微型电池的制作方法

文档序号:6974224阅读:416来源:国知局
专利名称:微型电池的制作方法
技术领域
本发明涉及一种包括一电解膜和几个电流收集极的微型电池制作方法,所述电解膜设置在第一和第二电极之间,所述电流收集极设置在第一和第二电极的每一侧。
背景技术
厚度为7μm到30μm之间(最好约为15μm)的薄膜型微型锂电池通常通过化学蒸镀(CVD)或物理蒸镀(PVD)形成。例如,在专利文件WO-A-9848467中就公开了这样一种微型电池。
微型电池的工作原理基于在微型电池的正电极中嵌入或脱嵌碱金属离子或质子,最好是源自金属锂电极的锂离子Li+。这类微型电池通过一组用CVD或PVD得到的薄层叠置而成,这些薄层分别构成两个电流收集极、一正电极、一电解质、一负电极以及可能时还有一个密封件。
所述微型电池的各元件可以用不同的材料制成—金属电流收集极3a和3b例如可以是铂(Pt)、铬(Cr)、金(Au)或钛(Ti)基。
—正电极可以由LiCoO2、LiNiO2、LiMn2O4、CuS、CuS2、WOySz、TiOySz、V2O5或V3O8和这些钒氧化物及金属硫化物的锂化形成物构成。
—作为优良离子导体和电绝缘体的电解质可以由以氧化硼、氧化锂或锂盐为基的玻璃材料形成。
—负电极可以由经加热蒸发沉积的金属锂、以锂为基的金属合金或由SiTON,SnNx,InNx,SnO2等嵌入的化合物形式。
—可能时采用密封件的目的是为了保护活性叠层免受外部环境侵蚀,更具体地说,避免其受潮。这种密封件可以用陶瓷、聚合物(六甲双硅氧烷、聚对亚苯基二甲基、环氧树脂)、金属或这些不同材料的重叠层形成。
美国专利US5582623描述了用一种沉积在一个基底上的浆料形成一层薄膜而构成锂电池的正电极的成形过程。所述基底
—或是一金属电流收集极;—或是一防粘基底,例如由Teflon构成的基底,然后,在电极固定到电流收集极上以前进行干燥后将该电极与基底分开。
根据所用的材料,微型电池的工作电压为2V和4V之间,单位面积的容量约为100μAh/cm2。微型电池的再充电过程只需要几分钟充电时间。采用的所述制造工艺可以获得任何所需要的形状和面积。
原则上,通过增加这些电极的厚度或通过叠置多个并联连接的微型电池就可以增加微型电池的容量。但是这些改进难以实现。事实上,用蒸镀法很难得到厚度大于10μm且保持其初始特性的薄层。此外,当对微型电池进行叠置时,由于锂的扩散而在不同薄层中引起的体积变化将产生应力很大的问题。
另外,目前市售的用涂覆技术制造的小型电池厚度在300μm-650μm之间,单位面积的容量约为几mAh/cm2,也就是说,其厚度要比微型电池的厚度大许多。目前的小型电池的厚度太厚,故不能将它们设置在一集成电路上,尤其不能设置在最大厚度小于0.76mm的灵活卡(smart card)中。

发明内容
本发明要解决的技术问题是要提高能够装在一个集成电路上的能源的单位面积的容量。
根据本发明,解决所述问题的措施是,在一第一金属带上通过表面涂覆形成第一电极,然后冷却压缩,在形成电流收集极以前将所述第一金属带除去。
根据本发明的第一种改进措施,在一第二金属带上通过表面涂覆形成第二电极,然后冷却压缩,在形成电流收集极以前将所述第二金属带除去。
根据本发明的第二种改进措施,通过在电解膜上进行表面涂覆形成所述第二电极。
在除去一个或多个金属带以前通过热压将所述电极和电解膜组装在一起。
根据本发明的另一个特征,所述电流收集极是利用物理蒸镀在所述多个电极上形成的薄膜构成的。


