专利名称:可热固化粘合剂组合物,制品,半导体器械和方法
技术领域:
本发明涉及一种可热固化粘合剂组合物,一种粘合膜(即使用所述可热固化粘合剂组合物的粘合剂的膜形式),和一种粘合制品(即一种在其上具有可热固化粘合剂组合物的背衬材料)。本发明也涉及一种半导体器械和用这类粘合膜或粘合制品对其进行制备的方法。
背景技术:
众所周知,环氧树脂是具有优良粘合强度的可热固化树脂的一个例子。因此,环氧树脂被广泛用作可热固化粘合剂组合物的一个主要组分。
当可热固化粘合剂组合物包括典型的环氧树脂时,它通常仅在其被热固化而被硬化后才展示出其粘合强度,在热固前的粘合强度很低。换言之,一般这类可热固化粘合剂组合物在加热硬化前基本上没有初始的粘合强度。
对于可热固化粘合剂组合物来说,特别是在制造半导体设备的过程中,具有一些初始的粘合强度是很重要的。这是因为在制造半导体设备的过程中,使用石印技术、蚀刻技术等在诸如硅片(wafer)的半导体片(wafer)上形成IC(集成电路)、LSI(大规模集块)等后,通常还有将半导体片切割成所需尺寸的过程(称为切割过程)。
一般来说,在切割过程中,诸如硅片的半导体片用含粘合聚合物的粘合带(有时称为“切割带”)进行固定,以保留在切割过程中形成的单个半导体芯片(chip)。这样,切割带需要足够的压敏粘合强度(本文使用“初始粘合强度”)来稳定和固定半导体芯片。若切割带具有这类优良的初始粘合强度,它即可用于模压粘合过程中的模压粘合带,将半导体芯片固定在基片上,结果能有效地实现切割过程到模压粘合过程的平稳过渡。
以前人们试图增加粘合制品的初始粘合强度,但并非特别应用于特定的诸如切割带的粘合带上。例如,一种制造具有可变粘合强度的热固性粘合带的方法是已知的,该方法包括用含有可光聚合的化合物、可热固化环氧树脂或不含可光聚合的基团的环氧树脂的混合物,环氧树脂的热活化固化剂,促进剂和光聚合催化剂的液体混合物物质涂覆到可剥离松开的膜或基片上(参见日本待审专利申请(Kokai)60-173076)。还已知一种压敏可热固化粘合剂,它包含可光聚合单体浆料、环氧树脂或环氧树脂混合物,用于环氧树脂的可热活化的硬化剂、光引发剂和光交联剂(参见日本待批专利申请(Kokai)第2-272076号)。这些参考文献揭示的热固化粘合剂组合物使用与压敏粘合剂配合的环氧树脂,以得到所需的初始粘合强度。但是,在这类热固化粘合剂组合物中必然产生了诸如由于加入了压敏粘合剂而使耐热性退化或剪切强度退化的问题。
为了防止耐热性和剪切强度退化,也已揭示了没有压敏粘合剂的热固化粘合剂组合物(参见T.Ashida,M.Ochi和K.Handa,J.Adhesion Sci.Technol.,12,749(1988))。该公开物中揭示的热固化粘合剂组合物由具有芯/壳微颗粒的离聚物分散于其中的环氧树脂组成。但是,正如众所周知的那样,离聚物含有离子组分,会产生诸如在半导体芯片中或在底下的基片中腐蚀的缺陷。
另外,在实施模压粘合方法中,通常需要将半导体芯片通过热固化粘合剂组合物热粘到基底上。考虑到半导体部件的产出效率和制造设备的投资成本,人们极为需要在尽可能最低的温度和最短的时间里进行热粘合过程,以容易地得到高粘合强度。
也需要在热粘合过程中,在施加的压力下不应当使可热固化粘合剂组合物流出到半导体芯片的周围,因为,这样的污染会使后续的电线接合或其它过程中发生电线线路短路,甚至会阻碍电线线路本身的形成。这样,虽然可将具有一般高流动性的典型的环氧树脂用作一般目的的可热固化粘合剂组合物,不会产生任何问题,但实质上难于将该环氧树脂施用到旨在制备半导体设备的可热固化粘合剂组合物上。
包含己内酯改性的环氧树脂、用于环氧树脂的固化剂和苯氧基树脂的可热固化粘合剂组合物已知可作为在相对低温度下短时间里可热接合的可热固化粘合剂组合物(参见日本待批专利申请(Kokai)第2002-146319号)。它显示,粘合剂组合物显示了良好的初始粘合强度,且固化后显示出优良的耐热性。
近年来改善半导体集成块的趋势中,常常在其上没有形成逻辑电路的那面(背面)上摩削半导体片至厚度达0.1mm(100微米)或更少(典型的是0.4mm(400微米)或更少),来自这类半导体片的多个芯片堆叠成所谓的多芯片包(MCP)以使半导体设备具有更多的功能、更高的密度和更紧密。
为了制备这类结构,该方法重要的部分是薄片的切割步骤和摩薄薄片的模压粘结步骤。厚度为0.1mm或更少的薄片通常很脆,随着薄片厚度降低,该半导体片断裂的可能性上升。在处理摩薄的薄片时,所用的切割带需要具有足够的降低的压敏粘合强度。若芯片由于这类粘合强度降低而从切割带上剥离,它们在后续的包装过程中用拾取杆通过简单地拾取芯片而并入包装中。
例如,在半导体片切割后,若用作切割带的压敏粘合带的压敏粘合聚合物是经诸如热或紫外线的能量射线照射而产生的三维高度交联的,其压敏粘合强度会降低,从而使其满足上述要求。如日本国家专利申请(Kohyo)第56-500889号所述,当压敏粘合剂组合物含有具有环氧基团的粘合聚合物和诸如鎓盐化合物的离子光引发剂,虽然它开始强烈地粘附到被粘附的物体上,但用光照射时,其粘合强度降低,从而使其能容易地从粘附的物体上分离开来。这是因为上述的离子光引发剂促进了压敏粘合聚合物中环氧基团的离子开环聚合反应,从而使压敏粘合聚合物能有效地三维交联。
另外,通过采用具有热膨胀性的压敏粘合带,与粘附物体接触的表面可减少,从而有利于从附着物体上分离开来。例如,日本待批专利申请(kokoku)第51-24534揭示了含有热发泡剂的压敏粘合带。另外,日本待批专利申请(Kokai)第56-61467、56-611468、56-61469、60-252681、63-186791和2-305878揭示了带有热膨胀微球的热膨胀粘合剂。特别是,日本待批专利申请(Kokai)第56-61467、56-61468、56-61469、63-186791和2-305878揭示了用低沸点化合物(如丙烷或丁烷)或热降解型的发泡剂(如碳酸氢铵或偶氮双异丁腈)填充的热膨胀空心微球。另外,日本待批专利申请(Kokai)第60-252681揭示了使用称为“EXPANCELLS”(商品名)的热膨胀微球。此外,日本待批专利申请(Kokai)第63-30581也揭示了含有光交联剂、粘合聚合物或压敏粘合聚合物和发泡剂的粘合强度损耗型压敏粘合剂。
对于上述的用紫外线或其它光使粘合聚合物或压敏粘合聚合物进行交联来说,为了该目的还另外需要光源。另外,对于含有发泡剂或使用热膨胀粘合剂的压敏粘合片来说,在热处理前趋于缺乏耐热性,这对于使用热作用的限制性步骤来说是不利的。这样,对于前述将芯片组装在包里的情况来说,当所述芯片固定在基底上时(如基片的模压垫) (该固定步骤通常称为“模压接合”),在芯片和基底之间还需要粘合层。
