对密度在90%以上。
7.使用权利要求1~6中任一项所述的溅射靶,至少形成作为薄膜的光信息记录介质构造的一部分为特征的光信息记录介质及其制造方法。
8.使用权利要求1~7中任一项所述的溅射靶,至少形成作为薄膜的光信息记录介质构造的一部分,且置于与记录层或反射层相邻位置为特征的光信息记录介质及其制造方法。
全文摘要
一种溅射靶,其特征在于,由向以SnO
文档编号G11B7/243GK1918319SQ20048004180
公开日2007年2月21日 申请日期2004年7月29日 优先权日2004年2月17日
发明者高见英生, 矢作政隆 申请人:日矿金属株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1