专利名称:光探测器阵列和使用该阵列的光通信监视模块的制作方法
技术领域:
本发明涉及光通信技术,特别是用于紧凑的波分复用通信光学部件和模块。
背景技术:
为了满足光通信中增加通信容量的需求,经常采用使用波分复用技术的通信方法,它能够通过准确地利用现有的光缆来增加通信容量。具有近似100GHz的较小复用光频间隔的波分复用被特别称为紧凑波分复用(DWDM)。
为了分开通过复用具有这样小的频率(波长)间隔的光所得到的信号,诸如波长滤光器或棱镜等光谱元件按常规是已知的,它们不适合于划分具有接近波长的大量光束。因此,经常利用使用排成阵列的波导光栅(AWG)的系统。
然而,由于AWG对温度变化比较敏感,并且制造复杂的光波导光栅需要先进的技术,AWG通常比较昂贵,并且不适合于需要大量元件的用途。
另一方面,衍射光栅是一种光谱元件,其中在诸如石英或硅衬底等表面上形成精密的凹凸结构,在同一结构中产生的衍射光相互干扰,并沿特定方向发出具有特定波长的光。对于形成凹凸结构的技术而言,可采用半导体所用的光刻技术。因此,能够以非常高的精度形成结构。此外,通过把所形成的凹凸结构设置成母版,利用转印技术也很容易形成复制品。为此,衍射光栅显然是一种适合于大批量生产的光学部件。
当用于在复用光信号中掌握每个信道的状态、且被称为波长监视器(或信道监视器)的设备是基本光谱分支滤光镜时,要加入大量光谱分支滤光镜并在装置中使用,例如,利用它们控制光纤放大器。已有多个发明人指出过,衍射光栅是适用于该目的的光谱元件,并曾公开过一种将图4所示的衍射光栅3和光探测器4的结构组合在一起作为光谱分支模块(JP-W-WO99/46629)。通过准直透镜2把从光纤1发射并已经经过波分复用的光束10变成平行光11,并入射到衍射光栅3上。通过衍射光栅3对该光进行分频,并以根据波长而改变的出射角度发射。发射的光12再次经过准直透镜2,从而在光探测器阵列4上形成聚焦束光点群13。光探测器阵列4中的每个光探测器40设置在具有各个波长(信道)的光的聚焦束光点组13的位置。
假设反射的衍射光栅的衍射序数为m,光栅周期为d和使用的波长为λ,用θi表示由其上形成有衍射光栅的表面上的法线与入射光束(光纤的光轴5)形成的角度,用θo表示由发射光束形成的角度,则满足下面的等式。
sinθi+sinθo=mλ/d当θi是常数并按Δλ改变波长时,由下面的等式给出光束到达在离衍射光栅的距离为L处设置的光接收表面的位置变化Δx。
Δx=(Lm/(d·cosθo))·Δλ图4表示θi=θo的情况(利特罗(littrow)排列)。在θi≠θo的情况下通常也可建立上面的等式。因此,如果波长间隔是常数,按一定间隔排列多个光探测器,以便可使光探测器的位置和波长(每个信道)一对一地相互对应。
按照国际电信联盟(ITU)的标准,以最小值定义DWDM中的通信波长为每隔100GHz一个频率间距。从表1左侧起第一行的列中给出了一个例子(C波段)。为此,即使根据λ=c/f(c是光速)的关系以一个恒定的间隔定义频率f,波长间隔彼此间不相等。在用衍射光栅作为光谱元件是情况下,不按一定间隔提供分频光束到达光接收表面的位置(见表1左起第二行)。
此外,在使用所定义的频率中的一部分信道的情况下,所有信道间的频率间隔不必是常数。这种情况下,除了上述原因之外,在分频光束可能到达更远的光接收表面的位置中会引起“跳变”。
此外,常规的普通光探测器阵列在光探测器之间有恒定的间距。当这样一种光探测器用于波分复用信号时,不能使光探测器与每个信道一一对应,以致相邻的光探测器接收一个信道的信号,或某些光探测器元件接收不到信号。因此,存在着光感受器与信道之间的对应关系变得复杂,而且信道之间的信号分离需要比信道多的光探测器的问题。此外,还存在着对应于芯片上存在未使用的光探测器而增加光探测器芯片的面积的问题。
发明内容
本发明的目的是提供一种具有解决上述问题的优良的信号分离特性的小尺寸光探测器阵列。
为了实现该目的,提供一种光探测器阵列,其中三个或更多光探测器沿直线排列,整个阵列中相邻光探测器之间的阵列间距不是常数。
