用于调节用于带系统的内插采样间隔的方法和装置的制造方法
【专利摘要】本发明涉及用于调节用于带系统的内插采样间隔的方法和装置。在一个一般实施例中,一种方法包括:使用如下中的至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,和位置误差信号的标准偏差。该方法进一步包括:响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。在另一个一般实施例中,一种装置包括内插器和控制器。所述控制器被配置来:使用如下中的至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,和位置误差信号的标准偏差。所述控制器还被配置来响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。
【专利说明】
用于调节用于带系统的内插采样间隔的方法和装置
技术领域
[0001]本发明涉及数据存储系统,更特别地,本发明涉及用于带(tape)系统的可调节内插采样间隔和/或相关器系数的实现。
【背景技术】
[0002]在磁存储系统中,磁换能器从磁记录介质读取数据以及将数据写入磁记录介质。通过将磁记录换能器移动到磁记录介质上将要存储数据的位置,数据被写在磁记录介质上。然后,磁记录换能器产生将数据编码到磁介质中的磁场。通过类似地定位磁读取换能器然后感测磁介质的磁场,数据从介质被读取。读和写操作可以独立地与介质的移动同步,以确保可以从介质上的期望位置读取数据和将数据写到介质上的期望位置。
[0003]此外,基于定时的伺服(TBS)系统包括写入到记录介质的伺服模式。伺服模式包括其具有实现两个不同方位斜坡的V形(chevron)模式的磁转移。头位置从通过窄头读取伺服模式所产生的脉冲或双位(dibits)的相对定时中导出。
[0004]然而,随着时间的推移采用不同的带介质在常规产品中已导致关于伺服模式的最佳检测的问题。不同带介质实现不同的特性,其导致关于伺服模式的有效检测的问题。各个带介质之间的不同特性不限于信噪比(SNR)性能,而是还包括其他重要的伺服信号特性。
【发明内容】
[0005]根据一个实施例的一种方法,包括:使用如下中的至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,和位置误差信号的标准偏差。该方法进一步包括:响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。
[0006]根据一个实施例的一种装置包括内插器和控制器。所述控制器被配置来:使用如下中的至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,和位置误差信号的标准偏差。所述控制器还被配置来响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。
[0007]—种计算机产品包括具有在其上体现的程序指令的计算机可读存储介质,所述程序指令可被控制器读取和/或执行以使得控制器执行上述方法。
[0008]这些实施例的任何一个可以在诸如带驱动系统的磁数据存储系统中实现,其可以包括磁头、用于在磁头上传递磁介质(例如记录带)的驱动机构以及电耦合到磁头的控制器。
[0009]根据下文的详细描述,通过本发明的示例原理并与附图结合地说明,本发明的其他方面和实施例将变得清楚。
【附图说明】
[0010]图1A是根据一个实施例的简化的带驱动系统的示意性图。
[0011 ]图1B是根据一个实施例的带盒的示意性图。
[0012]图2说明了根据一个实施例的平缠绕(flat-lapped)、双向、两模块磁带头的侧视图。
[0013]图2A是取自图2的线2A的带支承面视图。
[0014]图2B是取自图2A的圆2B的详细视图。
[0015]图2C是模块对的部分带支承面的详细视图。
[0016]图3是具有写-读-写结构的磁头的部分带支承面视图。
[0017]图4是具有读-写-读结构的磁头的部分带支承面视图。
[0018]图5是根据一个实施例的具有三个模块的磁带头的侧视图,其中各模块一般都处于沿着大约平行的平面的位置。
[0019]图6是根据一个实施例的伺服模式的表示图。
[0020]图7是示出根据各种实施例的双位回读信号的曲线图。
[0021 ]图8是根据一个实施例的同步伺服通道的框图。
[0022]图9是根据一个实施例的方法的流程图。
[0023]图1OA-图1OB是针对两个不同实施例的双位特性的曲线图。
[0024]图11是根据一个实施例的方法的流程图。
[0025]图12A是根据各个实施例的信噪比与位置误差信号的标准偏差的曲线图。
[0026]图12B是根据各个实施例的信号噪声加失真比与带速度的曲线图。
【具体实施方式】
[0027]下文的描述是为了说明本发明的一般原理而做出的,而不是意图限制本文要求保护的发明构思。另外,本文描述的特定特征可以与其他描述的特征组合使用于各种可能的组合和变换的每一种中。
[0028]除非在本文中具体限定,否则所有术语将被给予它们的最广泛可能的解释,包括从说明书隐含的意思以及本领域技术人员理解的意思和/或字典、论文等中限定的意思。
[0029]还必须指出,如在本说明书和所附权利要求中所使用的,除非另外规定,否则单数形式“一”、“一个”和“该”、“所述”包括多个所指对象。
[0030]下文的描述公开了磁存储系统的若干优选实施例及其操作和/或组件部分。本文的各个实施例包括用于磁介质系统的可调节内插采样间隔和/或相关器系数的实现。
[0031]在一个一般实施例中,一种方法包括:使用如下至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,以及位置误差信号的标准偏差。该方法还包括:响应于确定采样间隔,将采样间隔应用到内插器。
[0032]在另一个一般实施例中,一种装置包括内插器和控制器。所述控制器被配置来使用如下至少一个来确定用于内插器的采样间隔:存储在存储器中的预定义数据,以及位置误差信号的标准偏差。所述控制器还被配置来响应于确定采样间隔,将采样间隔应用到内插器。
[0033]在又一个一般实施例中,一种计算机程序产品包括具有具体体现程序指令的计算机可读存储介质,所述程序指令可由控制器读取和/或执行,以使控制器执行上述方法。
[0034]图1A说明了可以在本发明的上下文中被利用的基于带的数据存储系统的简化的带驱动器100。虽然带驱动器的一个具体实现在图1A中被示出,但是应当注意的是,本文描述的实施例可以在带驱动系统的任何类型的上下文中实现。
[0035]如所示,带供应盒120和收带盘(take-up reel)121被提供以支撑带122。一个或更多盘可以组成可移除的盒的一部分,并且不必是驱动器100的一部分。诸如图1A中说明的带驱动器还可以包括驱动带供应盒120和收带盘121的驱动马达,以在任何类型的带头126上移动带122。这样的头可以包括读取器、写入器或该两者的阵列。