为了解决上述现有技术的问题,业已揭示了粘合带被分离成粘合带基材料(即背衬材料)和压敏粘合层或粘合层,以致于可直接施加切割和模压接合。例如,日本待批专利(Kokai)第7-45557号揭示了一种粘合带,它按序包括基底材料、在基底材料上的含有压敏粘合剂和照射固化的低聚物的压敏粘合层、和照射固化的压敏粘合剂层上的模接合粘合剂层。在所披露的发明中,待切割的半导体片放在模压接合粘合层上进行切割,然后,欲压敏粘合到模压接合粘合层上的压敏强度通过紫外线照射而降低,在拾取过程中将模压接合粘合层从压敏粘合剂的分界处剥离。具有模压粘结粘合剂在其上的制得的芯片通过粘合而模压接合到基片上。
在上述参考文献中,在各种半导体制造过程期间使用压敏粘合剂时,压敏粘合剂的特征不可完全从粘合剂中消失。由于剩余的压敏粘合强度可能会损害被切割的芯片。特别是,对于具有摩削厚度100微米或更低的芯片来说,拾取过程期间的损害是极为严重的问题。
发明概述根据本发明的一个技术方案,本发明提供了一种可热固化粘合剂组合物,它包含己内酯改性的环氧树脂和减少粘性的组分。这类可热固化粘合剂组合物在低温下短时间热压时可产生初始粘合强度,且在这类热接合步骤期间,粘合剂不会流出或溢出,热固后,它不会失去耐热性或剪切强度。进一步的是,这类组合物不包括离子组分,因此,它不会在半导体组件或半导体设备中产生腐蚀。
根据本发明的另一个实施方案,它提供了包含包括可热固化粘合剂组合物的可热固化粘合层和在背衬层的至少一部分上带有所述粘合层的背衬层的粘合制品,所述的可热固化粘合剂组合物包含己内酯改性的环氧树脂和减少粘性组分。在这类包含减少粘性组分的粘合制品中,粘合剂的粘性可被降低。结果。若该粘合制品在制造半导体设备中用作带进行切割并模压接合,会得到下列优点。将半导体片热接合到粘合层并将半导体片切割成芯片后,每个芯片中的粘合层很容易地从背衬层上松开,芯片可通过粘合层不中断地模压接合到作为半导体设备的基片。本发明中,从切割成芯片的步骤到模压接合步骤的制造方法可用单个粘合剂完成。
根据本发明的另一个实施方案,它提供了包括包含己内酯改性的环氧树脂的可热固化粘合层和可拉伸的背衬层的粘合制品。可拉伸的背衬层在拉伸时的伸长优选地不低于10%。作为粘合制品背衬的层是可拉伸的。因此,若在制造半导体设备中它被用作切割带的一个组成,将半导体片切割成芯片后,随同每个芯片中粘合层可以容易地从背衬层上剥离,芯片可通过与切割步骤中使用的相同的粘合层模压接合到基片上。
本发明提供了具有初始粘合能力且固化后耐热性好、剪切强度高的可热固化粘合剂组合物。有利的是,本发明的粘合剂组合物的实施方案不会使半导体设备或半导体器械腐蚀。在特定的实施方案中,本发明提供了可用作从切割到模压接合过程的单一粘合剂的膜粘合剂。在特定的实施方案中,本发明提供了用于切割和模压接合半导体片过程的膜粘合剂,所述的半导体片被摩削到超薄厚度(如约100微米或更薄)而在加工期间不需要使用大量压敏粘合剂,或使用任何压敏粘合剂。
附图简述
图1是显示本发明优选实施方案的粘合制品的截面图。
图2是显示本发明优选实施方案的半导体器械的截面图。
图3(A-E)是顺续地显示制造本发明半导体器械的方法的截面图(制造方法的前一半切割晶片,然后拉伸背衬)。
图4(A-C)是顺续地显示制造本发明半导体器械的方法的截面图(制造方法的后一半芯片拾取,然后模压粘接/接合)。
图5是显示本发明另一个优选实施方案的半导体器械的截面图。
实施本发明的优选的实施方案本发明的可热固化粘合剂组合物、粘合制品、半导体器械和制备半导体器械的方法可依次按照本发明范围里的各个实施方案进行实施。在包括背衬层和在背衬层上、用于切割和模压接合的可热固化粘合剂组合物的粘合制品的实施方案中,被选定的粘合剂层可有效地用作模压接合粘合剂,也可在芯片切割后从背衬层上剥离。在本发明中,这样实施这类特征将减少粘性组分掺入热固性组合物以赋予足够的可松开能力,或者通过使用可拉伸的材料作为背衬层,或者两者兼备。
下面参照显示典型的优选实施方案的附图描述本发明。所属技术领域的技术人员可以清楚地知道,本发明不为下述实施方案所限定。在附图中,相同或相似组分用相同编号或符号表示。
图1是图示本发明一个实施方案的粘合制品的截面图。如该图所示,粘合制品10包括背衬层1作为基底材料,在其一个表面上带有由本发明可热固化粘合剂组合物构成的可热固化粘合层2。这样,在所显示的实施例中,粘合层2和背衬层1的组合构成的粘合制品10。但是,若粘合层2本身是自身支持膜,则粘合层单独可构成粘合制品。
构成可热固化粘合层的可热固化粘合剂组合物典型地有一晶相。特别是,晶相含有己内酯改性的环氧树脂(下面称为“改性环氧树脂”)。改性环氧树脂旨在让任选粘合剂组合物具有合适的挠性,从而改善可热固化粘合层的粘弹性。结果,可热固化粘合层即使在热固前也具有粘着性,在使用的初始阶段展示出粘合强度。像常规的环氧树脂一样,改性环氧树脂在升高的温度或常温下形成由三维网络结构构成的固化材料,它给固化粘合层提供了所需的粘着特性。
根据本发明,为了改善初始粘合强度,改性的环氧树脂的环氧当量典型地在100-9,000范围里,优选的是200-5,000,最好是500-3,000。具有这类环氧当量的改性的环氧树脂是可市售购得的,例如由Daicel ChemicalIndustries Co.出售的商品名为PlaccelTMG系列。
本发明的可热固化粘合剂组合物可包含与上述改性环氧树脂配合的减少粘性组分。减少粘性组分为,例如,诸如蜜胺/异氰脲酸加合物(下面也称为“蜜胺/异氰脲酸络合物”)的有机填料,或是有机化合物,它带有上述改性环氧树脂,可溶于或分散在溶剂中,具有玻璃化转变温度110℃或更高,在250℃或更高温度下加热1分钟能不分解或改性。蜜胺/异氰脲酸络合物是市售可得的,例如Nissan Chemical Industries Co.出售的MC-600,它在热固前可减少可热固化粘合剂组合物的粘性,并有助于触变性质。它也能有效地增强热固性粘合剂(如降低热膨胀系数),并限制湿气吸收和可热固化粘合剂组合物的流化性。本发明的可热固化粘合剂组合物可含有蜜胺/异氰脲酸络合物以增强上述效应并防止热固后变脆(保持柔软性),所述蜜胺/异氰脲酸络合物的用量范围典型地,基于100重量份的改性的环氧树脂的1-200重量份,优选的是2-150重量份,最好是10-100重量份。
玻璃化转变温度为110℃或更高、在250℃或更高温度下加热1分钟里不分解或改性、可用作减少粘性组分的的工程热塑性树脂包括诸如聚缩醛、聚对苯二甲酸丁二醇酯、聚碳酸酯、聚醚亚酰胺、聚醚砜、聚环氧乙烷、对聚苯硫、聚醚醚酮、聚丙烯酸酯、聚砜或聚酰胺亚酰胺。这类减少粘性组分的含量范围,以100重量份改性环氧树脂为基,为1-200重量份,优选的是2-150重量份,最好是10-100重量份。
除了上述改性的环氧树脂,诸如粘性减弱组分和上述的工程热塑性塑料的任选的减少粘性组分外,本发明的可热固化粘合剂组合物可含有各种添加剂,其量不会损伤物体,并对本发明的所需实施方案有效。
例如,可热固化粘合剂组合物可含有另一种材料来进一步增强粘合层。非限制性的合适材料的例子是橡胶类型的填料。橡胶类型的填料,特别当其包括甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物或丙烯酸甲酯-丙烯酸丁酯共聚物时,对于进一步增强热固性粘合组合物的粘合强度是有效的。由这些共聚物构成的橡胶类型填料是市售可得的颗粒或粉末形式,如Rohm &Haas Co.出售的EXL 2691A或EXL 2314。可包含在可热固化粘合剂组合物中的加入的材料量范围,以100重量份改性环氧树脂计,典型地为1-500重量份,优选的是5-400重量份,最好是10-300重量份。
