电解液分解受到抑制的锂二次电池及其制备方法

文档序号:6997887阅读:472来源:国知局
专利名称:电解液分解受到抑制的锂二次电池及其制备方法
技术领域
本发明涉及锂二次电池及其制备方法,更具体地,本发明涉及通过抑制作为电解液构成成分的碳酸亚丙酯(PC)与碳之间的反应使寿命和容量特性得到提高的锂二次电池。
背景技术
近年来,随着便携式电子器械和无线通讯系统的发展,对高可靠性、高性能电池的需求日益增加。同时,为了解决能源和环境问题,对开发大功率的二次电池作为实现电动汽车和有效利用夜间电力的电源的需求也日益高涨。在这些二次电池中,锂二次电池因其高工作电压和高能量密度等优良特性而尤其引人注目。
锂二次电池分为采用液体电解液的锂离子二次电池和采用固体电解液的锂聚合物电池。锂离子电池具有诸如使用时电解液泄漏等问题。因而,近来研究更多的是锂聚合物电池,其难于泄漏并容易包装成所需的形状,且可以大规模地制备。
预期锂聚合物电池可以解决采用液体电解液的锂离子电池中存在的多种问题,如安全性低,高成本或不利于大规模、高容量电池的生产等问题。然而,为了解决上述问题,锂聚合物电池必须满足各种要求,如在宽电压范围中的稳定性以便耐受过充电/过放电,高离子导电性,以及与电极材料或电池中存在的其它材料的化学、电化学兼容性。
日本专利(Laid-Open)第7-134980,7-235328和9-219188号公开了在阳极制备中采用电极浆液制备阳极的技术,所述电极浆液是通过混合碳材料和聚合物电解液而制备的。根据该技术,导电途径可能被封闭,电极的内阻不利地增高,且单位面积的能量密度降低。
日本专利(Laid-Open)第10-284131号公开了通过在活性物质粉末中添加聚合物而在活性物质中提供凝胶型电解液途径的锂二次电池。在该文所公开的锂二次电池的电极中,于电极活性物质之间存在很多微孔,降低了活性物质之间的结合力,且由于微孔的均匀性和分布而具有不良的电池性能。
日本专利(Laid-Open)第8-306353号公开了一种技术,其中将包含碱金属的聚合物如聚氧乙烯(PEO)或聚氧丙烯(PPO)施用于电极表面并交联。但是,这种聚合物存在若干问题,即它们在交联之后可能会因其本性而溶解于电解液中,而且电解液可能渗入电极中。
锂聚合物电池根据其中使用的电解液种类分为不含有机电解液的固体型和包含有机电解液的凝胶型。
凝胶型电解液通过添加过量的电解液使之浸入聚合物基质中,进而与聚合物基质结构形成稳定的凝胶。尽管凝胶型电解液在室温下具有较完全为固体的电解质高的离子导电性,但其机械性能相当差。用于形成电解液的有机溶剂的实例包括碳酸亚乙酯(EC)和碳酸亚丙酯(PC)。具体地,具有高沸点的PC是形成凝胶型聚合物电解液的交联所必需的。
然而,PC可能因与阳极材料碳发生反应而分解并产生气体,导致膨胀和循环性能恶化。

发明内容
为了解决上述问题,本发明提供一种用于锂二次电池的电极,其可以有效地抑制电解液特别是碳酸亚丙酯的分解,并且提高电极与聚合物电解液之间的结合力,本发明还提供采用该电极的锂二次电池及其制备方法。
一方面,本发明提供用于锂二次电池的电极,包括集电体和形成于集电体上的活性物质层,其中在活性物质层上形成氟树脂薄膜,且氟树脂存在于活性物质层所包含的构成成分之间的微孔中。
活性物质层可以包括活性物质和导电剂,氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
氟树脂包括选自偏二氟乙烯-六氟丙烯(VdF-HFP)共聚物与聚偏二氟乙烯中的至少一种,并且是通过涂布包含低浓度氟树脂的组合物,并干燥所得产物而制备的。这里,优选该组合物包含0.5~7重量份的氟树脂和93~99.5重量份的有机溶剂。