[0036]引导器125引导带122越过带头126。这样的带头126接着经由线缆130耦合到控制器128。控制器128可以是或者可以包括用于控制驱动器100的任何子系统的处理器和/或任何逻辑。例如,控制器128典型地控制头功能,例如伺服跟随、写数据、读数据等。控制器128可以包括至少一个伺服通道和至少一个数据通道,其每一个均包括被配置来处理和/或存储要被写入带122中和/或从带122中读取的信息的数据流处理逻辑。在各个实施例中,控制器128可以在本领域中已知的逻辑以及本文公开的任何逻辑下操作,并且因此可以被认为是用于本文所包括的带驱动器的任何描述的处理器。控制器128可以耦合到可以存储由控制器128可执行的指令的任何已知类型的存储器136。另外,控制器128可以被配置和/或可编程以执行或控制一些或所有本文呈现的方法。因此,控制器128可以被考虑来被配置为通过被编程到一个或多个芯片、模块和/或块的逻辑;软件;固件或对处理器可用的其他指令等以及它们的组合来执行各种操作。
[0037]线缆130可以包括读/写电路以向头126发射将被记录于带122的数据,并且接收由头126从带122读取的数据。制动器132控制头126相对带122的位置。
[0038]如将被本领域技术人员理解的那样,接口134也可以被提供用于在带驱动器100和主机(内部的或外部的)之间进行通信以传送和接收数据,以及用于控制带驱动器100的操作和向主机发送带驱动器100的状态。
[0039]图1B说明了根据一个实施例的示例性带盒150。这样的带盒150可以与例如图1A中示出的系统一起使用。如所示,带盒150包括壳体152、壳体152中的带122以及耦合到壳体152的非易失性存储器156。在一些方法中,如图1B所示,非易失性存储器156可以被嵌入壳体152内侧。在更多方法中,非易失性存储器156可以被附于壳体152的内侧或外侧,而不变更壳体152。例如,非易失性存储器可以被嵌入自粘(self-adhesive)标签154。在一个优选实施例中,非易失性存储器156可以是嵌入或耦合到带盒150的内侧或外侧的闪速存储器设备、ROM设备等。非易失性存储器可以通过带驱动器和带操作软件(驱动器软件)和/或其他设备访问。
[0040]通过示例,图2说明了可以在本发明的上下文中实现的平缠绕、双向、两模块磁带头200的侧视图。如所示,头包括一对底座202,每一个装备有模块204,并且相对于彼此成小角度α地固定。底座可以是胶粘地耦合在一起的“U型梁(U-beam)”。每一个模块204包括基板204A和具有薄膜部分的封闭物204B,该薄膜部分通常被称为“间隙”,读取器和/或写入器206形成在该间隙中。在使用中,带208以示出的方式沿着介质(带)支承面209在模块204上移动,以便使用读取器和写入器来在带208上读和写数据。带208在进入和退出平的介质支撑面209的边沿处的缠绕角(wrap angle)9通常在大约0.1度和大约3度之间。
[0041 ]基板204A典型地由耐磨的材料(例如陶瓷)构成。封闭物204B由与基板204A相同的或类似的陶瓷制成。
[0042]读取器和写入器可以被布置为背负式(piggyback)或融合式结构。示例性的背负式结构包括在(磁屏蔽的)读取器换能器(例如磁阻式读取器等)的上方(或下方)的(磁导的)写入器换能器,其中写入器的极和读取器的屏蔽一般是分离的。示例性的融合式结构包括与一个写入器极在相同的物理层中的一个读取器屏蔽(从而“融合”)。读取器和写入器也可以被布置为交错结构。替代地,通道(channel)的每一个阵列可以仅仅是读取器或写入器。这些阵列的任何一个可以包含用于读取介质上的伺服数据的一个或多个伺服轨道(track)读取器。
[0043]图2A说明了取自图2的线2A的模块204之一的带支承面209。表示性的带208以短划线示出。模块204优选地足够长以能够在头在数据条带之间行走时支撑带。
[0044]在这个示例中,带208包括4至32个数据条带,例如图2A所示在半英寸宽的带208上具有16个数据条带和17个伺服轨道210。数据条带被限定在伺服轨道210之间。每一个数据条带可以包括许多数据轨道,例如1024个数据轨道(未示出)。在读/写操作期间,读取器和/或写入器206被定位到数据条带中的一个数据条带内的具体轨道位置。外部读取器(有时称为伺服读取器)读伺服轨道210。伺服信号继而被用来在读/写操作期间保持读取器和/或写入器206与特定组的轨道对齐。
[0045]图2B描绘了在图2A的圆2B中的模块204的间隙218中形成的多个读取器和/或写入器206。如所示,读取器和写入器206的阵列包括例如:16个写入器214、16个读取器216以及两个伺服读取器212,但是元件的数量可以改变。示例性实施例包括每个阵列具有8、16、32、40以及64个活动的读取器和/或写入器206,和替代地具有奇数数量的读取器或写入器(例如17、25、33等)的交错设计。示例性实施例包括每个阵列具有32个读取器和/或每个阵列具有32个写入器,其中换能器元件的实际数量可以更大,例如33、34等。这允许带更慢地行进从而减小速度引发的跟踪和机械困难,和/或执行更少的“缠绕”以填充或读带。虽然读取器和写入器可以被布置为如图2B所示的背负式结构,但是读取器216和写入器214也可以被布置为交错结构。替代地,读取器和/或写入器206的每一个阵列可以仅仅是读取器或写入器,并且阵列可以包含一个或多个伺服读取器212。如通过一起考虑图2和图2A-图2B而注意到的,每一个模块204可以包括用于例如双向读和写、同时读写能力、向后兼容等等的读取器和/或写入器206的补充组。
[0046]图2C示出了根据一个实施例的磁带头200的补充模块的部分带支承面视图。在这个实施例中,每一个模块具有在普通基板204A上形成的背负式结构中的多个读/写(R/W)对,以及可选的电绝缘层236。写入器(由写换能器214例示)和读取器(由读换能器216例示)与带介质上的传送的预期方向平行地对齐跨越,以形成R/W对(由R/W对222例示)。注意:带行进的预期方向有时在本文中被称为带行进的方向,并且这样的术语可以相互替换地使用。这样的带行进的方向可以从系统的设计中推断出,例如通过检查引导器、观测带相对参考点行进的实际方向等。另外,在可操作用于双向读和/或写的系统中,在两个方向上的带行进的方向典型的是平行的,从而两个方向可以被考虑为彼此等效。
[0047]可以存在若干R/W对222,例如8、16、32对等。示出的R/W对222在一般地与带行进的方向垂直的方向上线性地对齐。然而,该对也可以斜线地对齐等。伺服读取器212被定位于R/W对的阵列的外侧,R/W对的功能是众所周知的。
[0048]一般而言,磁带介质在如箭头220指示的正方向或反方向上移动。磁带介质和头装配200以本领域众所周知的方式以换能关系操作。背负式MR头装配200包括一般同样构造的两个薄膜模块224和226。