可热固化粘合剂组合物可进一步含有苯氧基树脂。苯氧基树脂是具有相对高分子量的链结构或线性结构,由表氯醇和双酚A构成的热塑性树脂。这类酚树脂具有良好的可加工性,可有利地用于将可热固化粘合层容易地形成所需形状。根据本发明,苯氧基树脂的含量范围,相对于100重量份改性环氧树脂,为10-300重量份,优选的是20-200重量份,最好是25-150重量份。苯氧基树脂可有效地溶于上述改性环氧树脂中,以致可有效地预防改性环氧树脂从可热固化粘合剂组合物中渗出。另外,苯氧基树脂和上述处于固化状态的改性环氧树脂可相互缠绕,使可热固化粘合层的最终的性质(如粘着性和耐热性等)一旦固化后有进一步的增加。
除了上述的苯氧基树脂外,在可热固化粘合剂组合物中可进一步包括第二种环氧树脂(下面称为“环氧树脂”),以形成上述固化材料的一部分。对该环氧树脂没有特别限制,有用的环氧树脂的例子包括双酚A环氧树脂、双酚F环氧树脂、双酚A二环氧甘油醚环氧树脂、酚线型酚醛清漆环氧树脂、甲酚酚醛清漆环氧树脂,芴环氧树脂、缩水甘油基胺树脂、脂族环氧树脂、溴代环氧树脂、氟代环氧树脂等。像改性的环氧树脂一样,这些环氧树脂可用苯氧基树脂溶解,几乎不从热固性粘合组合物中渗出。特别是,当可热固化粘合剂组合物含有相对于100重量份改性环氧树脂,第二种环氧树脂含量范围为50-200重量份,最好为60-140重量份时,其耐热性可有利地得到改善。
在实施本发明中,双酚A二环氧甘油醚环氧树脂(下面称为“二环氧甘油醚环氧树脂”)特别可用作优选的环氧树脂。二环氧甘油醚环氧树脂是一种液体,可改善,例如可热固化粘合剂组合物的高温特性。例如,通过使用二环氧甘油醚环氧树脂,经在升高温度下固化可改善其耐化学品性和玻璃化转变温度。另外,也提供了更大范围和种类的固化剂供选择,从而使固化条件相对温和,这也是有用的。这类二环氧甘油醚环氧树脂可市售购得,例如,Dow Chenical(Japan)Co.出售的D.E.R.TM。
固化剂可按需加入可热固化粘合剂组合物中以促进改性环氧树脂和第二种环氧树脂的固化反应。对固化剂的量和类型没有特别限制,只要它能满足发明目并显示所需效果即可。但是,为了改善耐热性,在一个实施方案中,固化剂的含量为1-50重量份。在另一个实施方案中,固化剂的含量范围为2-40重量份,更好的是5-30重量份。上述量是相对于100重量份改性环氧树脂和第二种环氧树脂(若有的话)而言。固化剂的有用例子包括,但不限于,胺固化剂、酸酐、二聚氨基氰、阳离子聚合催化剂、咪唑化合物、肼化合物等。特别是,从室温下热稳定性方面来看,二聚氨基氰可提及作为一种有希望的固化剂。
进一步的是,与上述的固化剂组合或单独使用时,固化促进剂在可热固化粘合剂组合物中的含量典型地占10重量份,优选的是5重量份,最好是3重量份,以促进固化反应。结果,可热固化粘合剂组合物能更迅速地具有所需的粘合强度。这类固化促进剂的一个例子是聚氨酯(urethane)加合物,如异氰酸酯和胺的加合物,在相对低的温度下(如80-150℃,而上述蜜胺/异氰脲酸酯低于300℃是热稳定的)会热分解,产生反应性胺组分。合适的聚氨酯加合物是市售的,如PTI Japan Co.出产的OmicureTM52。
可将各种类型的压敏粘合剂类型材料,如丙烯酸类,橡胶类,烯烃类或硅氧烷加入本发明的热固性粘合组合物中,只要粘合剂,特别是固化的模压接合粘合剂的耐热性或剪切强度不降低到选定实施方案的不需要水平下即可。但是,本发明的可热固化粘合剂组合物具有足够的初始粘合强度,因此在大多数实施方案中不加入这类组分。这样,粘合剂组合物(若使用时)常常不需要包含足量的这类压敏粘合剂组分。
另外,根据本发明,若前述的苯氧基树脂、改性的环氧树脂和第二种环氧树脂包含在可热固化粘合层中时,粘合强度会随加热温度和/或固化最终完成的加热时间而明显改变。更具体的是,虽然可热固化粘合层的粘合强度由于初始加热而增加,当加热持续到预定的温度,其粘合强度降低,以便于使背衬层从可固化粘合层上分离出来。但是,该可热固化粘合层能进一步加热(或再加热),得到最终的固化状态使其能恢复和改善其粘合强度。
在本发明的粘合制品中,可热固化粘合层的厚度范围很大。在各个实施方案中,可热固化粘合层的厚度范围典型的是约1-100微米,优选的是约2-40微米,最好是约4-30微米。
如前所述,显示的粘合制品10具有背衬层1沉积在可热固化粘合层2的一个表面上。在实施本发明中,对背衬层的类型和厚度没有特别限定,通常用于切割带和模接合(bonding)带的背衬材料都可使用其原形或作了所需的改进或修饰,如掺入另一种材料。
根据发明人的发现,使用特别的背衬层,即推荐使用背衬层来改善膜的加工性。通过拉伸粘合制品的背衬层,可热固化粘合层可从背衬层上分离,而背衬层基本上保持其原来的形状,使模头和粘合剂还在一起。更特定的是,为了便于分离粘合制品,背衬层的可拉伸性的下限典型的是10%或更高,优选的是20%或更高,最好是30%或更高,在各个实施方案中的上限典型的是200%或更低。换言之,背衬层的拉伸性典型的范围是约10-200%,优选的是约20-180%,最好是约30-150%。
上述可拉伸的背衬层包括热塑性弹性体。热塑性弹性体的典型例子包括,但不限于,聚苯乙烯热塑性弹性体、热塑性烯烃弹性体、聚氯乙烯(PVC)热塑性弹性体、聚酯热塑性弹性体、聚醚热塑性弹性体、聚氨酯热塑性弹性体、聚酰胺热塑性弹性体、氟聚合物热塑性弹性体、均聚物热塑性弹性体、离聚物热塑性弹性体、和合金热塑性弹性体。这些热塑性弹性体可单独使用或它们中的两个或多个组合使用。
当本发明的粘合制品包括背衬层时,背衬层含有,特别是,烯烃热塑性弹性体、由聚丙烯和/或合金热塑性弹性体构成的均聚物。这类背衬层可容易地从可热固化粘合层上分离出来。烯烃热塑性弹性体包括,例如,由聚乙烯或聚丙烯构成的硬段(硬组分)和包括乙烯-丙烯-二烯三元共聚物(EPDM)、丁基橡胶、乙烯乙酸乙烯酯共聚物(EVA)、苯乙烯丁二烯橡胶(SBR)或水合SBR(HSBR)的软段(软组分)。上述均聚物/合金热塑性弹性体包括,例如,由全同立构的聚丙烯(全同立构PP)构成的硬组分和由无规立构的聚丙烯(无规立构PP)构成的软组分。优选的是,聚丙烯均聚物和/或热塑性弹性体合金的聚丙烯组分含有55-95摩尔%全同立构PP和5-45摩尔%无规立构PP。若无规立构组分低于5摩尔%,软组分的效果不明显,不能得到足够的拉伸性。若无规立构组分大于45摩尔%,则不能形成所需的背衬基片材料。这类均聚物和/或热塑性弹性体合金可用Idemitsu TPO系列(IdemitsuPetrochemical Co.出品)中的一种或其中两种或多种的组合进行制备。