另一方面,本发明提供一种锂二次电池,包括集电体,具有各自形成于集电体上的活性物质层的阴极和阳极,及放置在阴极与阳极之间的聚合物电解液,其中至少在阴极与阳极活性物质层的一个表面上形成氟树脂薄膜,氟树脂存在于阴极和阳极的至少一个活性物质层中所包含的构成成分的微孔之间,聚合物电解液为交联单体的聚合产物以及包含锂盐和有机溶剂的电解液,并且在阴极与阳极之间放置了绝缘树脂制成的多孔膜。
活性物质层可以包括活性物质和导电剂,氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
在本发明的实施方案中,多孔膜为纤维素无纺织物,偏二氟乙烯-六氟丙烯(VdF-HFP)共聚物薄膜,聚乙烯薄膜,聚丙烯薄膜,聚乙烯/聚丙烯的双层膜或聚丙烯/聚乙烯/聚丙烯的三层膜。
优选氟树脂薄膜的厚度为0.5~10μm。
交联单体为选自丙烯酸己酯,丙烯酸丁酯,三羟甲基丙烷三丙烯酸酯(TMPTA),丁二醇二甲基丙烯酸酯,辛二酸二烯丙基酯,乙二醇二甲基丙烯酸酯,聚(乙二醇)二甲基丙烯酸酯,缩水甘油酯,丙烯酰胺和二乙烯基苯中的至少一种。
在本发明中,锂二次电池还可包含至少一种作为能与交联单体交联的化合物的第二交联单体,第二交联单体为选自聚氧乙烯,聚乙烯吡咯烷酮,聚丙烯腈,丙烯腈-甲基丙烯酸甲酯-苯乙烯三元共聚物,以及乙酸乙烯酯,2-乙烯基-2,3-二氧戊环,烯丙酰基吗啉与甲基丙烯酸乙烯酯中的至少一种。
再一方面,本发明提供制备锂二次电池的方法,包括(a)涂布包含氟树脂和有机溶剂的组合物,使得阴极与阳极活性物质层的至少一个表面上形成氟树脂薄膜,氟树脂存在于阴极和阳极的至少一个活性物质层中所包含的构成成分的微孔之间,并干燥所涂布的产物;(b)在阴极与阳极之间放置绝缘树脂制成的多孔膜,以形成电极组件;(c)将该电极组件容纳在电池壳中,并向该电池壳中注入包含交联单体和电解液的聚合物电解液组合物,所述电解液包含锂盐和有机溶剂;及(d)聚合步骤(c)的产物。
在步骤(a)中,活性物质层可以包括活性物质和导电剂,且氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
步骤(c)的聚合物电解液组合物可以包括2~7重量份的交联单体和93~98重量份的电解液,按组合物的总重量计。
步骤(d)中的聚合是通过在60~130℃的温度下加热,或者通过e-波束,γ-波束或紫外线而进行的。
步骤(c)的聚合物电解液组合物可以进一步包括能与交联单体交联的第二交联单体,第二交联单体的量按交联单体的总重量计为5~20重量份。
此外,步骤(c)的聚合物电解液组合物还可以包括按交联单体的总重量计为1~5重量份聚合引发剂。


通过参照附图详细描述优选实施方案,本发明的上述目的和优点将会更加显而易见,在附图中图1是在本发明实施例2中制备的阴极的横断面的扫描电子显微镜(SEM)照片;图2是在对比例中制备的阴极的横断面的SEM照片;图3是在实施例2和对比例中制备的锂二次电池的循环特性的图示;及图4是在实施例1和对比例中制备的锂二次电池的高温贮存特性的图示。
具体实施例方式