[0049]模块224和226以在它们的封闭物(clOSure)204B之间存在间隔(部分地示出)的方式连结到一起以形成单物理单元,从而通过激活引导(leading)模块的写入器和尾随(trailing)模块的读取器来提供同时读写能力,该尾随模块的读取器与引导模块的写入器对齐,写入器平行于带相对于该写入器行进的方向。当背负头200的模块224、226被构造时,一般以如下顺序在例如(为AlTiC的)导电基板204A(部分地示出)上产生的间隙218中形成用于R/W对222的层:绝缘层236、第一屏蔽232(典型地是铁合金,例如NiFe( -),CZTSAl-Fe-SKSendust:铁硅铝合金)、用于感测磁介质上的数据轨道的传感器234、第二屏蔽238(典型地是铁镍合金,例如?80/20at% (原子百分比)NiFe,也称为坡莫合金(permalloy))、第一和第二写入器极尖(pole tip)228、230以及线圈(未示出)。传感器可以是任何已知的类型,包括基于MR、GMR、AMR、隧穿磁阻(TMR)等的传感器。
[0050]第一和第二写入器极228、230可以从高磁矩材料(例如?45/55NiFe)制造。需要注意的是,这些材料仅仅通过示例被提供,并且可以使用其他材料。例如在屏蔽和/或极尖之间可以存在附加的绝缘层以及围绕传感器的绝缘层。示例性的绝缘材料包括氧化铝和其他氧化物、绝缘聚合物等。
[0051]根据一个实施例的带头126的结构包括多个模块,优选为三个或更多。在读-写-读(W-R-W)头中,用于写的外部模块位于用于读的一个或多个内部模块的侧面。参考图3,描绘了 W-R-W结构,夕卜部模块252、256每一个包括写入器260的一个或多个阵列。图3的内部模块254包括类似结构的读取器258的一个或多个阵列。多模块头的变型包括R-W-R头(图4)、R-R-W头、W-W-R头等。在其他变型中,模块的一个或多个可以具有换能器的读/写对。另外,可以存在多于三个模块。在另外的方法中,两个外部模块可以位于两个或更多内部模块的侧面,例如以W-R-R-W、R-W-W-R布置等。为了简单起见,本文主要使用W-R-W头来示例本发明的实施例。被告知了本文的教导的本领域技术人员将理解本发明的变换将如何应用到W-R-W结构以外的结构。
[0052]图5说明了根据本发明一个实施例的磁头126,该磁头126包括第一、第二和第三模块302、304、306,每一个分别具有带支承面308、310、312,该带支承面可以是平的、弯曲的等。需要注意的是,虽然术语“带支承面”似乎暗示面向带315的面与带支承面是物理接触的,但是这不是必需的。不同地,仅带的一部分可以是与带支承面始终或间歇地接触的,带的其他部分浮在(或“飘在”)空气层上的带支承面上(有时被称为“空气支承”)。由于对于带在预期方向上移动,第一模块302是带遇到的在三个模块设计中的第一个模块,因此该第一模块302将被称为“引导”模块。第三模块306将被称为“尾随”模块。尾随模块跟随中间模块并且是在三个模块设计中的带遇见的最后一个模块。引导和尾随模块302、306被共同地称为外部模块。还需要注意的是,取决于带315的行进方向,外部模块302、306将交替地作为引导模块。
[0053]在一个实施例中,第一、第二和第三模块302、304、306的带支承面308、310、312位于大约平行的平面(其意图包括平行和近似平行的平面,例如图6中的平行和相切之间),并且第二模块304的带支承面310在第一和第三模块302、306的带支承面308、312上方。如下文将描述的,这具有如下效果:产生带相对第二模块304的带支承面310的期望的缠绕角α2。
[0054]在带支承面308、310、312处于沿着平行或近似平行但是偏移的平面处,直观地,带会从引导模块302的带支承面308脱落。然而,由引导模块302的切沿318产生的真空已经由实验发现对保持带附着到引导模块302的带支承面308是充分的。引导模块302的尾随沿320(带离开引导模块302的末端)是限定第二模块304的带支承面310上的缠绕角α2的近似参考点。带维持紧邻带支承面,直到靠近引导模块302的尾随沿320。因此,读和/或写元件322可以被定位于接近外部模块302、306的尾随沿。这些实施例特别适合于写-读-写应用。
[0055]本文描述的这个实施例和其他实施例的优点是:因为外部模块302、306固定在从第二模块304的确定的偏移的位置,所以当模块302、304、306耦合到一起或以其他方式固定到头中时,内部缠绕角α2被固定。内部缠绕角α2近似地为tan—1OA),其中δ是带支承面308、310的平面之间的高度差,并且W是带支承面308、310的相对的末端之间的宽度。示例性的内部缠绕角<^是在大约0.3°至大约1.1°的范围内,但是可以是设计要求的任何角度。
[0056]有利地,由于带315浮于尾随模块306上,因此接收带的模块304侧(引导沿)的内部缠绕角α2将大于尾随沿的内部缠绕角α3。这种差异一般是有利的,因为更小的α3倾向于对抗此前已经是更陡的离开有效缠绕角。
[0057]需要注意的是,外部模块302、306的带支承面308、312被定位以在引导模块302的尾随沿320处获得负的缠绕角。在对在从头脱落的带中形成的短路区的位置进行适合的考虑的情形下,这在帮助减小由于与尾随沿320接触而引起的摩擦方面一般是有利的。该负缠绕角也减小对引导模块302上的元件的颤振和擦刷损伤。另外,在尾随模块306处,带315飘于带支承面312上,所以当带在该方向上移动时,实际上元件上没有磨损。特别地,带315架在空气中,所以将不会显著地浮在第三模块306的带支承面312上(可能产生一些接触)。这是容许的,因为当尾随模块306空闲时引导模块302正在写。
[0058]写和读功能由不同的模块在任意给定的时间执行。在一个实施例中,第二模块304包括多个数据读取器和可选的伺服读取器331而没有写入器。除了外部模块302、306可以包括可选的伺服读取器之外,第一和第三模块302、306包括多个写入器322而没有数据读取器。伺服读取器可以被用来在读和/或写操作期间对头定位。每一个模块中的伺服读取器典型地位于读取器或写入器的阵列的末端。
[0059]通过使得仅读取器或并排的写入器和伺服读取器在基板和封闭物之间的间隙中,可以大幅减小间隙长度。典型的头具有背负的读取器和写入器,其中写入器形成于每一个读取器上方。典型的间隙是20-35微米。然而,带的不规则性可能倾向于下垂到间隙中并产生间隙腐蚀。因此,间隙越小越好。本文能够得到的更小的间隙展现更少的磨损相关的问题。
[0060]在一些实施例中,第二模块304具有封闭物,而第一和第三模块302、306没有封闭物。当没有封闭物时,优选的是向模块加入硬质涂层。一种优选的涂层是类金刚石碳(DLC)。[0061 ]在图5示出的实施例中,第一、第二和第三模块302、304、306每一个具有封闭物332、334、336,其延伸相关的模块的带支承面,从而有效地将读/写元件定位到离开带支承面的沿。第二模块304上的封闭物332可以是典型地在带头中存在的类型的陶瓷封闭物。然而,如与各自的模块上的带行进的方向平行地测量的,第一和第三模块302、306的封闭物334、336可以比第二模块304的封闭物332短。这能够使各模块定位为相互更靠近。产生更短的封闭物334、336的一种方法是对第二模块304的标准陶瓷封闭物缠绕附加的量。另一种方法是在薄膜处理期间在元件上镀上或沉积薄膜封闭物。例如,可以在模块上形成硬质材料(例如铁硅铝合金或铁镍合金(例如45/55))的薄膜封闭物。