在本发明的粘合制品中,背衬层的厚度可根据粘合制品的应用而在很大范围里改变。背衬层的厚度的典型范围是约10-2,000微米,优选的是约30-1,000微米,最好是约50-500微米。
典型的是,本发明的粘合制品主要或单独地从形态为自身支持膜的可热固化粘合层中,或从涉及背衬层和可热固化粘合层的两层中形成。但是,它还可包括粘合制品领域中常用的另外的层,或可作另外的处理,如表面处理。另外的层的典型例子包括剥离涂覆聚合膜或剥离纸。
本发明的可热固化粘合剂组合物可容易地用常规已知的方法进行制备。诸如甲乙酮(MEK)或四氢呋喃(THF)的溶剂可按需加到可热固化粘合剂组合物中。其目的是使可热固化粘合剂组合物形成粘合膜、片或带的形状。通过加入上述溶剂,可热固化粘合剂组合物流动性更好,结果,它能容易地形成膜、片或带形状。
本发明的粘合制品可用任何常规的方法,如口型涂覆(die coating)、刀涂覆、丝网印刷等方法进行制备。下面简述一般的施加方法。
含有上述粘合剂组分的溶液被涂覆在用松开涂覆处理国的聚酯膜上。然后,被涂覆的膜通过烘箱蒸去溶剂,得到可热固化粘合层。
接着,粘合剂表面被叠加到上述背衬层上,进行热转移层压。对于热转移层压,任何加热工具,如热辊、热层压器、热压等都可使用。可在相对低的温度下(如约90-120℃)在短时间(如约0.1-10秒)内进行热转移层压。热转移层压的结果是粘合层可接合到背衬层上,粘合层可提供出模压接合所需的极高水平的粘合性能。除了热转移层压粘合层和背衬层外,也可这样制备粘合制品将含粘合组分的溶液直接涂覆在背衬层上等,并蒸发和除去其中的溶剂。
本发明的粘合制品具有优良的特性,因此能有利地用于各种领域。适合使用粘合制品的领域可为电子器械领域,它包含诸如半导体组件的电子设备,例如诸如IC、LSI等的半导体芯片,电容器或装载在基片表面上或内部所需的其它部件。一个或多个半导体组件或其它电子组件,或这类组件的两种或多种的组合可装在电子器械的基片上和/或内部。两个或多个电子组件可以堆结构排列,建造出更紧密和高密度的电子器械。
本发明的粘合制品可特别有利地用于制造包括半导体组件(如IC、LSI等)的半导体器械,因为,当附着端是诸如IC、LSI等的半导体组件时,粘合制品可有效地用于接合,即模压接合这类附着端。
图2是显示本发明半导体器械一个实施例的截面图。如图所示,半导体器械30具有线路板31,它是这样制得的将铜层压覆盖在其上表面上,形成铜回路32。焊料保护层形成的模垫33在线路板31的元件安装区域上,半导体元件(在该实施例中是LSI)22通过粘合层2接合到模压垫的顶部。半导体元件22通过金接合线34接合到铜回路32上(如图所示)。半导体器械30的顶面用环氧树脂35密封,以保护安装的半导体元件22和接合线34免受外界潮汽和振摇。焊料球(未显示)作为外终端装在线路板31的下面。虽然如图所示只有一个半导体元件22被装在半导体器械30上,另一个半导体元件可通过本发明的粘合层安装到半导体元件22上,以形成所谓的堆叠的FBGA。可用该方法堆叠半导体元件可以制备更高密度的包装。
图5显示了堆叠的FBGA的一个实施例。在所显示的半导体器械40中,三个不同的半导体元件22-1、22-2和22-3被安装在印刷线路板31上。本发明的粘合层在此为粘合层2-1、2-2和2-3。每个半导体元件通过金接合线34与铜回路32接合。作为外终端的焊料球39被施加到在线路板31的下表面上形成的铜回路39上。半导体器械40的顶表面用环氧树脂35密封。
根据本发明,它提供了使用本发明粘合制品制备半导体器械或其它电子器械的方法。例如,根据本发明制造半导体器械的方法可用下列步骤有利地实施。
(1)排列粘合制品使本发明的粘合制品在用于切割半导体片的切割装置上排列,以露出粘合层。
(2)安装半导体片具有多个半导体元件在其上形成的半导体片被安装在具有一个表面(非元件安装表面)向下的粘合制品上,并与粘合制品粘合。根据本发明,可热固化粘合剂组合物不含离子组分,因此没有离子组分引起的腐蚀问题。
(3)用热和压力使半导体与粘合制品进行热接合将半导体晶片堆叠在粘合制品上后,它们可被热接合,任选的是,使粘合制品部分固化。加热温度和持续时间及热接合步骤的施加压力可根据粘合层的组合物而改变。典型的是,在约90-120℃下,在约1-20kg/cm2(0.1-2MPa)的压力下加热约0.1-60秒。可使用诸如热辊、热层压器、热压等的加热装置。加热粘合步骤的结果是,半导体片被接合到粘合制品上,形成了整体单元。
根据本发明,当加入诸如上述的蜜胺/异氰脲酸加合物的粘性减弱组分时,可热固化粘合剂组合物的流动性和粘性被抑制。结果,可在较低温度和较低压力下,在较短的时间里进行热接合,以致于使在半导体片上加的负荷大为降低,因此,当半导体片的厚度在摩削或抛光等步骤中减少时,热接合期间的诸如龟裂等的损伤可降低或消失。
就此而言,可热固化粘合剂组合物的流动相也可用诸如二氧化硅等无机材料进行抑制。但是,诸如蜜胺/异氰脲酸加合物的粘性减弱组分不同于二氧化硅,因它是有机物质,因此,即使它会与半导体片接触,对半导体片也几乎没有损伤。这样,通过使用诸如蜜胺/异氰脲酸加合物的粘性减弱组分,可预期不论半导体的厚度情况都能改善半导体器械制造中的产出率。
在该整体化层压状态下,或在接着的切割过程完成后,可在半导体片上进行电镀、抛光、蚀刻等加工过程。
(4)切割半导体片虽然半导体片是粘合制品层压其上的状态,但该片被切割成单个半导体元件。由于粘合制品业已获得作为上述热接合步骤的部分固化的结果的足够的粘合强度,被切割成多个元件或芯片(也称为“模”)的半导体片可有效地防止散开。对于切割方法,可使用诸如切割锯、钻切割器等用于切割的一般设备。进一步的是,使用环样支持物(环框架)来嵌入并固定安装的半导体片,并在固定的状态下切割半导体片以避免对芯片的损伤。
(5)拾取半导体元件切割半导体片完成后,通过切割半导体片得到的每个半导体元件从背衬层中分离出来,可热固化粘合层仍然附带在元件上。在该过程中,可使用常规的拾取杆或紧凑有效的真空吸力装置。进一步的是,由于背衬层是可拉伸的,诸如拾取辊的常规手段是不需要用作为剥离手段,可使用真空吸力装置从背衬层上剥离半导体元件。
(6)模安装带有可热固化粘合层接合其上的半导体元件被固定在基片的表面用于制备半导体器械,例如,通过可热固化粘合层和加热加压下接合而固定到模垫上。可如上所述地几乎没有限制地进行热接合。固化后,粘合层这样可牢固地将半导体芯片粘合到模垫上。
当半导体芯片从变薄的半导体片上产生时,多个这些半导体芯片可通过重复上述过程一个接着一个地堆叠。在这类情况下,为了实现更高密度和使半导体器械更密集,通过采用多芯片包装(MCP)流程,多个集成电路芯片或单个半导体部件可装在一个包装里,以便能用作集成电路元件。
(7)线接合等在模安装完成后,接着用常规的方法进行诸如线接合(或倒装片接合)、用树脂密封、球安装等。
虽然前面描述了本发明优选的实施方案,本发明不为上述方案所限制。例如,本发明的可热固化粘合剂组合物也可有效地用来非模接合的过程。更具体的是,可热固化粘合剂组合物可用来制备印刷线路板等。