在本发明中,电极表面涂布了包含低浓度氟树脂和有机溶剂的氟树脂薄膜组合物,并经干燥在电极表面形成氟树脂薄膜,氟树脂存在于电极构成成分,特别是电极活性物质,优选电极活性物质与导电剂之间的微孔中,并且存在于电极活性物质与导电剂的表面上,以便抑制电极与电解液的直接接触,从而有效地抑制碳酸亚丙酯(PC)分解。更具体地,如果电极特别是阳极涂布了氟树脂薄膜,该氟树脂薄膜通过形成于阳极中的微孔渗透到阳极中,从而在存在于阳极中的碳表面形成氟树脂薄膜。如果氟树脂薄膜以这种方式涂布在碳表面,则缘于碳与电解液之间的反应的PC分解得到抑制或最小化,且电极与聚合物电解液之间的结合力得到增强,从而降低它们之间的层间电阻。此外,还有缩短形成凝胶型聚合物电解液的交联时间以及降低交联温度等若干优点。
在形成氟树脂薄膜的组合物中包含低浓度的氟树脂,即0.5~7重量份,优选1~3重量份,按100重量份的组合物计。如果氟树脂的量大于7份,则在电极表面形成过厚的氟树脂薄膜。如果氟树脂的量小于0.5份,则难于均匀地涂布氟树脂。用于形成氟树脂薄膜的氟树脂的实例包括选自偏二氟乙烯-六氟丙烯共聚物与聚偏二氟乙烯中的至少一种,优选偏二氟乙烯-六氟丙烯共聚物。在共聚物中,六氟丙烯重复单元的量优选为10~15%重量。偏二氟乙烯重复单元的量优选为85~90%重量,且其重均分子量优选为300,000~600,000。可以使用溶解氟树脂的任何溶剂作为有机溶剂,且其实例包括四氢呋喃(THF),丙酮和碳酸二甲酯。有机溶剂的用量优选为93~99.5重量份,基于100重量份形成的形成氟树脂薄膜的组合物。如果有机溶剂的量小于93份,则形成于电极表面的氟树脂薄膜过厚,增加层间电阻。如果有机溶剂的量大于99.5份,则氟树脂不能均匀地渗入或均匀地涂布在电极上,这是不合乎需要的。
氟树脂薄膜的厚度优选为0.5~10μm。如果氟树脂的厚度大于10μm,则氟树脂薄膜起到电阻器的作用,从而降低电池的离子导电性。如果氟树脂的厚度小于0.5μm,则抑制电解液分解的效果小,不合乎需要。
现将描述本发明的制备锂二次电池的方法。
首先,用包含电极活性物质、粘结剂、导电剂和溶剂的电极活性物质组合物在集电体上形成电极活性物质层。这里,形成电极活性物质层的方法包括直接在集电体上涂布电极活性物质组合物,在单独的支撑件集电体上涂布电极活性物质组合物,然后干燥所得的构件,并层压从支撑件上剥离下来的薄膜。可以使用任何支撑活性物质层的材料作为支撑件,其具体实例包括聚酯薄膜和聚对苯二甲酸乙二酯(PET)薄膜。集电体的实例包括但不仅限于箔,金属网和打孔金属。金属膜本身可以用作阳极的集电体。
在本发明中,锂金属复合氧化物如LiCoO2或LiMn2O4或者硫化合物可以用作阴极活性物质,而碳材料或石墨如介晶碳(mesocarbon)微珠(MCMB),介晶碳纤维(MCF)或PHS(得自日本Carbon公司的商品)可以用作阳极活性物质。导电剂的实例包括炭黑例如MCMB,MCF,Super-P或者乙炔黑。这里,导电剂的用量按100重量份的电极活性物质计优选为1~20重量份。
粘合剂的实例包括这里,粘合剂的含量按100重量份的电极活性物质计为5~30重量份。
作为溶剂,可以使用常规锂二次电池中所使用的任何溶剂,其实例包括丙酮和N-甲基吡咯烷酮(NMP)。
为了增强电池的性能,也可以将Li2CO3添加到电极活性物质组合物中。
如上所述,阴极和阳极是根据制备普通锂二次电池中所采用的已知方法制备的。
然后,将氟树脂薄膜组合物涂布在阴极和/或阳极上并真空干燥。这里,干燥温度优选为60~80℃,更优选为70℃。
将由绝缘树脂片制成的具有网状结构的多孔膜置于如此获得的阴极与阳极之间,并且弯曲或堆叠,由此形成电极组件。如果基于堆叠来形成电极组件,则依次堆叠阴极,聚合物电解液和阳极,以形成单元电池。通过堆叠多个单元电池,可以得到高容量的电池。