[0062]通过外部模块302、306上的厚度减小的陶瓷或薄膜封闭物334、336或没有封闭物,写到读间隙间距可以被减小到小于大约1mm,例如大约0.75mm,或比通常使用的LTO带头间距小50 % ο模块302、304、306之间的开放间距也可以被设定为近似0.5至0.6mm,其在一些实施例中对于稳定带在第二模块304上的运动是理想的。
[0063]取决于带张力和刚度,使外部模块的带支承面相对第二模块的带支承面成角度可以是可取的。
[0064]多模块头126的32通道版本可以使用线缆350,该线缆350具有与当前的16通道背负LTO模块相同或更小的间距上的引线,或替代地,模块上的连接可以是风琴键盘式,以得到线缆跨度的50%减小。重复地,写入对未屏蔽的线缆可以被用于写入器,写入器可以具有集成的伺服读取器。
[0065]例如通过本领域已知的任何类型的引导器(例如可调节的滚轮、滑块等),或替代地通过集成到头的外伸支腿(outrigger),可以在驱动器中设定外部缠绕角αι。例如,具有偏移轴的滚轮可以被用来设定缠绕角。偏移轴产生旋转的轨道弧,允许缠绕角αι的精确对齐。
[0066]为了装配上文描述的任何实施例,可以使用常规的u型梁装配。因此,大部分合成的头可以被维持或甚至相对之前各代的头减小。在其他方法中,各模块可以被构造为统一体。获悉了本教导的本领域技术人员将理解,制造这样的头的其他已知的方法可以适合于构造这样的头。此外,除非另有规定,否则如在阅读本公开内容后对本领域技术人员变得显而易见的那样,本领域中已知类型的材料和过程可以适于在与本文的教导一致的各种实施例中使用。
[0067]如前所述,TBS系统包括写入到记录介质的伺服模式。伺服模式可以包括具有实现两个不同方位斜坡的V形模式的磁转移,例如,如图6所示。
[0068]图6描绘了根据一个实施例的伺服轨道的伺服模式600。作为一种选择,本伺服模式600可结合来自本文所列出的任何其他实施例的特征(例如参照其它附图所描述的那些)来实现。然而,这样的伺服模式600和本文所呈现的其他模式可以使用在各种应用中、和/或在可能在或者可能不在本文中列出的示例性实施例中具体描述的变换中。此外,本文中所呈现的伺服模式600可以在任何所期望的环境中使用。因此图6(以及其他附图)可以被视为包括任何可能的变换。
[0069]现在参考图6,头位置可以从通过读伺服模式600的伺服突发602(被标记为突发Α,B,C和D)的伺服标志604所产生的脉冲或双位的相对定时中导出。可以使用伺服读取器来读取伺服模式600(例如,分别参见图2和图5的212和331),所述伺服读取器可以是本领域中已知的任何合适的类型。具体地,头侧向位置可以从通过伺服读取器读伺服模式所产生的脉冲的相对定时中导出。
[0070]在具有四个数据条带的磁记录带上,伺服模式沿着跨在四个数据条带上的五个专用伺服条带而被写入。在每个伺服条带内,组织在突发602中的伺服标志604穿过每个伺服条带侧面地延伸。应当指出的是,虽然在本实施例中说明的伺服模式600中的伺服标志的几何形状以线性带开放(LTO)的格式来规定,但是取决于所期望的实施例,可以使用任何格式的伺服模式。用于第一代(LT0-1)的LTO驱动器的完整格式是由欧洲计算机制造商协会(ECMA)于2001年标准化为ECMA-319。可以在万维网(WWW)上的ultrium.com找到有关LTO技术的更多信息,特别是有关第2至6代(LT0-2到LT0-6)的LTO驱动器的更多信息。
[0071]通过读伺服模式600的伺服标志604所得到的信号被用来提取伺服通道参数,比如带速度,读头的横向(y)位置信息,纵向位置信号(LPOS)信息等。根据在图6的伺服模式600中示出的示例性实施例(它不以任何方式意在限制本发明),在带上的转移具有大约3至大约9度的方位角角度。此外,每个伺服标志604可以通过伺服读取器被翻译成脉冲(例如,双位),它展现一个正峰值和一个负峰值。四个伺服突发602包括从左到右5-5-4-4伺服标志604的序列。对应于伺服突发的伺服标志604的双位峰值的到达时间还可以被用来确定读取器的横向位置。此外,在其上检测到突发的频率可以被用来确定带的速度。在突发A和突发B中的第二和第四双位中编码的位也可以被解码以重建纵向位置。
[0072]伺服模式600的TBS模式也可以被用来在不影响相关联的横向位置误差信号(PES)的情况下,对附加LPOS信息进行编码。使用对应于伺服突发602中的第二和第四伺服标志604的双位的二进制脉冲位置调制(PPM),可以实现LPOS信息,如图6所示,其中示出了每伺服帧编码I位的LPOS信息。LTO格式的LPOS字可以包含36位,并提供有关具体纵向地址的信息。因此,LTO格式的LPOS字可以每36伺服帧出现一次,例如,由于一帧可以是大约200微米长,因此沿所述带的长度的每7.2毫米出现一次。此外,每个LPOS字可以编码36位的信息,以及两个连续的LPOS字的LPOS值可以有一位不同。
[0073]根据一些实施例,伺服读取器侧向位置、带速度、LPOS信息等的估计可以直接通过监测伺服突发602的双位的峰值到达时间而获得。此外,在一些实施例中,LTO驱动器可以能够将沿着带长度装配的磁头定位到对应于纵向分辨率为约7.2毫米的给定LPOS值的位置,但是根据所期望的方法也可以高些或低些。还应当指出的是,包括在图6中的尺寸仅仅通过示例的方式给出,而决不意图限制本发明。例如,根据另一示例性实施例,伺服模式可被表征为具有约12度的方位角角度,约1.26微米的条宽度,伺服条之间大约3微米的距离,约76微米的子帧长度,以及约93微米的伺服波段宽度。取决于实施例,调制深度可从约0.25微米至约0.3微米。此外,根据某些介质类型,可以考虑由二元PPM编码一个以上的位,例如,通过使用四个位置偏移水平编码两位。
[0074]由此可见,随着时间的推移,特别是就伺服回读(readback)信号而言,具有不同特性的不同带介质已经被采用。特别地,从纵向朝向的金属粒子(MP)的介质向由更好的信噪比特性来表征的无朝向和垂直朝向的BaFe介质的转移已经发生。而且,从BaFe介质向派射介质的转移可以被设想。然而,各种带介质之间的区别并不限于SNR性能,而是还包括其他重要的伺服信号特性。例如,带介质可以实现不同的时间和频谱形状和/或由磁阻(MR)伺服读取器产生的双位回读信号的峰值-峰值距离。
[0075]具体地讲,参见图7的曲线图700,作为读取各种类型带介质的结果而产生的双位回读信号被示出。应当注意的是,与具有1.26微米条宽度的带介质相关联的图对应于纵向介质(L),而其他三个图对应于垂直介质(P)。信号不仅表明利用纵向记录获得的双位回读信号的特性与利用垂直记录视频极品的那些不同,而且还表明垂直记录具有不同伺服尺寸的双位回读信号展现出不同的特性。具体地讲,利用纵向记录获得的双位回读信号与利用垂直记录获得的双位回读信号具有不同的条宽度,如在曲线图700所示。此外,双位回读信号形状可以取决于在工厂伺服格式化期间介质预擦除方法;伺服读取器几何形状(例如读取器宽度,屏蔽到屏蔽距离等);伺服模式参数(例如方位角角度,条宽度,条间距等);等等。