图3(A-E)和4(A-C)是依次显示按上述过程用于制造半导体器械的方法的例子的截面图。
首先,如图3(A)所示,由背衬层1和可热固化粘合层2组成的粘合制品10被固定在切割器械上(未显示),粘合层2的面向上。环支持物(环框架),例如是用作固定设备。
接着,如图3(B)所示,半导体片21被安装到粘合制品10的可热固化粘合层2上。
然后,如图3(C)所示,半导体片21和粘合制品10在一对辊24之间以箭头的方向进行热层压。这里,使半导体片21与可热固化粘合层在预定的压力下(如约0.1-5mPa)紧密接触,以防止损伤半导体片。加热温度典型的是约70-180℃,优选的是约80-150℃,最好是约90-120℃。加热的持续时间典型的是约0.01-30秒,优选的是约0.1-10秒,最好是约0.2-5秒。热层压步骤后可热固化粘合层2立即用高粘合强度粘住半导体片21。进一步的是,虽然图中没有显示,但若粘合制品基本上由可热固化粘合剂组合物在背衬上形成的话,则半导体片21、可热固化粘合层2和其上具有环支持物的背衬层1被热压,形成了由环支持物/粘合层/背衬层嵌入其中的片。由于该结构,不需要再将片/粘合层/背衬层结构的背衬层1通过压敏粘合剂等层压到第二半导体片安装带上(即切割带),粘合制品10本身可作为切割带。
如图3(D)所示,在半导体片21和可热固化粘合层2上沿切割线26进行切割。切割锯25被用作切割设备。如图所示,得到多个半导体元件22(也称为“半导体芯片”)。由于可热固化粘合层2具有高粘合强度,它能非常有效地防止半导体芯片22散开。在切割前,先在半导体片21上按照需要进行诸如电镀、抛光或蚀刻的加工步骤。
接着,在如图3(E)所示的具有拉伸背衬层的实施方案中,背衬层1沿着箭头所指的方向拉伸,半导体芯片22的集合体仍安装其上。相邻的半导体芯片22被拉离切割线,由图示的空间27隔开。此时,如需要,拉伸之前加热至稍高温度。由于加热,可热固化粘合层的粘合强度降低了,结果,可热固化粘合层用更小的拉伸,更易于从背衬层上分离开。但是,可热固化粘合层的粘合强度没有降低到它与半导体芯片上分离的程度。结果,可热固化粘合层转移到半导体芯片上。这里,加热温度通常为约80-180℃,优选的是约90-150℃,最好是100-130℃。另外,加热时间一般为约5-360分钟,优选的是约10-120分钟,最好是约20-60分钟。
接着,如图4(A)所示,用真空吸力装置28将半导体芯片和可热固化粘合层2拾取。真空吸力装置28可减少施加到半导体芯片22上的冲击力或负载。可热固化粘合层2从背衬层1上剥离,并转移到半导体芯片22上。拾取杆可用来替代真空吸取装置。
然后,如图4(B)所示,半导体芯片22通过连接的可热固化粘合层2被安装在线路板31的模垫33上。通过接着的半导体芯片热接合到模垫上,粘合层被进一步固化,半导体芯片和模垫可彼此牢固地粘附,因为粘合层的进一步固化恢复/改善了粘合强度和耐热性。
完成安装半导体芯片22后,如图4(C)所示,在半导体芯片22和线路板31的铜线回路32之间通过金接合线34进行线接合。根据半导体器械的构造,可使用倒装片接合代替线接合。例如,对于倒装片接合,可在涉及线接合过程的硅片活性层里的模垫上形成隆起(螺栓隆起)。本发明的粘合膜可用上述的条件应用在活性层上(参见3.热接合)。然后面向下的芯片(倒装芯片)可如用热压接合在基片上。隆起渗入粘合膜,并与基片上的线路接触。
接着,进行诸如用树脂密封,安装球等加工步骤(未显示)以最终得到半导体器械。树脂密封的半导体器械可参见上述图2。
众所周知,随着芯片微型化和高密度集装的进步,提出了多种多样的半导体器械。按照本发明上述党支部半导体器械的方法可有助于用来制备这些半导体器械。
本发明下面参照优选的实施方案进行描述,这些优选的实施方案综述如下(实施方案1)可热固化粘合剂组合物包含己内酯改性的环氧树脂;和粘性减弱组分。
(实施方案2)根据实施方案1所述的可热固化粘合剂组合物,其中所述的粘性减弱组分是一种粘性减弱成份。
(实施方案3)根据实施方案2所述的可热固化粘合剂组合物,其中所述的粘性减弱组分是蜜胺/异氰脲酸加合物。
(实施方案4)根据实施方案1-3任一所述的可热固化粘合剂组合物,其中所述的己内酯改性环氧树脂具有的环氧当量为100-9000。
(实施方案5)根据实施方案3所述的可热固化粘合剂组合物,其中所述的蜜胺/异氰脲酸加合物的含量为1-200重量份。
(实施方案6)根据实施方案1-5任一所述的可热固化粘合剂组合物,它进一步包含橡胶样填料。
(实施方案7)根据实施方案1-6任一所述的可热固化粘合剂组合物,它进一步包含苯氧基树脂。
(实施方案8)根据实施方案1-7任一所述的可热固化粘合剂组合物,它进一步包含选自双酚A环氧树脂、双酚F环氧树脂、双酚A二环氧甘油醚环氧树脂、酚线型酚醛清漆环氧树脂、甲酚酚醛清漆环氧树脂,芴环氧树脂、缩水甘油基胺树脂、脂族环氧树脂、溴代环氧树脂和氟代环氧树脂的第二种环氧树脂。
(实施方案9)根据实施方案1-8任一所述的可热固化粘合剂组合物,其中初始粘合强度由加热形成。
(实施方案10)根据实施方案1-9任一所述的可热固化粘合剂组合物,其特征在于,粘合剂组合物被用于制造半导体器械的切割过程和/或模接合过程。
(实施方案11)一种粘合制品,它包含一种可热固化粘合剂组合物的可热固化粘合层和在背衬层的至少一部分携带所述粘合层的背衬层,所述可热固化粘合剂组合物包含己内酯改性的环氧树脂和粘性减弱组分。
(实施方案12)根据实施方案11所述的粘合制品,其中所述的粘性减弱组分是一种粘性减弱复合物(compound)。
(实施方案13)根据实施方案12所述的粘合制品,其中所述的粘性减弱复合物是蜜胺/异氰脲酸加合物。
(实施方案14)根据实施方案11-13任一所述的粘合制品,其中在所述的可热固化粘合剂组合物中,所述的己内酯改性环氧树脂具有的环氧当量为100-9000。
(实施方案15)根据实施方案11-14任一所述的粘合制品,其中在所述的可热固化粘合剂组合物中,所述的粘合减弱组分的含量为1-200重量份。
(实施方案16)根据实施方案11-15任一所述的粘合制品,其中所述的可热固化粘合剂组合物进一步包含橡胶样填料。
(实施方案17)根据实施方案11-16任一所述的粘合制品,其中所述的可热固化粘合剂组合物进一步包含苯氧基树脂。
(实施方案18)根据实施方案11-17任一所述的粘合制品,其中所述的可热固化粘合剂组合物进一步包含选自双酚A环氧树脂、双酚F环氧树脂、双酚A二环氧甘油醚环氧树脂、酚线型酚醛清漆环氧树脂、甲酚酚醛清漆环氧树脂,芴环氧树脂、缩水甘油基胺树脂、脂族环氧树脂、溴代环氧树脂和氟代环氧树脂的第二种环氧树脂。
(实施方案19)根据实施方案11-18任一所述的粘合制品,其中所述的背衬层是拉伸时的伸长率为10%或更高的一种可拉伸塑料膜。
(实施方案20)根据实施方案11-19任一所述的粘合制品,其中所述背衬层包含至少一种选自聚苯乙烯热塑性弹性体、热塑性烯烃弹性体、聚氯乙烯(PVC)热塑性弹性体、聚酯热塑性弹性体、聚醚热塑性弹性体、聚氨酯热塑性弹性体、聚酰胺热塑性弹性体、氟聚合物热塑性弹性体、均聚物热塑性弹性体、离聚物热塑性弹性体、和合金热塑性弹性体的热塑性弹性体。
