专利名称:控制用于读传感器限定的掩模轮廓的方法
技术领域:
本发明涉及磁致电阻传感器的制造,更特别地,涉及用于精确限定(define)磁致电阻传感器的侧壁和道宽(track width)的方法。
背景技术:
计算机的核心是称为磁盘驱动器的组件。磁盘驱动器包括旋转磁盘、被与旋转磁盘的表面相邻的悬臂悬吊的写和读头、以及转动悬臂以放置读和写头于旋转磁盘上选定圆形磁道之上的致动器。读和写头直接位于具有气垫面(ABS)的滑块上。当磁盘未旋转时悬臂偏置滑块接触磁盘的表面,但是当磁盘旋转时,一薄层空气产生在滑块和旋转磁盘之间。当滑块骑在此气垫上时,采用写和读头来写磁印(magnetic impression)到旋转磁盘和从旋转磁盘读磁印。读和写头连接到根据计算机程序运行的处理电路以实现写和读功能。
写头包括掩埋在绝缘层(绝缘堆叠)中的线圈层,绝缘堆叠夹在第一和第二磁极片层之间。在写头的气垫面(ABS)处通过间隙层(gap layer)在第一和第二磁极片层之间形成一间隙,磁极片层在背间隙处连接。传导到线圈层的电流在该磁极片中感应磁通,其导致磁场在ABS处的该间隙处弥散出来,用于在移动介质上磁道中写前述磁印,例如在前述旋转磁盘的环形磁道中。
近来的读头设计中,自旋阀传感器,也称为巨磁致电阻(GMR)传感器,已被用于检测来自旋转磁盘的磁场。该传感器包括下文中称为间隔层(spacer layer)的非磁导电层,其夹在下文中称为被钉扎层和自由层的第一和第二铁磁层之间。第一和第二导线(lead)连接到自旋阀传感器用于通过其传导检测电流。被钉扎层的磁化被垂直于该气垫面(ABS)钉扎,自由层的磁矩位于平行与该ABS,但是响应于外磁场自由旋转。被钉扎层的磁化通常通过与反铁磁层的交换耦合被钉扎。
间隔层的厚度选择为小于通过传感器的传导电子的平均自由程。采用这种布置,传导电子的一部分通过间隔层与被钉扎层和自由层中每个的界面被散射。当被钉扎层和自由层的磁化彼此平行时,散射最小,当被钉扎层和自由层的磁化反平行时,散射最大。散射的变化与cosθ成比例地改变自旋阀传感器的电阻,其中θ是被钉扎层和自由层的磁化之间的角。在读模式中自旋阀传感器的电阻与来自旋转磁盘的磁场的大小成比例地变化。当检测电流传导经过自旋阀传感器时,电阻变化导致电势变化,其被探测到并被作为重放信号(playback signal)处理。
当自旋阀传感器采用单个被钉扎层时它被称为简单自旋阀。当自旋阀采用反平行(AP)被钉扎层时它被称为AP被钉扎自旋阀。AP自旋阀包括通过薄非磁耦合层例如Ru分隔开的第一和第二磁层。选择间隔层的厚度以反平行耦合被钉扎层的铁磁层的磁化。自旋阀还根据钉扎层在顶部(形成在自由层之后)还是在底部(形成在自由层之前)而称为顶或底自旋阀。
自旋阀传感器位于第一和第二非磁电绝缘读间隙层之间,第一和第二读间隙层位于铁磁性的第一和第二屏蔽层之间。在合并式(merged)磁头中单个铁磁层作用为读头的第二屏蔽层和写头的第一磁极片层。在背负式(piggyback)头中第二屏蔽层和第一磁极片层是分开的层。
被钉扎层的磁化通常通过铁磁层之一(AP1)与反铁磁材料例如PtMn的层的交换耦合而被固定。尽管反铁磁(AFM)材料例如PtMn本质上自然地没有磁化,当与磁材料交换耦合时,它可以强力钉扎铁磁层的磁化。
传统地,GMR传感器被构造为面内电流(CIP)GMR传感器,其中电流沿平行于构成该传感器的层的平面的方向从一侧到另一侧流经该传感器。近来,更多的关注集中在电流垂直平面(CPP)GMR传感器上。如其名称所暗示的,在CPP传感器中,电流沿垂直于构成该传感器的层的平面的方向从顶部到底部流经该传感器。