[0076]优选地,通过实现使用内插器和/或相关器的同步伺服通道,来实现伺服模式的可靠检测,这确保了用于定时信息的提取的伺服读取器信号的最佳滤波不仅以恒定的带速度被执行,而且在加速和减速期间被执行。同步伺服通道从而使得伺服信号能够进行所希望的处理以用于头侧向位置估计、速度估计和LPOS信息的生成。
[0077]然而,在常规产品中由内插器提供给相关器的带的每长度单位的采样数目是固定的。如上所述,驱动器优选地满足由带工业所设置的向后兼容性要求,该向后兼容性要求通常包括读取写入早于两代的带盒上的数据,以及将数据写入早于一代的带盒上的能力。然而,问题出现--由于对于一个带代(tape generat1n)的介质特性、伺服模式、伺服读取器的几何形状而言可能最优选择的内插距离对于其他不同(例如较早的)带代的介质特性、伺服模式、伺服读取器的几何形状等等而言可能是次优的,并且因此可能导致伺服性能方面不可忽略的损失。
[0078]此外,相关器作为数字滤波器,其提供用于引入伺服信号的匹配滤波器的功能。然而,在常规产品中的内插器的输出处的采样之间的固定距离严重限制了可以由相关器有效处理的分散。同样地,不同代的介质包括不能被常规产品有效处理的多样化的介质特性和不同的分散,其中所述常规产品在内插器的输出处的采样之间实现固定距离。
[0079]与此形成鲜明对比的是,正如不久将变得显而易见的那样,本文所描述的各个实施例介绍了能够调节内插器的采样间隔的方法和/或装置。此外,如将在下面进一步详细描述的那样,替代地或附加地,本文描述的一些实施例能够调节相关器系数。因而,一些实施例可以包括使用不同方法对内插器的采样间隔及相关器系数进行联合优化。
[0080]参见图8,根据一个实施例的同步伺服通道800的框图。作为一种选择,本伺服通道800可以结合来自本文所列出的任何其他实施例的特征(例如参照其它附图所描述的那些)来实现。例如,伺服通道800可以在图1A的带驱动器100中的记录通道中实现。然而,这样的伺服通道800和本文所呈现的其他伺服通道可以使用在各种应用中、和/或在可能在或者可能不在本文中列出的示例性实施例中具体描述的变换中。此外,本文中所呈现的伺服通道800可以在任何所期望的环境中使用。因此图8(以及其他附图)可以被视为包括任何可能的变换。
[0081]伺服通道800可以被用来提取必要的伺服通道参数,比如带速度,读头y位置,LPOS信息等。如所示,伺服通道800包括抗混叠滤波器802,该滤波器接收来自伺服读取器(未示出)的输入。
[0082]所述抗混叠滤波器802n(t)的输出被路由到模拟数字转换器(ADC)804,该模拟数字转换器以具有频率f。的时钟周期操作。应当指出的是,当带移动通过伺服读取器所位于的头时,时钟周期频率f。与带的速度不同步。而是,伺服读取器正在提供包括伺服信息的模拟信号,所示伺服信息包括由ADC 804采样的信息。
[0083]在ADC 804的输出被引导到伺服通道信号内插器806(这里也简称为“内插器”)和监视与控制组件808。此外,监视与控制组件808的输出被路由到时基发生器810,路由到匹配滤波器相关器812以及路由到峰值到达时间组件814。时基发生器810的输出可以包括多个信号,例如包括路由到内插器806的定时信息。内插器806此外还接收来自ADC 804的伺服信号米样ri, η序列以及来自时基发生器810内插时刻。
[0084]内插器806输出被引导到匹配滤波器相关器812的内插伺服采样的序列。所希望的是:内插器能够为带的每个单位提供最优数量的采样。但是,通过内插器提供给相关器的每带长度单位的采样数量在常规产品中是固定的。同样地,问题出现,即,具有不同特性的不同带介质被访问,可能导致伺服性能方面不可忽视的损失。与此形成鲜明对比的是,如将在下面(例如参见图9)进一步详细描述的那样,本文所描述的各个实施例介绍了能够调节内插器的采样间隔的方法和/或装置。此外,如将在下面进一步详细描述的那样,替代地或附加地,本文描述的一些实施例能够调节相关器系数。因而,一些实施例可以包括使用不同方法对内插器的采样间隔及相关器系数进行联合优化。
[0085]继续参考图8,相关器812接收内插的伺服信号采样,并在内插时刻处将相关输出采样序列输出到LPOS检测器816和峰值到达时间计算单元814中。此外,监视与控制块808可以向时基发生器810提供信息,例如以确定内插器806将伺服信号采样输出到相关器812时的时刻。注意,以微秒表示的内插时间差(内插器输出的两个采样之间的时间)被定义为带行进通过以微米表示的内插间隔Tint所花费的时间Tt。内插时间Tt和内插间隔之间的关系可以通过Tint = Tt X V来表示,其中V表示带速度。监视与控制块808提供给时基发生器810有关由速度估计vEsT 820给出的带速度的信息,用于将沿带纵向方向的点(在那里内插抽样要被生成)转换成时刻(实际生成内插采样的时刻)。
[0086]此外,峰值到达时间计算单元814可以与内插时刻一起接收来自相关器812的相关输出采样序列,和/或监视与控制组件808输出控制信号。如所示,峰值到达时间单元814计算带速度820“vEst”的和伺服读取器818的y位置(例如,横向位置)“yEst”的估计,优选地每伺服帧至少计算一次。侧向位置估计yEst在轨道跟踪过程中提供头的侧向位置的估计,并展现标称值周围的值。头的估计的侧向位置和标称值之间的差可以被用来确定PES,如本领域技术人员在阅读本说明书之后将理解的那样。而且,如将在下面进一步详细描述的那样,PES的标准偏差可被用来确定期望的内插器采样间隔和/或相关器系数。
[OO87 ] 带速度“vE s t” 8 2O和/或y位置“yE s t” 818基于峰值到达时间,所述峰值到达时间对应于相关器输出信号的峰值出现时的时刻。例如,当检测到对应于伺服帧内的[5 5 4 4]峰值序列的相关峰值序列时,带速度和读取器的y位置估计被计算。如前所述,[5 5 4 4]峰值序列是如图6所示的伺服帧的伺服突发序列的特性。
[0088]仍然参照图8,LPOS检测器816接收相关器812的输出采样,LPOS检测器816输出LPOS度量822以及信号-噪声加失真比(SDR)估计824。具体地,相关器812的输出被用来确定在用具有由参考波形给定的脉冲响应的滤波器对内插伺服信号采样进行滤波之后的相关器输出信号的峰值到达时间。从该信息中,LPOS检测器816和峰值到达时间组件814能够提取如下的估计:磁头的侧向位置818(例如,参见图1A的126),带速度820,以伺服模式编码的LPOS 822,和/Ssdr 824。
[0089]相关器812可以使用由监视与控制单元808提供的参考波形来执行内插读取伺服信号的滤波。此外,监视与控制块808可以提供相关器系数来为相关器812初始化参考波形。在优选的方法中,由相关器812使用的参考波形匹配从内插读取伺服信号中所获得的采样双位波形。