此外,提供一种光通信监视模块,其中使用对于在第i′和第(i+1)′信道间具有波长间隔Δλi的入射光,其光栅周期为d和衍射序数为m的衍射光栅,用L表示衍射光栅和光探测器之间的光程长度,用θo表示平均出射角度,光探测器阵列中第i′和第(i+1)′光探测器间的间距pi满足下面的等式pi=mΔλiL/dcosθo具体地说,通过根据光探测器阵列上光的入射位置来改变光探测器之间的阵列间距,可明显减小光探测器阵列芯片的尺寸。
本说明书与日本专利申请No.2000-234941(2000年8月2日提交)中包含的技术主题有关,在此将其作为整体清楚地引入供参考。
图1是表示根据本发明的光通信监视模块的概念示意图,图2是表示根据本发明的光探测器阵列芯片实施例的平面图,图3是表示根据本发明的光探测器阵列芯片另一个实施例的平面图,和图4是表示常规光通信监视模块的光学系统的示意图。
具体实施例方式
图1是表示根据本发明的光通信监视模块100的示意图。已经经过波分复用的入射光110通过光纤101进入模块的外壳200中,并通过准直透镜102整形成具有预定直径的光束。接下来,调节位置,使光束以预定角度入射到衍射光栅103上。相应地,对使波长变化的每个信道稍微并逐渐地改变出射角度,以便发射光线112。借助反射镜106使光线112穿过回程会聚透镜108。从而使光束会聚在光检探测器阵列140上。通过设定将要用下面的等式确定的光检探测器阵列140的每个元件的间隔,能够形成具有高分离程度的信道监视器。
具体地说,当使用对于在第i′和第(i+1)′信道间具有波长间隔Δλi的入射光其光栅周期为d和衍射序数为m的衍射光栅时,用L表示衍射光栅和光探测器之间的光程长度,用θo表示中心波长中的出射角度,光检探测器阵列中第i′和第(i+1)′光检探测器之间的间距(光探测器间距)pi满足下面的等式pi=mΔλiL/dcosθo下面描述信道监视器设计的具体例子。在下面的实施例中,对衍射光栅的入射角和出射角变化的情况进行描述。本发明还可应用于利特罗排列。[第一实施例]使用1.55μm频带的波长。定义中心波长为1552.52nm。根据1TU的C波段标准设定信道间距为100GHz,并使用16个连续信道。确定光程长度L,使光探测器阵列中的间隔在中心波长附近为50μm。将衍射光栅的衍射序数设定为25,并确定光栅周期为24.7μm,以致对于中心波长而言,入射角度是71.5°,出射角度是38.5°。此时,表1中示出与来自具有各个波长(信道)的光的衍射光栅的出射角度对应的光探测器之间的间隔(即光探测器间距)。L是48mm。光探测器之间的间隔(即光探测器间距)使两端(即最大和最小值之间)有1.4μm(2.8%)的差值。
如果设计具有按图1所示间隔(光探测器间距)设置的光探测器的光探测器阵列的光掩膜,可以用常规方法进一步制造包括InGaAsP/InP的台式晶体管光探测器阵列。图2是表示所制造的光探测器阵列芯片151的平面图。图2是光探测器的尺寸,间隔(间距)等不太精确的示意图。在InP衬底150上形成16个光探测器140,并分别通过金属布线170连接到焊接区160。焊接区的尺寸通常需要80至100μm2。在该实施例中,光探测器140之间的间隔(即光探测器间距)约为50μm,比焊接区160之间的间隔小。因此,焊接区160在光探测器140的一侧排列成两行。排列方式不限于此,不过可将焊接区160排列为两行,每行比如分别位于光探测器140的一侧。
通过选择中心波长和信道数目,比如可以构成诸如8信道或32信道等的各种信道监视器。