磁致电阻传感器的另一类型是隧道结传感器(TMR)或隧道阀。隧道阀包括被钉扎层和自由层,类似于GMR传感器。然而,代替自由层和被钉扎层之间具有非磁导电间隔层,隧道阀具有薄的电介质,非磁势垒层,其可以由例如氧化铝Al2O3构成。隧道阀基于经过薄势垒层的电子的自旋相关散射来运行。当自由和被钉扎层的磁矩彼此平行排列时,电子经过势垒层比它们的磁矩是反平行时要容易地多。因此,电流在垂直于构成该传感器的层的平面的方向上传输经过隧道阀,类似于电流垂直平面(CPP)GMR。
参见图1A,传统上磁致电阻传感器通过如下方法来构造,该方法包括首先在衬底104上沉积传感器层102为完整的膜(full film)层,其可以是例如氧化铝间隙层,或者在CPP GMR或隧道阀的情况下可以是导电磁材料例如NiFe。然后,沉积耐化学机械抛光的材料的完整膜层106(CMP终止层)。然后在耐CMP材料106上沉积抗反射涂覆(ARC)材料例如Duramide(Duramide)的层108,其对借助离子研磨的去除有抵抗力。然后形成掩模110以覆盖需要传感器的区域并暴露其它区域,掩模110包括光致反应(photoreactive)材料例如光致抗蚀剂。然后使用反应蚀刻工艺以除去ARC和耐CMP材料。
参见图1B,然后实施反应离子蚀刻112以除去耐离子研磨层108和CMP终止层106的未被光致抗蚀剂掩模110覆盖的部分。此工艺作为转印光致抗蚀剂掩模110的图像到下面的掩模层106、108上在业内是已知的。用于转印光致抗蚀剂掩模的图像到下面的层106、108上的RIE工艺被选择为可以容易地除去构成下面的层106、108的材料的RIE工艺。
参见图1B,可以看出因为用于进行图像转移的RIE工艺优选以比除去光致抗蚀剂层110更快的速率除去层108,掩模层106、108、110形成球根状或蘑菇形状。传感器性能在很大程度上取决于通过离子研磨工艺的传感器的无瑕疵的和精确的限定。例如,传感器的道宽由此离子研磨步骤限定,所以侧壁的精确定位是关键的。另外,道宽的精确限定取决于具有陡峭的尽可能接近垂直的传感器边缘。倾斜的传感器侧壁导致拙劣限定的道宽。此外,对于有效的自由层偏置,无瑕疵的垂直侧壁是需要的,因为硬偏置层将邻接此侧壁。
不幸地,球根状掩模结构妨碍了无瑕疵的精确的传感器限定。例如,球根状掩模结构在图像转印工艺期间和限定传感器的离子掩模工艺期间导致遮蔽(shadowing)。另外,球根状掩模形状导致层例如硬偏置层和导线层的不均匀沉积。
因此,强烈需要一种用于限定磁致电阻传感器的道宽和条(stripe)高度的方法,该方法可克服上述球根状掩模结构所导致的遮蔽问题。这样的方法将优选不导致显著增加的费用或工艺时间且将优选结合已经实现的制造工艺。
发明内容
本发明提供一种用于制造传感器的方法,其中该传感器限定的精确度不会被遮蔽效应降低。该方法包括在衬底上沉积一系列传感器层作为完整膜层。然后CMP终止层可被沉积在该传感器层之上,接着是抗反射涂覆(ARC)。然后光敏掩模形成在该耐离子研磨掩模层上。然后进行反应离子蚀刻以除去下面的该耐离子研磨掩模和该CMP终止层的暴露部分。施加大于70瓦(W),优选地至少100瓦(W)的电极台板功率(platen power)进行反应离子蚀刻。更优选地,施加约300W的电极台板功率进行反应离子蚀刻。更高电极台板功率的应用增加了材料去除的物理部分,增加了光致抗蚀剂掩模材料的去除速率,从而消除球根状或蘑菇形状的掩模层的形成,且消除了其导致的任何遮蔽效应。
实施反应离子蚀刻RIE之后,可进行离子研磨以限定该传感器。然后可沉积硬磁材料例如CoPtCr的层和导电材料例如Ta或Rh或某些其它材料的层,以形成硬偏置层和种子层(seed layer)。然后可实施CMP工艺以除去耐研磨掩模。
反应离子蚀刻RIE期间施加的该电极台板功率可以是70W到500W。更优选地,反应离子蚀刻期间施加的该功率可以为250W和350W之间或约300W。
本发明的构造传感器的方法有利地避免了球根状或蘑菇形掩模层的形成,从而防止通常与形成在耐离子研磨掩模上的光致抗蚀剂掩模的使用相关联的遮蔽效应。