[0090]现在参照图9,示出了根据一个实施例用于确定采样间隔的方法900的流程图。根据本发明,方法900除了在各种实施例中之外还可以在图1-图8的任何附图中所描绘的任何环境中执行。当然,正如本领域的技术人员在阅读本说明之后可以理解的那样,比图9中所具体描述的那些更多或更少的操作可以被包括在方法900中。
[0091]方法900的每一个步骤均可以由操作环境的任何合适组件来执行。例如,在各种实施例中,方法900可以部分地或者全部由控制器、处理器等或者其中具有一个或多个处理器的其它设备来执行。处理器例如是处理电路,芯片和/或在硬件和/或软件中实现并且优选具有至少一个硬件组件的模块,可以在任何设备中被用来执行方法900的一个或多个步骤。示例性处理器包括一一但不限于一一中央处理单元(CPU),专用集成电路(ASIC),现场可编程门阵列(FPGA)等,它们的组合,或者任何本领域中已知的其他合适的计算设备。
[0092]图9的方法900包括操作902,在那里,为内插器确定采样间隔。如上所述,理想的是确定采样间隔以基于被访问的带的当前状态而应用于内插器。通过确定和应用其对应于被访问的带的当前状态的采样间隔,伺服模式的可靠检测可以通过不仅以恒定带速度而且以带加速和/或减速对伺服读取器信号进行最佳滤波以用于定时信息的提取来实现。结果,为了头侧向位置估计、带速度估计、LPOS信息等的生成,可以实现伺服信号的期望处理。
[0093]取决于所期望的方法,采样间隔可以使用在图9中已被表示为操作902的子操作的不同过程来确定。根据一种方法,采样间隔可通过使用存储在存储器中的预定义的数据来确定。参见子操作902a。存储器可以位于伺服通道(例如,参见图8的800)中,在要被访问的带的盒式存储器中,在可由控制器访问的查找表中等等。例如,预定义的数据可以包括存储在带驱动器中的查找表中的信息。根据另一个示例,预定义的数据可以被存储在对应于被访问的磁介质(例如,带)的盒式存储器中。再者,预定义的数据可以包括存储在磁介质(例如,磁带)本身上的信息,当从磁介质读取数据时磁介质可被访问。
[0094]此外,预定义的数据可以包括磁记录介质产品的至少一个特征。根据各种方法,预定义的数据可以包括介质类型、磁条宽度、相关器长度、带盒代、双位特性等等中的任何一个或多个,这取决于所期望的实施例。因此,可以基于存储在存储器中的预定义的数据的性质,针对给定的带条件访问和/或计算所期望的采样间隔。例如,在一些方法中,针对不同的带条件和/或特性,所期望的采样间隔本身可被存储在存储器中。然而,在其他方法中,数据(例如,诸如双位回读特性)可以被存储在存储器中,针对给定的带条件和/或特性,所期望的采样间隔可以从该存储器中被计算,提取,内插等。根据一个示例(所述示例不以任何方式意在限制本发明),可以至少部分地基于耦合到内插器的相关器的长度来确定一个或多个采样间隔。由于相关器的长度是有限的(例如,典型地对应于12和16个系数之间),所以被选择用于内插的采样间隔可以作为具有近似等于双位分散的相关器脉冲响应的跨度的期望与避免当相比于表征双位的峰值-峰值距离,采样间隔很大时会出现的混叠效应的期望之间的一个折衷而被获得。
[0095]根据另一个实施例,图1OA-图1OB包括曲线图1000,1050,所述曲线图分别说明了具有900纳米和650纳米磁条宽度的垂直朝向的BaFe带的双位回读特性。磁条宽度中的这些差异对应于双位的峰值之间经历的不同距离。在这两种情况下,双位特性的分散中还存在差异。如上所述,在曲线图1000,1050中所示的不同双位回读特性可以被存储在存储器中并被访问以确定假定期望实施例的内插器的期望采样间隔。
[0096]然而,继续参考方法900,采样间隔可以根据替代办法使用PES的标准偏差来确定。参见子操作902b。应当指出的是,虽然子操作902a和902b在本实施例中被示出为在相互排斥的情况下被执行,但是根据一些方法,子操作902a和子操作902b可以都被执行——例如当对存储器的查询失败时、在期望采样间隔的高精度的场合中等等。因此,本文中所呈现的子操作902a和902b的相互排斥的性质不以任何方式意在限制。
[0097]伺服通道性能可以基于在闭环轨道跟随伺服操作期间获得的PES的标准偏差来测量。使用PES的标准偏差确定采样间隔的示例性迭代过程在下面参考图11而被呈现,但不以任何方式意在限制本发明。
[0098]此外,仍然参照图9,响应于确定采样间隔,操作904包括将采样间隔应用到内插器。因此,例如,取决于针对给定的带驱动器操作而考虑的介质的特征,内插器的采样间隔可以通过实现本文所描述和/或建议的各个实施例而有效地编程。
[0099]如上所述,本文描述的一些实施例可以能够替代地或附加地调节相关器系数。因此,可以使用方法9中所描述的操作中的任何一个或多个来确定给定实施例的相关器系数。例如,相关器系数可以使用预定义的数据和/或位置误差信号的标准偏差来确定。此外,响应于确定相关器系数,该相关器系数可以被应用到相关器。因而,一些实施例可以包括使用不同方法的内插器采样间隔及相关器系数的联合优化。
[0100]现在参见图11,根据一个实施例的方法1100的流程图被示出。根据本发明,方法1100除了在各种实施例中之外还可以在图1-图9中所描绘的任何环境中执行。根据一种方法,该方法不以任何方式意在限制本发明,包含在方法1100中的任何一个或多个处理可以作为相对于上述操作902和902b的迭代过程来被执行。正如本领域的技术人员在阅读本说明之后可以理解的那样,比图11中所具体描述的那些更多或更少的操作可以被包括在方法1100 中。
[0101]方法1100的每一个步骤均可以由操作环境的任何合适组件来执行。例如,在各种实施例中,方法1100可以部分地或者全部由控制器、处理器等或者其中具有一个或多个处理器的某其它设备来执行。处理器例如是处理电路,芯片和/或在硬件和/或软件中实现并且优选具有至少一个硬件组件的模块,可以在任何设备中被用来执行方法1100的一个或多个步骤。示例性处理器包括一一但不限于一一中央处理单元(CPU),专用集成电路(ASIC),现场可编程门阵列(FPGA)等,它们的组合,或者任何本领域中已知的其他合适的计算设备。
[0102]当例如在闭环轨道跟随期间操作驱动器时,方法1100包含PES的标准偏差。PES指示从轨道跟随的视角的驱动器的性能,并且因此可以被用作用于确定所期望的采样间隔的精确度量。然而,应该指出的是,虽然本实施例包含了 PES的标准偏差,但是在不以任何方式意在限制本发明的替代实施例中,对应于SDR与SNR的比较的信息可用于获得与下面描述的那些相同或相似的结果。
[0103]现在查看图11,方法1100包括1102,在那里伺服操作被启动。此外,操作1104包括将采样间隔Tint设定为初始值TintQ。采样间隔的初始值可以是预确定的,随机选择的值,基于被访问的介质类型来确定等等。