在本实施例中,按阵列排列光探测器140,以准确地满足表1所示的光探测器间距。然而,在本实施例中,因所选择的波长所造成的光探测器之间的间隔(即光探测器间距)的差值在2.8%内,因此,即使以相等的间距排列所有光探测器140,在实际工作条件下很少出现问题。另外,如果因选择的波长而使光探测器之间的间隔的差值较大,也可根据光探测器之间的间隔(间距)比来改变光探测器的宽度。[第二实施例]虽然在第一实施例中使用16个连续信道,可以将它们分成两部分,也就是比如每部分有8个信道供使用。另外,频率间隔不必是100GHz。在本实施例中,在各具有200GHz频率间隔的两个部分之间的中部设置1THz的未使用频带(见表1)。这种情况下,在表1所示的光探测器140之间间隔的中部产生约250μm(针对四个元件)的“跳变”。图3(a)示出在跳变部分也形成光探测器,以便构成与第一实施例具有相同结构的光探测器阵列芯片152的例子。虚线围绕的部分表示未使用的部分220,该部分中的光探测器140和焊接区160未被使用。
如果不象图3(b)所示那样形成四个光探测器(虚线中所示)142,还可以省略附加至那里的焊接区和布线。如果以与第一实施例中相同的方式设定光探测器140之间的间隔(即光探测器间距)约为50μm,焊接区160最好应按图3(a)的结构排列成两行。另一方面,如果如图3(b)所示省略了四个光探测器142,可在空白空间中设置数个焊接区。在图3(b)所示的排列例子中,在空白空间中排列三个元件的焊接区162,以便可将剩余的焊接区164排成一行。为此,可以减小芯片153的面积,比芯片152的面积(如点划连线所示)小10%或更多,并可减小光探测器阵列芯片的尺寸。图3(b)所示的焊接区的排列仅是为了说明目的,而不是对本发明的限制,可以设想各种结构。
在本实施例中,频率间隔是200GHz,该频率间隔是第一实施例中的两倍。因此,如果光探测器之间的间隔(光探测器间距)以与第一实施例相同的方式是约50μm,光程长度L可以是约24mm,该光程长度是第一实施例中的一半。
另外,在本实施例中,同样排列光探测器140以准确地满足表1所示的光探测器间距。然而,所分成的两部分中的每一部分因选择的波长而造成光探测器之间的间隔(即光探测器间距)的差值不太大,因此,即使以相等的间距排列每部分中的光探测器140,在实际工作条件下也很少出现问题。另外,如果因所选择的波长而造成光探测器之间的间隔差值较大,也可以根据光探测器间的间隔(间距)比来改变光探测器的宽度。
在使用衍射光栅的信道监视模块中,即使信道的波长不具有相等的间隔,可使信道与光探测器一一对应,并可简化模块的结构。此外,可减小光探测器的尺寸。
表1
权利要求
1.一种具有三个或更多直线排列的光探测器的光探测器阵列,其特征在于,整个阵列中,相邻光探测器之间的阵列间距不是常数。
2.一种光通信监视模块,通过衍射光栅对具有N个信道(N是3或大于3的整数)的波分复用光分频,并通过光探测器阵列接收分频的光,衍射光栅的衍射序数为m,光栅周期为d,其特征在于,光探测器阵列中的第i′和第(i+1)′(i是1至(N-1)的整数)光探测器间的间距pi满足下面的等式pi=mΔλiL/dcos θoΔλi是第i′和第(i+1)′信道之间的波长间隔,L是衍射光栅和光探测器阵列之间的光程长度,θo是平均出射角度。
3.一种光探测器阵列芯片,包括按行排列的光探测器;和分别通过布线连接到光探测器的焊接区;其特征在于,至少一个焊接区布置在该行光探测器上并在相邻的两个光探测器之间。
4.根据权利要求3所述的光探测器阵列芯片,其特征在于,大部分焊接区按行排列。
5.根据权利要求3所述的光探测器阵列芯片,其特征在于,整个阵列中,相邻光探测器之间的阵列间距不是常数。
6.根据权利要求3所述的光探测器阵列芯片,其特征在于光探测器阵列芯片用于通过衍射光栅对具有N个信道(N是3或大于3的整数)的波分复用光分频,衍射光栅的衍射序数为m,光栅周期为d;和光探测器阵列中的第i′和第(i+1)′(i是1至(N-1)的整数)光探测器间的间距pi满足下面的等式pi=mΔλiL/dcosθoΔλi是第i′和第(i+1)′信道之间的波长间隔,L是衍射光栅和光探测器阵列之间的光程长度,θo是平均出射角度。
全文摘要
当使用对于在第i′和第(i+1)′信道之间具有波长间隔Δλ
文档编号H01L27/144GK1336740SQ0112382
公开日2002年2月20日 申请日期2001年8月1日 优先权日2000年8月2日
发明者黑田靖尚, 田上高志, 仲间健一 申请人:日本板硝子株式会社