(实施方案21)根据实施方案11-20任一所述的粘合制品,其中所述的背衬层的厚度为50-500微米。
(实施方案22)根据实施方案11-21任一所述的粘合制品,其中所述的可热固化粘合层的厚度为4-30微米。
(实施方案23)一种半导体器械,它包括有至少一种半导体元件安装在其上的基片,其特征在于,所述的半导体元件通过可热固化粘合剂组合物的可热固化粘合层固定在所述基片的表面上,所述的可热固化粘合剂组合物包含一种己内酯改性的环氧树脂和粘性减弱组分。
(实施方案24)根据实施方案23所述的半导体器械,其中所述的半导体元件通过所述的可热固化粘合层经热接合固定到所述的基片上。所述可热固化粘合层的初始粘合强度通过加热而增加。
(实施方案25)根据实施方案23或24所述的半导体器械,其中所述的可热固化粘合层从根据实施方案1-10的任一所述的可热固化粘合剂组合物中衍生出来。
(实施方案26)根据实施方案23-25任一所述的半导体器械,其中所述的半导体元件通过所述的可热固化粘合层固定在预先装载在所述基片表面上的模垫上。
(实施方案27)根据实施方案23-26任一所述的半导体器械,其中所述的可热固化粘合层被预先施加到半导体片上,其中已经形成了多个所述半导体元件。
(实施方案28)根据实施方案23-27任一所述的半导体器械,它包括装到至少一个半导体元件上的第二种半导体元件。
(实施方案29)一种制造包括有至少一个半导体元件安装于其上的基片的半导体器械的方法,包括在有多个半导体元件在其上形成的半导体片的一个表面上层压粘合制品,所述的粘合制品包括可热固化粘合剂组合物的可热固化粘合层和携带所述粘合层的背衬层,所述的可热固化粘合剂组合物包含己内酯改性的环氧树脂和减少粘性组分;通过使所述半导体片和粘合制品进行热接合而形成所述可热固化粘合剂组合物的初始粘合强度;将所述半导体片划分成单个半导体元件,同时使所述的膜粘合剂层压到半导体片上;将带有所述可热固化粘合层附着其上的所述半导体元件从所述背衬层上分离出来;和通过所述可热固化粘合层将所述半导体元件固定到所述基片的表面上。
(实施方案30)根据实施方案29所述的制造半导体器械的方法,其中所述的半导体元件通过所述的可热固化粘合层经热接合到所述基片的表面上。
(实施方案31)根据实施方案29或30所述的制造半导体器械的方法,其中所述的半导体片被划分成单个半导体元件,同时通过环支持物支持半导体片和粘合制品的热接合层压物。
(实施方案32)根据实施方案29-31任一所述的制造半导体器械的方法,其中所述的半导体元件通过真空吸力从所述背衬层上分离出来。
(实施方案33)根据实施方案29-32所述的制造半导体器械的方法,其中所述的粘合制品为实施方案11-22任一所述的粘合层。
(实施方案34)根据实施方案29-33任一所述的制造半导体器械的方法,其中所述的基片进一步包括在表面上的供安装半导体元件的模垫。
(实施方案35)一种粘合制品,其特征在于,它包括包含己内酯改性的环氧树脂的可热固化粘合层和拉伸时伸长率不低于10%的可拉伸背衬层。
(实施方案36)根据实施方案35所述的粘合制品,其中改性环氧树脂的环氧当量为100-9000。
(实施方案37)根据实施方案35或36所述的粘合制品,其中可热固化粘合层还含有苯氧基树脂。
(实施方案38)根据实施方案35-37任一所述的粘合制品,其中可热固化粘合层还含有填料。
(实施方案39)根据实施方案35-38任一所述的粘合制品,其中可热固化粘合层的厚度为4-30微米。
(实施方案40)根据实施方案35-39任一所述的粘合制品,其中背衬层的伸长率不超过200%。
(实施方案41)根据实施方案35-40任一所述的粘合制品,其中背衬层的伸长率范围为20-180%。
(实施方案42)根据实施方案35-41任一所述的粘合制品,其中背衬层的伸长率范围为30-150%。
(实施方案43)根据实施方案35-42任一所述的粘合制品,其中所述的背衬层包含热塑性弹性体。
(实施方案44)根据实施方案43所述的粘合制品,其中所述的热塑性弹性体是选自以聚苯乙烯为基的热塑性弹性体、以烯烃为基的热塑性弹性体、以聚氯乙烯为基的热塑性弹性体、以聚酯为基的热塑性弹性体、以聚醚为基的热塑性弹性体、聚氨酯为基的热塑性弹性体、聚酰胺为基的热塑性弹性体、氟聚合物为基的热塑性弹性体、均聚物为基的热塑性弹性体、离聚物为基的热塑性弹性体、和合金为基的热塑性弹性体的至少一种热塑性弹性体。
(实施方案45)根据实施方案35-44任一所述的粘合制品,其中背衬层的厚度为50-500微米。
(实施方案46)根据实施方案35-44任一所述的粘合制品,其中背衬层的厚度为54-530微米。
(实施方案47)一种半导体器械,包括其上装有至少一个半导体元件的基片,其中所述的半导体元件通过包含己内酯改性的环氧树脂的可热固化粘合层固定到所述基片表面。
(实施方案48)根据实施方案47所述的半导体器械,其中所述的半导体元件通过所述可热固化粘合层的热接合固定到所述基片上。
(实施方案49)根据实施方案47或48所述的半导体器械,其中所述的可热固化粘合层是从如实施方案35-46任一所述的粘合制品上分离出来的可热固化粘合层。
(实施方案50)根据实施方案47-49任一所述的半导体器械,其中所述的半导体元件通过所述的可热固化粘合层固定在预先装载在所述基片表面上的模垫上。
(实施方案51)根据实施方案47-50任一所述的半导体器械,其中所述的可热固化粘合层被预先施加到业已形成多个所述半导体元件的半导体片上。
(实施方案52)一种制造包括在其上装有至少一个半导体元件的基片的半导体器械的方法,包括下列步骤;在有多个半导体元件在其上形成的半导体片的一个表面上层压包含己内酯改性的环氧树脂的粘合制品和携带所述粘合层、拉伸时的伸长率不低于10%的可拉伸背衬层;将所述的半导体片划分成单个半导体元件,同时保持在片上的所述层压的粘合制品拉伸所述粘合制品的背衬层后,将带有所述可热固化粘合层的所述半导体元件从所述背衬层上分离出来;和通过所述可热固化粘合层将所述半导体元件固定到所述基片的表面上。
(实施方案53)根据实施方案52所述的制造半导体器械的方法,其中所述的半导体片和所述的粘合制品被堆叠后,它们通过热层压进行集成。
(实施方案54)根据实施方案52或53所述的制造半导体器械的方法,其中所述的半导体片被划分成单个半导体元件,同时通过环支持物支持半导体片和粘合制品的热接合层压物。
(实施方案55)根据实施方案52-54任一所述的制造半导体器械的方法,其中所述的半导体元件通过所述的可热固化粘合层经热接合固定到所述基片的表面上。
(实施方案56)根据实施方案52-55任一所述的制造半导体器械的方法,其中所述的半导体元件通过真空吸力装置从所述背衬层上分离出来。
(实施方案57)根据实施方案52-56任一所述的制造半导体器械的方法,其中所述的粘合制品为实施方案35-46任一所述的粘合制品。
(实施方案58)根据实施方案52-57任一所述的制造半导体器械的方法,其中所述的基片进一步包括在表面上的供安装半导体元件的模垫。