[0104]操作1106包括通过将来自伺服信号的连续脉冲串中的内插双位波形进行平均,来确定参考双位波形。根据使用中的实施例,头可以被用来收集来自磁带的数据以估计特定内插间隔的参考双位和/或估计PES的标准偏差。通常,该数据可以在几秒钟内被收集,但是取决于期望的实施例,该数据的收集可以花费更长或更短的时间。
[0?05]此外,在PES的初始(例如,参考)标准偏差“oPES, ο”在操作1108中被计算,并且优选地作为最小标准偏差值“OpES,min”被存储在存储器(例如,查找表)中。根据优选的方法,驱动器运行(例如,操作)在闭环轨道跟随过程中同时PES的标准偏差被测量,但是不以任何方式限制于此。如前所述,给定实施例的PES可以从轨道跟随期间的头的侧向位置的估计的和标称的值之间的差中导出。
[0106]此外,操作1110包括将迭代计数器“j”设置等于零,而操作1112包括将采样间隔增加一个增量AT。取决于所期望的实施例,AT可以是预确定的、由用户确定的,实时计算的等等。因此,采样间隔Tint的值在内插间隔范围内递增。因此,对于给定的带速度,与内插间隔成正比的内插时间也同样递增。这与上述传统的缺点形成鲜明对比,在传统缺点中,采样间隔不能改变,即,只是固定的。
[0107]再次参见方法1100的实施例,在增加采样间隔之后,操作1114包括通过对来自连续突发的内插双位波形进行平均来确定新的(例如,更新的)参考双位波形。根据一种方法,操作1114可以使用与操作1106中执行的确定过程中所使用的步骤类似和/或相同的步骤来执行,但是针对相关器使用不同的波形。此外,操作1116包括计算PES的更新的标准偏差。
[0108]判决1118比较更新后的标准偏差的值与当前存储在存储器中的最小标准偏差值oPES,min。随着图11中所示的过程进行迭代,优选地,所获得的最小标准偏差被存储,并且如果在随后的迭代中一个更小的标准偏差被获得,则最小标准偏差可以随着在更小的标准偏差尚未被获得的情况下在正常驱动操作期间可以被使用的相应采样间隔一起被更新。由此可见,对于方法1100的过程的第一次迭代,最小标准偏差值oPES,min等于在操作1108中计算出的标准偏差。然而,在随后的迭代中,最小标准偏差值oPES,min可以被更小的值所替换。
[0109]响应于在判决1118中确定更新后的标准偏差的值大于最小标准偏差值oPES,min,方法1100直接前进至操作1126,如下所述。可替代地,响应于确定更新后的标准偏差的值小于最小标准偏差值oPES,min,方法1100前进至操作1120,其中采样间隔Tint被设置为等于当前迭代Tint(j+1)的采样间隔。此外,操作1122包括将在操作1114中确定的参考双位波形存储在存储器中,而操作1124包括用在1116中计算出的标准偏差值更新最小标准偏差值oPES,min。同样,响应于确定在操作1116中计算出的标准偏差的值小于最小标准偏差值0PES,min,执行操作1120,1122,1124。因此,在操作1116中计算出的标准偏差成为最小标准偏差值oPES,min。根据一些方法,最小标准偏差值oPES,min可以简单地被重写,但是在其它的方法中,例如为了恢复的目的,在前的最小标准偏差值可以被保留在存储器中。
[0110]仍然参见方法1100,操作1126包括递增迭代计数器。此外,判决1128确定递增迭代计数器是否已经达到最大值jmax,例如,阈值。方法1100响应于确定递增的迭代计数器已达到其最大值而结束。参见操作1130。然而,响应确定所述递增的迭代计数器还没有达到最大值,方法1100被重定向到上述的操作1112。取决于所期望的实施例,最大值jmax可以是预定义的,可以是被选择来覆盖给定的范围等等。例如,jmax的一个具体选择导致内插间隔Tint的覆盖范围从最小值Tinto到最大值TintO+ Δ T*jmax。
[0111]由此可见,方法1100的各种过程都能够跟踪所获得的PES的标准偏差值,直到最小标准偏差值oPES,min被确定。结果,对应于使用方法1100的过程所确定的最小标准偏差值oPES,min的采样间隔继而可以被选为针对该采样间隔的最佳值,并且用相关联的内插器来实现。此外,可以使用方法1100的过程来改善可以在伺服通道中使用的相关器系数,例如,参见图8的800。
[0112]当根据本文所描述和/或建议的任何方法确定期望的采样间隔和/或相关器系数后,取决于所期望的实施例,采样间隔和/或相关器系数可以被保留不同的时间量。举例而言,例如取决于所期望的实施例,一旦确定期望的采样间隔和/或相关器系数,选定的设置就可以在预定的时间量等内被用于带盒的其余部分。例如,流程图的上述步骤中的任何一个或多个可以在给定盒被装载到驱动器时针对该盒而被执行,并且所得的设置可以被存储在存储器中并且在盒位于驱动器中的剩余时间被实施。根据另一示例,上述方法中的任何一个或多个在给定的带盒的使用过程中可以被重复。在一些方法中,可以假设,当在盒中例如从带的开始到结束时和/或带本身的寿命期间最优双位参考将不会改变。再次,操作的确切频率取决于操作者的选择。根据优选的方法,方法1100可以针对每个带盒执行一次,但是可以更频繁地被执行或者更不频繁地被执行。
[0113]在又一个示例中,在方法1100中描述的过程的任何一个或多个可以在产品(例如,磁带)出厂之前会执行的介质合格认证期间被应用。因此,所确定的设置可以被存储在对应于在制造时的产品的存储器(例如,盒存储器)中。结果,驱动器可以从盒存储器中访问所期望的内插间隔和/或参考双位波形以在操作期间使用。然而,根据其他的方法,上述方法1100可以在给定盒首次被装载到驱动器中时被应用到该给定盒。再次,内插间隔和/或参考双位波形可以被存储在盒存储器中,并且可以在将来的应用中被使用(例如,每当盒被装载到驱动器中时)。最终,存在可以执行重新校准操作的情况和/或频率的范围,例如如在图11中所示的。
[0114]现在查看图12A-图12B,曲线图1200,1250示出了通过实现本文所述的各种实施例可以获得的改进。具体来说,图12A的曲线图1200示出了 PES的标准偏差,其对于具有不同特性的不同类型带,作为信噪比的函数。不同的标准偏差值对应于不同的内插采样间隔,其对于具有相应相关器中的12个系数的ZSSC-4伺服通道为180纳米,对于具有相应相关器中的16个系数的ZSSC-5伺服通道为120纳米。此外,两个ZSSC-5结果对应于所指示的900纳米和650纳米的不同伺服条宽度。曲线图1200的曲线说明:虽然两个ZSSC-5结果具有相同的内插采样间隔,但是伺服条宽度的差异导致120纳米的采样间隔在每种类型的带上具有不同的结果。此外,虽然具有650纳米的ZSSC-4结果和ZSSC-5结果具有相等的条宽度,但是不同的采样间隔导致性能差异巨大。由此可见,通过选择性地调节用于各种实施例的内插采样间隔,可以根据期望改善所得到的特征。
[0115]现在参见曲线图1250,图12B示出了作为带速度的函数的用于LPOS检测的SDR值,所述带速度针对不同类型的带跨度从约I微米/秒至约20米/秒。如曲线图1200中所示,曲线图1250的曲线说明:不同的采样间隔取决于带特性而对不同类型的带具有不同程度的影响。具体而言,通过将120纳米的采样间隔应用至ZSSC-5带,带支持的最高速度优选地从约14米/秒按期望增加至大于20米/秒的速度。