多孔膜具有支撑性并且置于阴极与阳极之间用于使之相互绝缘,并且是由孔隙度不低于30%的绝缘材料制成的,以便使非水性有机电解液渗入。满足这些要求的绝缘材料的实例包括纤维素无纺织物,VdF-HFP共聚物薄膜,聚乙烯薄膜,聚丙烯薄膜,聚乙烯/聚丙烯的双层膜和聚丙烯/聚乙烯/聚丙烯的三层膜。
其后,将如此形成的电极组件装入电极容器中。然后,向具有电极组件的电极容器中注入聚合物电解液组合物。这里,优选聚合物电解液组合物的注入是在减压条件下进行的。
将所得结构进行热处理以实施热聚合或通过辐射实施光聚合。热聚合的加热温度优选为60~130℃,更优选为70~80℃。如果加热温度低于60℃,则电池中的单体或交联剂不能完全参与反应。如果加热温度高于130℃,则由于高温可能发生不合乎需要的电解液分解或者单体或交联剂的变形。对于光聚合,优选使用e-波束,γ-波束或紫外线。
聚合物电解液组合物优选通过混合交联单体以及包括锂盐和有机溶剂的电解液来制备。
在本发明中,对交联单体的种类没有特别的限制,只要其具有至少两个可以通过热或光聚合的双键即可。交联单体的实例为选自下列中的至少一种二丙烯酸酯或三丙烯酸酯如丙烯酸己酯,丙烯酸丁酯或三羟甲基丙烷三丙烯酸酯(TMPTA);二甲基丙烯酸酯如丁二醇二甲基丙烯酸酯,或三甲基丙烯酸酯;二烯丙基酯如辛二酸二烯丙基酯或三烯丙基酯;乙二醇二甲基丙烯酸酯或聚(乙二醇)二甲基丙烯酸酯;缩水甘油酯;丙烯酰胺;及二乙烯基苯。优选使用双官能团的丙烯酰基树脂,包括聚乙二醇二甲基丙烯酸酯。交联单体与电解液的重量混合比优选为1∶1~1∶15。如果交联单体的重量小于上述范围,则交联的链长度太短,导致电解液泄漏和机械性能差。如果交联单体的重量大于上述范围,则交联的聚合物基质变得太脆。
如果采用本发明的交联单体进行聚合,则首先在交联单体末端的双键处形成自由基,然后自由基与另一聚合物结合形成交键(crosslinkage)。
用于形成聚合物电解液的组合物可以进一步包含能够与交联单体交联的化合物,即第二交联单体,其为选自聚氧乙烯,聚乙烯吡咯烷酮,聚丙烯腈,丙烯腈-甲基丙烯酸甲酯-苯乙烯三元共聚物,及乙烯基树脂如乙酸乙烯酯,2-乙烯基-2,3-二氧戊环,烯丙酰吗啉或甲基丙烯酸乙烯酯中的至少一种。
当交联单体与第二交联单体聚合时,则所添加的第二交联单体进一步增加最终得到的聚合物电解液的机械强度。第二交联单体的用量按交联单体的总重量计为5~20重量份。如果第二交联单体的量超出上述范围,则离子导电性不合乎需要地降低。
为了促进交联单体的聚合,可以根据后续凝胶化过程中所使用的能源向聚合物电解液组合物中进一步加入热聚引发剂或光聚引发剂。作为聚合引发剂,可以使用现有技术中常用的任何原料,没有特殊的限制。热聚引发剂的实例包括偶氮异丁腈(AIBN),二乙酰基过氧化物,异丙苯基过氧化物等。光聚引发剂的实例包括AIBN,苯偶姻丙甲酰基乙基醚(BEE)及二硫化物。按100重量份的交联单体计,聚合引发剂的用量优选为1~10重量份。
用于形成聚合物电解液组合物的电解液包括锂盐和有机溶剂,其用量按100重量份的交联单体计优选为100~1500重量份。如果电解液的量小于100份,则聚合物电解液的离子导电性不合乎需要地降低。如果电解液的量大于1500份,则聚合物电解液的不合乎需要地恶化。
锂盐为选自LiClO4,LiCF3SO3,LiPF6,LiN(CF3SO2)2和LiBF4中的至少一种。优选有机溶剂为选自下列中的至少一种碳酸亚乙酯(EC),碳酸亚丙酯(PC),碳酸二甲酯(DMC),碳酸乙基甲基酯(EMC),碳酸二丙酯,二乙氧基乙烷,二甲氧基乙烷,γ-丁内酯,二氧戊环和聚乙二醇二甲醚。具体地,在本发明中,采用EC/DMC/EMC,EC/DMC/EMC/PC,EC/DMC/PC或EC/PC混合物作为电解液。锂盐在电解液中的浓度优选为0.5~1.5M。