实施例下面,本发明结合实施例作详尽的描述,应当明白,本发明不为这些实施例1-6制备可热固化粘合剂组合物通过使下表1中显示的各个组分并按其比例混合来制备可热固化粘合剂组合物(实施例1-6)苯氧基树脂YP50S,由Toto Kasei Co.制造,数均分子量为11,800;液体环氧树脂DERTM332,由Dow Chemical Japan Co.制造,环氧当量174;己内酯改性的环氧树脂PlaccelTMG402,由DaicelChemicalIndustries Co.制造,环氧当量1350;甲基丙烯酸酯-丁二烯-苯乙烯共聚物,EXL-2691A,称为甲基丙烯酸酯-丁二烯苯乙烯共聚物,Rohm& Haas Co.;EXL2314,KUREHA PARALOIDTMEXL,由Kureha ChemicalsIndustries Co.制造;双氰胺(dicyandiamide,DICY);CG-NA,由PTI JapanCo.制造;聚氨酯加合物;OmicureTM52,4,4’-亚甲基-双-亚苯基-二脲,PTI Japan Co.出品;蜜胺/异氰脲酸加合物MC-600,分子量255,同时C3H6N6+C3H3N3O3,熔点>350℃,由Nissan Chemical Industries Co.制造。
通过使各种组分掺合并在室温下混合得到均匀的粘合剂溶液。然后,将粘合剂溶液以不同的量涂覆在由硅氧烷处理的聚对苯二甲酸乙二酯(PET)膜构成的基底材料上,在100℃的烘箱中干燥30分钟。在实施例1-6中,分别得到的具有热固性粘合剂层的PET膜的厚度为30微米(下面称为“粘合剂转移带”)评价可热固化粘合剂组合物如下所示,用上述粘合剂转移带制备试验样品,就粘合强度、拉伸剪切强度、流动性和耐热性等评价可热固化粘合剂组合物。
(1)测量粘合强度如上所述制备粘合剂转移带,并将其热层压到厚度为25微米的聚酰亚胺膜上(DUPONT TORAY Co.制造,商品名“KaptonTMV”)。使粘合剂转移带和聚酰亚胺膜通过一对100℃的热辊进行热层压。得到15毫米宽的层压结构物。
然后,将PET膜从层压物上剥离,暴露出可热固化粘合层,它粘附到铜箔上(大小10毫米×50毫米×35毫米厚度,由Nippon Foil Mfg Co.制造)。这样,用于剥离测定的样品是Cu/粘合剂/聚酰亚胺。该层压物通过可热固化粘合层在120℃、2兆帕(MPa)的负载下达60秒进行热接合。
初始粘合强度完成热接合后马上从每个试验样品上以180度的剥离角度剥离铜箔,测定剥离强度。在下列条件下进行测定试验温度为室温(特别是25℃),剥离速率为50毫米/分钟。初始粘合强度如下表2所示。
热固化后的粘合强度接着,将样品放在150℃的烘箱达1小时。用该方法对可热固化粘合层进行热固化后,如上所述测定剥离强度。结果如下表2所示。
(2)测定拉伸剪切强度如上所述制备的粘合剂转移带被切割成25毫米长、12.5毫米宽的带子。该粘合剂转移带的带子被放在冷辊钢板上(大小100毫米×25毫米×1.5毫米,JIS G3141,SPCC-SB),以致于暴露的粘合剂表面与板接触。除去PET膜,将第二块冷辊钢板放在新暴露出的粘合剂表面,使两块钢板之间在纵向上有25毫米的交迭区。将其进行热接合,得到试验的层压物。用作热接合的条件上温度120℃,压力2MPa,压制持续30秒。将试验层压物放在150℃的烘箱中,使粘合层后固化处理1小时,得到拉伸试验样品。
这样评价所得的试验样品分离速率为50毫米/分钟,记录产生的最大应力。通过将最大应力除于交迭的粘合面积得到拉伸剪切强度。结果如下表2所示。
(3)评价流动性如上所述制备粘合剂转移带,用圆形刀压下,得到初始半径R0为11.4毫米的盘。该盘夹在30毫米见方、厚度为0.5毫米的铜板和30毫米一边、厚度为2毫米的方形玻璃板之间,用与拉伸剪切强度试验方法相似的方法进行。然后,方形玻璃板和方形铜板通过粘合剂盘进行热接合。在该热接合步骤中使用气压机(FHAT-0006A-AAH,由Honda Tsushin Kogyo Co.制造)。热接合的条件是温度120℃,力1470N(3.6MPa),压制持续30秒。然后,用显微镜(MeasureScope 20,Nikon Co.制造)测定盘的半径R,计算热接合后的半径R与初始半径R0比(即R/R0;下面称为“流动性”)。结果如下表2所示。
(4)评价焊料耐热性如上所述制备的粘合剂转移带被切割成25mm方片。将粘合剂转移带的暴露表面粘合到一片同样大小、25微米厚度的聚酰亚胺膜上(由DUPONTTORAY Co.制造,商品名为“KaptonTMV”)后,除去PET膜,将同样大小、35微米厚的辊压的铜箔粘附到新暴露出的粘合表面上。使其热接合得到焊料试验样品。热接合条件是温度120℃,力1470N(2.35MPa),压制持续30秒。
将焊料试验样品放在热-恒湿烘箱里,在30℃/60%相对湿度下老化1小时,然后放在260℃下的焊料浴中达1分钟。焊料试验样品从焊料浴中拿出,肉眼观察粘合层中的气泡存在/缺失,和焊料试验样品的各层的界面处是否有分离。当没有观察到气泡或分离现象,该样品的级别是“通过”,即在焊料耐热性中为优良。结果如下表2所示。
实施例7热固化粘合剂层的制备试按表3显示的每个组分及含量进行混合,然后在室温下搅拌,制备均匀的粘合剂溶液。接着,将该两种不同用量的粘合剂溶液涂覆在由硅氧烷处理过的聚对苯二甲酸乙二酯(PET)膜组成的基片上,在100℃的烘箱中干燥30分钟。得到两种PET膜,它们所带的可热固化粘合层厚度分别为35微米和7微米。
表3
评价可热固化粘合层的粘合强度—样品制备如上述制备焊料试验样品相似的方式将具有厚度为35微米的可热固化粘合层的粘合剂转移带夹在两片辊压的铜箔(大小10毫米×50毫米×35毫米,Nippon Foil,商品名SPCC-SB)之间。在120℃温度、负载(压力)25kgf/cm2(2.5MPa)下进行热接合60秒后,将其放在120℃的烘箱中,其放置时间如下表4所示。评价10种不同的时间。
—测定180度剥离强度对每个样品测定可热固化粘合层的热固性粘合强度。在该实施例中,测定180度角度剥离粘合强度。测定条件为室温(更特定的是25℃),剥离速率为50毫米/分钟。下表4显示了热处理时间和粘合强度之间的关系。
表4
如表4所示,可热固化粘合层的剥离强度在约30分钟热处理时间下为最小,其随着烘箱里热处理时间的增加而增加。
—背衬层的制备和粘合制品的制备用挤出机捏合Idemitsu TP02900和Idemitsu TP02700(重量比为80∶20)后,形成的混合物用T-模头形成厚度为80微米的背衬层。这里,Idemitsu TP02900是含10%重量的无规聚丙烯(aPP)的以聚烯烃为基的热塑性弹性体,而IDemitsu TP02700则是含30摩尔%aPP的聚烯烃为基的热塑性弹性体。这样,该实施例制备的背衬层由含14摩尔%aPP的聚烯烃为基的热塑性弹性体构成。