[0116]由此可见,本文所描述的各个实施例呈现了确定和/或执行期望的内插器采样间隔和/或相关器系数的不同方式。
[0117]本发明可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。
[0118]计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
[0119]这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
[0120]用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言一诸如Smalltalk、C++等,以及常规的过程式编程语言一诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络一包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。
[0121]这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
[0122]这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
[0123]也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
[0124]附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
[0125]此外,根据各个实施例的系统可以包括处理器以及集成有和/或由处理器可执行的逻辑,该逻辑被配置以执行在此描述的一个或者多个处理步骤。通过集成(意味着处理器具有其中体现为硬件逻辑的逻辑),诸如专用集成电路(ASIC)、现场可编程门阵列(FPGA)等。通过由处理器执行(意味着逻辑是硬件逻辑),软件逻辑诸如固件、操作系统的部分、应用程序的部分等,或者硬件和软件逻辑的某些组合,其可由处理器执行并且配置以使得处理器在由处理器执行时执行某些功能。软件逻辑可以被存储在任意存储类型的本地和/或远程存储器,如现有技术中已知的那样。本领域已知的任意处理器可以被使用,诸如软件处理器模块和/或硬件处理器模块诸如ASIC、FPGA、中央处理电源(CPU)和集成电路(IC)等。
[0126]将清楚的是,前述系统和/或方法的各种特征可以以任何方式进行组合,从上面给出的说明中产生多种组合。
[0127]将进一步理解,可以以为了顾客而开发的服务的形式来提供本发明的实施例。
[0128]本文所公开的发明概念已通过举例的方式来呈现以说明其在多个示例性场景、实施例和/或实现中的无数特征。但是应当理解的是,一般所公开的概念将被认为是模块化的,并且可以以它们的任何组合、置换、或合成来实现。此外,目前公开的特征、功能和概念的任何修改、变更或等价物在本领域的普通技术人员阅读了目前的说明书后将变得显而易见,这些修改、变更或等价物应该被认为在本公开的范围内。
[0129]虽然上文已经描述了各种实施例,但是应当明白它们仅通过示例而非限制地被呈现。因此,本发明的实施例的广度和范围不应当被任何上文描述的示例性实施例限制,而是应当仅根据下面的权利要求及其等同物来限定。
【主权项】
1.一种方法,包括: 使用如下中的至少一个来确定用于内插器的采样间隔: 存储在存储器中的预定义数据,以及 位置误差信号的标准偏差;以及 响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。2.根据权利要求1所述的方法,其中所述方法由带驱动器执行。3.根据权利要求1所述的方法,包括: 使用如下中的至少一个来确定相关器系数: 所述预定义数据,以及 所述位置误差信号的所述标准偏差;以及 将所述相关器系数应用到相关器。4.根据权利要求1所述的方法,其中部分地基于耦合到所述内插器的相关器的长度来确定所述采样间隔。5.根据权利要求1所述的方法,其中使用所述预定义数据来确定所述采样间隔。6.根据权利要求5所述的方法,其中所述预定义数据包括磁记录介质产品的至少一个特性。7.根据权利要求5所述的方法,其中所述预定义数据包括如下中的至少一个:介质类型,磁条宽度和带盒代。8.根据权利要求1所述的方法,其中使用所述位置误差信号的所述标准偏差来确定所述采样间隔。9.根据权利要求8所述的方法,其中按照以下迭代过程的结果确定所述采样间隔,包括: 计算所述位置误差信号的参考标准偏差; 增加采样间隔; 计算所述位置误差信号的更新后的标准偏差; 比较所述参考标准偏差和所述更新后的标准偏差;以及 响应于所述参考标准偏差大于所述更新后的标准偏差,将所述更新后的标准偏差存储为所述参考标准偏差。10.—种装置,包括: 内插器;以及 控制器,所述控制器被配置来: 使用如下中的至少一个来确定用于所述内插器的采样间隔: 存储在存储器中的预定义数据,以及 位置误差信号的标准偏差;以及 响应于确定所述采样间隔,将所述采样间隔应用到所述内插器。11.根据权利要求10所述的装置,其中所述控制器被配置来: 使用如下中的至少一个来确定相关器系数: 所述预定义数据,以及 所述位置误差信号的所述标准偏差;以及 将所述相关器系数应用到相关器。12.根据权利要求10所述的装置,其中部分地基于耦合到所述内插器的相关器的长度来确定所述采样间隔。13.根据权利要求10所述的装置,其中使用所述预定义数据来确定所述采样间隔。14.根据权利要求13所述的装置,其中所述预定义数据包括磁记录介质产品的至少一个特性。15.根据权利要求13所述的装置,其中所述预定义数据包括如下中的至少一个:介质类型,磁条宽度和带盒代。16.根据权利要求10所述的装置,其中使用所述位置误差信号的所述标准偏差来确定所述采样间隔。17.根据权利要求16所述的装置,其中按照以下迭代过程的结果确定所述采样间隔,包括: 计算所述位置误差信号的参考标准偏差; 增加采样间隔; 计算所述位置误差信号的更新后的标准偏差; 比较所述参考标准偏差和所述更新后的标准偏差;以及 响应于所述参考标准偏差大于所述更新后的标准偏差,将所述更新后的标准偏差存储为所述参考标准偏差。18.根据权利要求10所述的装置,进一步包括: 用于在磁头上传递磁介质的驱动机构;以及 电耦合到所述磁头的控制器。
【文档编号】G11B5/584GK106057216SQ201610207932
【公开日】2016年10月26日
【申请日】2016年4月6日 公开号201610207932.2, CN 106057216 A, CN 106057216A, CN 201610207932, CN-A-106057216, CN106057216 A, CN106057216A, CN201610207932, CN201610207932.2
【发明人】G·舍鲁比尼, S·富勒, R·A·胡钦斯, J·杰利托
【申请人】国际商业机器公司