本发明的电池不受其外壳的具体形状的限制,在本发明中可以使用圆柱形或长方形外壳以及袋(pouch)型外壳。使用袋型外壳是有利的,因为可以容易制备重量轻、高能量密度的电池。
如果将聚合物电解液组合物注入电池壳中,则电解液浸入电极和多孔膜中。但是,分子量较大的交联单体则不能浸入其中,而仅保留在电极与多孔膜的表面上。加热或辐射诱导保留在电极和多孔膜表面的交联单体与交联单体和可交联的化合物之间的交联,导致凝胶化。
交联单体之间或交联单体与可交联化合物之间的交联,导致在电极与多孔膜的表面上形成网状结构,放置浸入多孔膜的电解液外泄,进而增强电极与多孔膜之间的结合力。
现将通过下面的实施例描述本发明,但是本发明并不受这些实施例的限制。
实施例1将1g的Kynar 2801(由Elf Atochem制造)作为交联单体(以88∶12重量比混合的VdF-HFP共聚物)溶解于99g的THF中,制成氟树脂薄膜组合物。
将94g的LiCoO2,3g的Super-P和3g的聚偏二氟乙烯(PVDF)溶解于80g的N-甲基-2-吡咯烷酮中,制成阴极活性物质浆液。将阴极活性物质浆液涂布在宽度4.9cm厚度147μm的铝(Al)箔上,然后在80C下干燥,由此在阴极上形成厚度为7μm的VdF-HFP共聚物薄膜。
独立地,将90g的介晶相(mezophase)碳纤维(MCF)(Petoca Ltd.,Japan),10g的PVDF溶解于80g的N-甲基-2-吡咯烷酮中,制成阳极活性物质浆液。将该阳极活性物质浆液涂布在宽度5.1cm厚度178μm的铜箔上,然后在90℃下干燥,由此在阳极上形成厚度为7μm的VdF-HFP共聚物薄膜。
将多孔的VdF-HFP薄膜(Heochest制造的商品名为Celgard的商品,孔隙度为30~50%)放置在阴极与阳极之间,并弯曲形成电极组件。将该电极组件放入电池壳中,压制,然后在减压条件下将下述的聚合物电解液组合物注入电池壳中。聚合物电解液组合物是通过混合50g的电解液、7.5g的聚乙二醇二甲基丙烯酸酯和0.5g的AIBN而制备的,所述电解液包含1.3M的LiPF6和重量比为3∶5∶2的EC∶DMC∶PC。
其后,将所得产物在70℃下固化大约15秒,由此形成锂二次电池。
实施例2按与实施例1相同的方式制备锂二次电池,只是在制备氟树脂薄膜组合物时,将Kynar 2801和THF的量分别变成2g和98g。
实施例3~7按与实施例1相同的方式制备锂二次电池,只是在制备氟树脂薄膜组合物时,将Kynar 2801和THF的量分别变成3g和97g;4g和96g,5g和95g;6g和94g;以及7g和93g。
对比例按与实施例1相同的方式制备锂二次电池,只是不进行将氟树脂薄膜组合物涂布在阴极和阳极表面并干燥以形成VdF-HFP共聚物薄膜的步骤,而且用于固化的热处理在90℃下进行25秒。
在实施例2和对比例中制备的锂二次电池中,阴极的横断面通过扫描电子显微镜(SEM)进行检验,其结果示于图1和图2中。
图1是在本发明实施例2中制备的阴极的横断面的扫描电子显微镜(SEM)照片,图2是在对比例中制备的阴极的横断面的SEM照片。图1和图2示出了涂布在电极上的VdF-HFP共聚物薄膜的范围以及浸入电极的VdF-HFP共聚物的范围。与图2所示的阴极相比,图1所示的阴极具有存在于电极活性物质之间的VdF-HFP共聚物。相反,与图1所示的相比,图2示出了更多分布于整个阴极的微孔。
检测在实施例2与对比例中制备的锂二次电池的循环特性,其结果示于图3中。