结合附图阅读下面的优选实施例的详细说明,本发明的其它特征和优点将更加明显,附图中相同的附图标记表示相同的元件。
为了更完整地理解本发明的性质、优点、以及优选使用模式,应结合附图参考下面的详细说明,其中附图不符合比例。
图1A和1B是示出现有技术的制造磁致电阻传感器的方法的剖视图;图2是其中可采用本发明的磁盘驱动器系统的示意图;图3是滑块的ABS视图,示出了在其上的磁头的位置;图4是从图3的圆4截取的逆时针旋转90度且放大显示的根据本发明实施例的磁传感器ABS视图;图5-9是制造的各种中间状态中的磁致电阻传感器的ABS视图;以及图10是总结根据本发明实施例的制造磁致电阻传感器的方法的流程图。
具体实施例方式
下面的描述是关于用于实施本发明的目前预期的优选实施例。该说明的目的是阐明本发明的基本原理,而并不是要限制这里所声明的发明概念。
现在参考图2,示出实现本发明的磁盘驱动器200。如图2所示,至少一个可旋转的磁盘212被支持在轴214上,并且被磁盘驱动马达218所旋转。每个磁盘上的磁记录是磁盘212上的同心数据磁道的环状图案(未示出)的形式。
至少一个滑块213位于磁盘212附近,每个滑块213支持一个或更多个磁头组件221。当磁盘旋转时,滑块213在磁盘表面222之上径向进出移动,从而磁头组件221可以访问所需数据写在其中的磁盘的不同磁道。每个滑块213借助悬臂215连接到致动臂219。悬臂215提供轻微的弹力,该弹力偏置滑块213倚着磁盘表面222。每个致动臂219连接到致动装置227。如图2所示的致动装置227可以是音圈马达(VCM)。该VCM包括可在固定磁场中移动的线圈,该线圈移动的方向和速度被由控制器229提供的马达电流信号所控制。
磁盘存储系统运行期间,磁盘212的旋转在滑块213和磁盘表面222之间产生对滑块施加向上的力或举力的气垫。于是在正常运行期间该气垫平衡悬臂215的轻微的弹力,并且支持滑块213离开磁盘表面并且以小的充分恒定的距离稍微浮于磁盘表面之上。
磁盘存储系统的各种组元在运行中由控制单元229产生的控制信号来控制,例如存取控制信号和内部时钟信号。通常,控制单元229含有逻辑控制电路,存储设备和微处理器。控制单元229产生控制信号从而控制各种系统操作,例如线223上的驱动马达控制信号以及线228上的磁头定位和寻道控制信号。线228上的控制信号提供所需的电流分布(current profile),从而优化地移动并定位滑块213至磁盘212上的所需数据磁道。写和读信号借助记录通道225传达到写头和自读头传出。
参考图3,滑块213中的磁头221的取向可以看得更详细。图3是滑块213的ABS视图,正如所见,包括感应写头和读传感器的磁头位于滑块的尾沿。上述普通磁盘存储系统的说明和附图2仅以说明为目的。应该明显的是,磁盘存储系统可以包含多个磁盘和致动器,并且每个致动器可以支持多个滑块。
现在参考图4,根据本发明实施例的磁致电阻传感器400包括传感器堆叠(sensor stack)402。传感器堆叠包括磁被钉扎层404、磁自由层406、以及夹在它们之间的非磁导电间隔层408。应指出的是虽然根据GMR传感器来描述该传感器,但是它还可以是隧道阀(TMR)传感器,在这种情况下间隔层408将是非磁电绝缘材料例如氧化铝(Al2O3)。
被钉扎层404可以是被钉扎层的数种类型之一,例如简单被钉扎、AP被钉扎、自被钉扎或者AFM被钉扎传感器。为简单起见,该传感器在此将被说明为AP被钉扎,AP被钉扎传感器具有AP1层410、AP2层414、以及非磁AP耦合层例如夹在其间的Ru 412。AP1和AP2层410、414可以由几种磁材料构成,例如NiFe或CoFe,且具有通过AP1层410与反铁磁材料例如PtMn的层(AFM层)420的交换耦合被钉扎的磁矩416、418。