从下面对本发明的具体实施方式
的描述将能更加清楚地理解其它优点和特征,这些实施方式仅作为描述的例子,而且体现在附图中,其中图1-5表示本发明的制作方法的具体实施方式
的先后步骤;图6表示本发明方法的前几个步骤的另一实施方式。
具体实施例方式
在第一步骤中,制作负电极1。例如通过用下面四种组分的混合物构成一种印胶·SPG6TM石墨和中碳珠,这些珠构成导致嵌入锂的活性材料;·PVDF聚合物,其作用是为电极提供机械结合;·炭黑,它用于提高电极的电导率。这样,将形成的印胶涂敷到一个由铜制成的第一金属带2上,对其施加2tonnes/cm2的压力。在一个步骤或多个步骤中进行冷压可以得到所需要的电极1的厚度,并能够使电极附着到用作其支撑的金属带2上。
在第二步骤中,用锰的氧化物(LiMn2O4)、PVDF和炭黑制备印胶状正电极3,将该正电极涂覆在一个由铝制成的第二金属带4上,并对其施加2tonnes/cm2的压力。
在第三步骤中,制备一个由PVDF/HFP共聚物构成的电解膜5。在活化以后,该膜成为电绝缘和离子传导膜。利用转相法形成该膜,这种方法可以得到一种微孔可以受到控制的膜。这种方法包括下面三个步骤·在一个玻璃载体的表面涂覆一种二元或三元混合物,这类混合物包括所述共聚物、一种溶剂(该溶剂在被除去以前在聚合物中产生孔)以及可能的话还有一种非溶剂;·通过浸泡在非溶剂相中或有选择地进行干燥除去溶剂;·最终对膜进行干燥。
在第四步骤中,将分别由金属带2和4支撑的电极1和3与膜5组装在一起。将所述膜5设置在面对面的两个电极之间。利用热压法(0.5 tonnes/cm2,120℃)使正电极/膜/负电极的组装件结合并控制其厚度,这样就能得到图1所示的厚度为50μm-100μm的组装件。
在第五步骤中,除去金属带2和4,最好用机械分离法除去金属带。在除去金属带2和4以后得到的组装件在图2中示出。选择上面各步骤的表面涂覆和加压的最佳条件,从而在第五步骤能很方便地用机械方法除去所述金属带。
在图3所示的第六步骤中,用物理蒸镀法在电极上形成用作连接接头的几个薄膜型电流收集极。在负电极1上沉积由厚度为0.2μm的铜层构成的第一电流收集极6。在正电极3上沉积由厚度为0.2μm的铝层构成的第二电流收集极7。
在图4所示的第七步骤中,将所述微型电池集成到一个集成电路8上。这可以通过微电子领域中任何合适的公知技术(倒焊晶片、粘结、直接封焊或阳极封焊)完成。最好利用由低温熔解材料制成的连接珠9通过结合完成这种集成,连接珠既使微型电池和集成电路之间实现机械连接,又使其中一个电流收集极(图4中的6)和集成电路之间实现电连接。这种连接珠9最好用铟制成。这是一种熔解温度(157℃)与微型电池的部件相适应的材料。
在图5所示的第八步骤,将没有用连接珠9与集成电路8进行电连接的电流收集极7通过至少一根导线10连接到所述集成电路上,该导线的一端软焊到电流收集极7上,而其另一端软焊到集成电路8上。
在最后一个步骤中,通过在真空中加注由锂盐形成的电解质对微电池进行活化。然后就可以封装该微型电池,例如用一个硅保护套进行封装。
因此,上述制作方法所用的一部分技术与传统上用于制作小型电池的技术(用电极和电解膜构成的活性叠置表面涂覆层)相类似。但是,除去金属带可以使所述叠置层的厚度尽可能减小,所述叠置过程可利用微电子领域中标准操作的PVD技术,通过沉积电流收集极完成。
这样可以制作例如表面积为25mm2、厚度为50μm、单位面积容量约为500μAh/cm2(即125μAh)的微型电池,也就是说,这种微型电池的单位面积容量要比常规微型电池的单位面积容量大五倍。可以将这种微型电池设置在一个集成电路上,而该集成电路控制所述微型电池的充电和放电。这样得到的微型电池既有小型电池的优点(特别是大的单位面积容量),又有微型电池的优点(能够集成到一个集成电路上)。具体地说,这种微型电池可以用于提高灵巧卡的安全性,也可用于灵巧标识中。
在另一个如图6所示的实施例中,仅用了一个金属带。就像上面所述的那样,其中的一个电极,例如负电极1形成在金属带2上,然后将电解膜5沉积在负电极1上,通过在电解膜5上直接涂层形成另一个电极(正电极3)。在对组装件热压以后,除去金属带2。因此形成的组装件与图2所示的类似,而且制作的先后顺序不变。
权利要求
1.一种包括一个电解膜(5)和几个电流收集极(6,7)的微型电池的制作方法,所述电解膜设置在第一和第二电极(1,3)之间,电流收集极设置在第一和第二电极的每一侧,该方法的特征在于在一第一金属带(2)上通过表面涂覆形成第一电极(1),然后冷却压缩,在形成电流收集极(6,7)以前除去该第一金属带(2)。
2.根据权利要求1所述的方法,其特征在于在一第二金属带(4)上通过表面涂覆形成所述第二电极(3),然后冷却压缩,在形成所述电流收集极(6,7)以前除去该第二金属带(4)。
3.根据权利要求1和2之一所述的方法,其特征在于在除去所述金属带以前,利用热压将所述电极和电解膜组装在一起。
4.根据权利要求1所述的方法,其特征在于通过在电解膜(5)上进行表面涂覆形成所述第二电极(3)。
5.根据权利要求4所述的方法,其特征在于在除去所述第一金属带以前通过热压将所述电极和电解膜组装在一起。
6.根据权利要求1-5之一所述的方法,其特征在于用机械分离法除去所述金属带(2,4)。
7.根据权利要求1-6之一所述的方法,其特征在于利用物理蒸镀方法在所述电极(1,2)上形成薄膜而构成所述电流收集极(6,7)。
8.根据权利要求1-7之一所述的方法,其特征在于利用由低温熔解材料制成的连接珠(9)将微型电池结合到一个集成电路(8)上,连接珠既使微型电池和该集成电路之间机械连接,又使其中一个电流收集极和该集成电路之间电连接。
9.根据权利要求8所述的方法,其特征在于所述连接珠(9)用铟制成。
10.根据权利要求8和9之一所述的方法,其特征在于利用至少一根导线(10)将所述另一个电流收集极与所述集成电路电连接。
全文摘要
本发明公开了一种微型电池的制作方法,通过在金属带(2,4)上进行表面涂覆和冷压形成电极(1,3)。然后通过热压将电极与电解膜(5)组合在一起。优选再用机械分离法除去金属带(2,4)。然后利用微电子领域中常用的PVD技术,将电流收集极形成在所述电极的每一侧。由此可以将所得到的单位面积容量高的微型电池集成到一个集成电路中,具体地说利用铟连接珠进行结合而将该微型电池集成到集成电路中。
文档编号H01M4/04GK1496591SQ02806122
公开日2004年5月12日 申请日期2002年10月21日 优先权日2001年10月22日
发明者拉斐尔·萨洛特, 拉斐尔 萨洛特, 塞巴斯蒂安·马蒂内特, 蒂安 马蒂内特, 让·布龙, 龙, 波庞, 吉勒斯·波庞 申请人:原子能委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1