参照图3,在45个循环之后,于实施例2中制备的锂二次电池保持大约96%的初始容量,而于对比例中制备的锂二次电池则保持大约89%的初始容量。因而,可以确认,在电极上形成Kynar 2801薄膜能够提高电池的容量和充/放电特性。
在实施例1~7及对比例中制备的锂二次电池中,检查膨胀和阻抗特性,其结果示于表1中。膨胀特性是通过观测电池厚度变化来评价的,放电容量是在0.2C速度下测量的,阻抗特性是通过测定充/放电前后的阻值来评价的。
<表1>


在表1中,术语“标准”表示所设计的电池在初始充/放电状态下的电池尺寸。
从表1可以看出,与在对比例中制备的锂二次电池相比,在实施例1~7中制备的锂二次电池具有较好的膨胀特性和较低的层间电阻。
在实施例1~7及对比例中制备的锂二次电池中,检测形成聚合物电解液的交联时间和温度。
结果表明,在实施例1中制备的锂二次电池较在对比例中制备的锂二次电池具有更多的时间和更低的温度,这归因于涂布在电极表面的聚合物以及聚合物电解液的结构相似性。
在实施例1和对比例中制备的锂二次电池中,检测高温贮存特性,其结果示于图4中。
图4示出了电池于高温下贮存时所产生的热量随时间的变化。参照图4,对比例的锂二次电池在400分钟之后伴随急剧的放热反应产生热击穿。另一方面,实施例1的锂二次电池在大约1200分钟之后也没有产生热击穿,并且只发生轻微的放热反应。
本发明具有下列优点。
首先,将氟树脂如VdF-HFP共聚物涂布在电极特别是阳极表面,所以共聚物可以浸入电极中的微孔中,抑制阳极碳与电解液的碳酸亚丙酯之间的直接接触,甚至在注入电解液时也是如此,因而可以有效地抑制PC的分解。
第二,由于碳与PC之间的接触得到抑制,所以可用较廉价的碳材料如KCF,介晶碳纤维(MCF)或PHS代替昂贵的介晶碳微珠(MCMB),进而降低制造成本。
第三,电极与凝胶型聚合物电解液之间的结合力得到增强。
第四,与常规凝胶型聚合物电解液的制造相比,本发明的交联形成凝胶型聚合物电解液所需的时间和温度降低了。
第五,除了凝胶型聚合物电解液之外,采用多孔膜可以增加凝胶型聚合物电解液的机械强度。
第六,本发明的锂二次电池的热稳定性的增强导致高温稳定性的增加,并且可以提高其循环寿命特性。
权利要求
1.一种锂二次电池的电极,该电极包括集电体形成于集电体上的活性物质层,其中在活性物质层上形成了氟树脂薄膜,且在活性物质层的构成成分的微孔之间存在氟树脂。
2.根据权利要求1的电极,其中该活性物质层包括活性物质和导电剂,且该氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
3.根据权利要求1的电极,其中该氟树脂包括选自偏二氟乙烯-六氟丙烯(VdF-HFP)共聚物与聚偏二氟乙烯中的至少一种。
4.根据权利要求1的电极,其中该氟树脂薄膜或氟树脂是利用包含0.5~7重量份的氟树脂和93~99.5重量份的有机溶剂的组合物涂布电极,并干燥所得涂层而制备的。
5.根据权利要求1的电极,其中该氟树脂的量为1~3重量份。
6.一种锂二次电池,该锂二次电池包括集电体,具有各自形成于集电体上的活性物质层的阴极和阳极,及放置在阴极与阳极之间的聚合物电解液,其中至少在阴极与阳极活性物质层的一个表面上形成氟树脂薄膜,氟树脂存在于阴极和阳极的至少一个活性物质层中所包含的构成成分的微孔之间,聚合物电解液为交联单体的聚合产物以及包含锂盐和有机溶剂的电解液,并且在阴极与阳极之间放置了绝缘树脂制成的多孔膜。
7.根据权利要求6的锂二次电池,其中该活性物质层包括活性物质和导电剂,该氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