接着,该背衬层被热层压到在PET膜上的具有厚度为7微米的可热固化粘合层的粘合剂转移带,结果,暴露的粘合剂表面与背衬层接触,得到粘合制品。热层压步骤中是在100℃下进行热层压。
评价膜粘性评价(A)从粘合制品上除去PET膜来暴露可热固化粘合层。然后使辊压的铜箔(大小10毫米×50毫米×35毫米,Nippon Foil,商品名SPCC-SB)在100℃下进行热层压(压力3MPa),以暴露粘合剂表面。所得的层压物放在120℃的烘箱中热处理90分钟。
接着,所得的层压物的背衬层被拉伸100%(长度)。此时,它证实背衬层从粘合层上分离出来,粘合层被转移到辊压的铜箔上。
接着,其上具有粘合层的辊压的铜箔被放在厚度为25微米的聚酰亚胺膜(Toray-Dupont,商品名KaptonTMV)上,粘合层在辊压的铜箔和聚酰亚胺膜之间,然后在负载(压力)25kgf/cm2(2.5MPa)下、120℃时热接合60秒。接着,辊压的铜箔/粘合层/聚酰亚胺膜的热接合层压物被放在120℃的烘箱里处理90分钟,得到试验样品。当该试验样品用上述过程评定180度剥离强度时,得到11.0N/cm(0.1MPa)的值。
评价(B)除了下列修改外,其它重复评价(A)的过程。测定长度为8mm、宽度为5mm、厚度为0.4mm的硅氧烷片代替辊压的铜箔。硅氧烷片在100℃、1kgf(0.1MPa)负载下热接合10秒层压到可热固化粘合层上。
然后将硅氧烷片与可热固化粘合层和背衬层一起,沿宽度的方向切割成半,切割步骤中使用钻石切割器(BuehlerTMISOMETTM)。具有粘合层和接合其上的背衬层的切割片在120℃烘箱中热处理30分钟。然后从烘箱中拿出切割片制品,然后冷却到室温,背衬层被拉伸伸长100%。观察到粘合层从背衬层上分离并转移到切割的硅氧烷芯片上。
接着,所得的硅氧烷芯片被放在厚度为25微米聚酰亚胺膜(Toray-Dupont,商品名KaptonTMV)上,粘合层在聚酰亚胺膜和硅氧烷芯片之间,用与评价(A)相同的过程,然后在120℃和25kgf/cm2(2.5MPa)负载下热接合60秒。接着,在120℃烘箱里放置热接合的硅氧烷芯片/粘合层/聚酰亚胺膜制品,热处理90分钟,得到试验样品。根据上述相同的技术用这些试验片测定剥离强度。观察到芯片安全地粘附着。
实施例8通过使与实施例6中相同的组合物的每个组分混合,并在室温下进一步搅拌来制备均衡的粘合剂溶液。接着,将粘合剂溶液涂覆在用硅氧烷处理过的聚对苯二甲酸乙二酯(PET)膜上,在100℃烘箱中干燥30分钟。得到这样的粘合转移带,它具有带有厚度为25微米的可热固化粘合层的PET膜。
试验样品的制备可热固化粘合层被接合到背衬层上。该背衬层与实施例7中制备的相同。背衬层和粘合剂转移带用热辊在80℃下层压,以1米/分钟速度剥离。所得的粘合制品被切割成环形大小的片(直径为155mm和220mm)形成一套样品。除去PET膜衬里后,粘合制品的粘合层被热层压到厚度为50微米的硅氧烷片上,并用Disco Co.,Ltd.(型号DFD670)切割装置切割成5×5mm2芯片。此后,背衬层被拉伸1.6%,这足以拾取芯片,拾取试验用NECMachinery,Co.Ltd.制造的Epoxy Die Bonder(装有无针的拾取器件)进行。
当片被切割后,芯片不散开,因为粘合剂具有足够的初始粘合强度。进一步的是,在拾取试验中,分别在芯片脱离时间3秒、0.1秒和0.06秒进行拾取。拾取能有效地进行,对芯片没有任何损害。
工业实用性如上详述,根据本发明,它提供了一种可热固化粘合剂组合物,它在热固化前容易地显示出足够高的初始粘合强度,热固后保持充足的粘合强度,这可特别用来从切割过程到模头接合过程连续地制造半导体器械。
根据本发明,它也提供了这样的可热固化粘合剂组合物,它通过在低温度下热接合较短的时间能形成足够高的初始粘性强度,不会产生热接合期间粘合剂流出或溢出的问题,它在热固化后保持耐热性和/或剪切强度。
进一步的是,根据本发明,它提供了不会在半导体元件或半导体器械中产生腐蚀问题的可热固化粘合剂组合物。
根据本发明,它也提供了一种粘合制品,它使本发明的可热固化粘合剂组合物可容易地处理,并能有利地用于制造半导体器械中。
进一步的是,根据本发明,粘合制品不需要使用诸如紫外光的照射光源,使粘合层从背衬层上剥离。进一步的是,当带有可拉伸背衬层的粘合制品用作切割带时,其上具有粘合剂的半导体芯片可切割后容易地从粘合制品上得到,不需要使用拾取杆,因为通过拉伸背衬层,粘合层在粘合层和背衬层的界面之间与背衬层剥离。
另外,本发明的粘合制品也可有利地用于除了切割和模接合外的其它加工领域,如制造微机。
此外,根据本发明,可容易地制造半导体元件,且得率良好。另外,根据本发明,由于粘合制品的作用,即使半导体元件的厚度为100微米或更薄,也可制备半导体元件,且对其没有损伤。
权利要求
1.一种可热固化粘合剂组合物,它包含己内酯改性的环氧树脂;和粘性减弱组分。
2.一种制备如权利要求1所述的粘合剂的方法,包括提供己内酯改性的环氧树脂;并使其与粘性减弱组分混合。
3.一种粘合制品,包括如权利要求1所述的热固性粘合剂层;和在其至少一部分上携带所述粘合层的背衬层。
4.一种半导体器械,包括有至少一个半导体元件安装其上的基片,其中所述的半导体元件通过如权利要求1所述的可热固化粘合剂固定到所述基片的安装元件的表面上。
5.根据权利要求4所述的半导体器械,它进一步包括安装到至少一种半导体元件上的另一种半导体元件。
6.一种粘合制品,包括可热固化粘合层和可拉伸背衬层,所述的可热固化粘合层含有己内酯改性的环氧树脂,所述的可拉伸背衬层任选的伸长率不低于10%。
7.一种半导体器械,包括具有至少一种半导体元件安装其上的基片,其中半导体元件通过含有己内酯改性的环氧树脂的可热固化粘合层固定到基片的表面上。
8.一种制备包括具有至少一个半导体元件安装其上的基片的半导体器械的方法,所述的方法包括层压在具有多个半导体元件在其中组装的半导体片的一面上的粘合制品,粘合制品包括含有己内酯改性的环氧树脂的可热固化粘合层和可拉伸的背衬层,任选的是,其中所述的背衬层的伸长率不低于10%;不连续地分离半导体元件,同时保留半导体片和粘合制品为层压物状态;拉伸粘合制品的背衬层,然后从背衬层上分离带有附着于其上的可热固化粘合层的半导体元件;和通过可热固化粘合层将半导体元件固定在基片的表面上。
全文摘要
本发明提供了一种适合用于切割半导体和模接合切割的半导体芯片的可热固化粘合剂组合物和粘合制品,本发明也提供了使用粘合剂组合物和制品的半导体器械和制备半导体器械的方法。在一个实施方案中,本发明提供了可热固化粘合剂组合物,它包含己内酯改性的环氧树脂和粘性减弱组分。本发明的另一个实施方案提供了一种粘合制品,它包括含有己内酯改性的环氧树脂、粘性减弱组分的可热固化粘合剂组合物的可热固化粘合层和在其至少一部分携带所述粘合层的背衬层。
文档编号H01L21/52GK1662624SQ03814760
公开日2005年8月31日 申请日期2003年6月23日 优先权日2002年6月24日
发明者竹内省二, 川手恒一郎, 榊原诚 申请人:3M创新有限公司