8.根据权利要求6的锂二次电池,其中该多孔膜为纤维素无纺织物,偏二氟乙烯-六氟丙烯(VdF-HFP)共聚物薄膜,聚乙烯薄膜,聚丙烯薄膜,聚乙烯/聚丙烯的双层膜或聚丙烯/聚乙烯/聚丙烯的三层膜。
9.根据权利要求6的锂二次电池,其中该氟树脂包括选自偏二氟乙烯-六氟丙烯(VdF-HFP)共聚物与聚偏二氟乙烯中的至少一种。
10.根据权利要求6的锂二次电池,其中该氟树脂薄膜或氟树脂是利用包含0.5~7重量份的氟树脂和93~99.5重量份的有机溶剂的组合物涂布电极而制备的。
11.根据权利要求6的锂二次电池,其中该氟树脂薄膜的厚度为0.5~10μm。
12.根据权利要求6的锂二次电池,其中该交联的单体为选自丙烯酸己酯,丙烯酸丁酯,三羟甲基丙烷三丙烯酸酯(TMPTA),丁二醇二甲基丙烯酸酯,辛二酸二烯丙基酯,乙二醇二甲基丙烯酸酯,聚(乙二醇)二甲基丙烯酸酯,缩水甘油酯,丙烯酰胺和二乙烯基苯中的至少一种。
13.根据权利要求6的锂二次电池,还包括至少一种作为能够与所述交联单体交联的化合物的第二交联单体,该第二交联单体为选自聚氧乙烯,聚乙烯吡咯烷酮,聚丙烯腈,丙烯腈-甲基丙烯酸甲酯-苯乙烯三元共聚物,乙酸乙烯酯,2-乙烯基-2,3-二氧戊环,烯丙酰吗啉和甲基丙烯酸乙烯酯中的至少一种。
14.一种制备锂二次电池的方法,包括(a)涂布包含氟树脂和有机溶剂的组合物,使得阴极与阳极活性物质层的至少一个表面上形成氟树脂薄膜,该氟树脂存在于阴极和阳极的至少一个活性物质层中所包含的构成成分的微孔之间,并干燥所涂布的产物;(b)将绝缘树脂制成的多孔膜放置在阴极与阳极之间,形成电极组件;(c)将该电极组件容纳在电池壳中,并向该电池壳中注入包含交联单体和电解液的聚合物电解液组合物,所述电解液包含锂盐和有机溶剂;及(d)聚合步骤(c)的产物。
15.根据权利要求14的方法,其中在步骤(a)中,该活性物质层包括活性物质和导电剂,且该氟树脂存在于活性物质与导电剂之间以及活性物质与导电剂的表面上。
16.根据权利要求14的方法,其中步骤(c)的聚合物电解液组合物包括2~7重量份的交联单体和93~98重量份的电解液,按100重量份的组合物计。
17.根据权利要求14的方法,其中步骤(d)中的聚合是通过在60~130℃的温度下加热,或者通过e-波束,γ-波束或紫外线而进行的。
18.根据权利要求14的方法,其中步骤(c)的聚合物电解液组合物还包括能与交联单体交联的第二交联单体,按100重量份的交联单体计,该第二交联单体的量为5~20重量份。
19.根据权利要求14的方法,其中步骤(c)的聚合物电解液组合物还包括按100重量份的交联单体计为1~5重量份的聚合引发剂。
全文摘要
本发明提供一种电解液的分解受到抑制的锂二次电池及其制备方法。该锂二次电池包括集电体,具有各自形成于集电体上的活性物质层的阴极和阳极,以及放置在阴极与阳极之间的聚合物电解液。在该锂二次电池中,至少在阴极与阳极活性物质层的一个表面上形成氟树脂薄膜。氟树脂存在于阴极和阳极的至少一个活性物质层中所包含的构成成分的微孔之间。聚合物电解液为交联单体的聚合产物以及包含锂盐和有机溶剂的电解液。另外,在阴极与阳极之间放置了绝缘树脂制成的多孔膜。
文档编号H01M4/36GK1459879SQ0310343
公开日2003年12月3日 申请日期2003年1月30日 优先权日2002年5月18日
发明者赵命东, 金株烨 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1