传感器堆叠402夹在第一和第二非磁电绝缘间隙层422、424之间,且可包括盖帽层426,例如Ta,从而保护传感器堆叠402在制造期间免于损坏。第一和第二硬偏置层428、430从传感器的侧面横向延伸且与自由层406静磁耦合从而将自由层的磁矩432偏置在平行于ABS的所需方向。第一和第二导电导线434、436设置在硬偏置层上面从而向传感器400提供检测电流。
现在参见图5-7,将说明用于制造传感器400的方法。更特别地,该方法是用于限定该传感器的宽度和条高度,且限定具有所需无瑕疵的、垂直的、被良好限定的侧壁的传感器。特别参见图5,一系列传感器层502被沉积在衬底504上,例如非磁的电绝缘的间隙层。传感器层502包括将要构成前面参见图4所描述的AFM 420、被钉扎层404、间隔层408、自由层406、以及盖帽层426的材料的完整膜层。还可以包括其它层。
参见图5,耐化学机械抛光的材料的层(CMP终止层)506可沉积在传感器层上。CMP终止层506可以是例如类金刚石碳(DLC)或某些其它材料。然后沉积抗反射涂覆材料(ARC)的层508。优选地,层508是诸如Duramide的材料,其对通过离子研磨的除去有抵抗力。层508还可以是例如硬的烘烤过的光致抗蚀剂。然后,光致反应材料或TIS的层例如光致抗蚀剂510被旋涂到层508上且被光刻构图以形成传感器掩模510。掩模510覆盖将要成为传感器堆叠402(图4)的区域,剩下其它区域未覆盖。
现在参考图6,进行反应离子蚀刻(RIE)600以转印该掩模的图案到下面的层508、506上。RIE工艺对其总的材料去除表现包括化学部分(chemical component)和机械或物理部分(physical component)。在等离子体室中可含有气体例如O2或者CO2优选O2的气氛中实施RIE工艺。施加功率到该气体以在室中激发等离子体,施加偏置电压到支持工件的夹盘,以使离子偏向该工件。离子对该工件的轰击导致材料从该工件的去除。该离子轰击的强度决定该材料去除的物理部分。该室中等离子体或其它气体的化学反应导致该材料去除的化学部分。
为了本发明的目的,RIE 600在具有O2气体等离子体的室中进行。如背景技术中所说明的,现有技术RIE工艺比除去光致抗蚀剂掩模510以更快速率除去耐研磨层508。我们已经发现这是因为材料去除的化学部分优先侵蚀耐研磨层508比侵蚀光致抗蚀剂层510更容易。根据本发明,RIE 600实施时具有增加的物理部分,从而增加光致抗蚀剂510相对于耐研磨材料508的去除的速率。
材料去除的物理部分的增加可通过增加施加到等离子体室中支持工件的夹盘的偏置电压来实现。增加的偏置电压导致等离子体中的离子以增加的速度进而增加的能力撞击工件。此偏压由电极台板功率决定。电极台板功率优选为至少70W,可以为大约从70W到500W。电极台板功率更优选为250W到350W,或者约300W。
使用如上所述地设定功率的RIE工艺的图像转印产生具有如图6所示圆锥形状的光致抗蚀剂掩模510,光致抗蚀剂层510没有任何悬垂物或蘑菇形状。这有利地防止了下述的离子研磨工艺期间的遮蔽。因为光致抗蚀剂层510没有任何悬垂物,该传感器可以通过离子研磨来精确地限定。
现在参考图7,为了限定该传感器,利用材料去除工艺700除去传感器层502的一部分,该材料去除工艺700优选为离子研磨工艺。可充分实施离子研磨工艺700以除去传感器层502的全部暴露部分,从而离子研磨向下延伸到间隙层504中。然而,优选离子研磨工艺终止于传感器层502的层面中的某一点,例如AFM层420(图4)中。离子研磨操作相关于传感器层502的这样的终止可称为部分研磨工艺。该离子研磨操作除去光致抗蚀剂掩模510的大多数或全部,相对完整地留下耐离子研磨掩模508和CMP终止层506。
参见图8,全膜沉积硬磁材料的层802以提供完成的传感器400中的硬偏置层428、430(图4)。沉积该硬磁材料之前可沉积一个或多个种子层(未示出)。这样的种子层可包括Cr、CrMo、Si、NiTa。硬磁材料802可以是例如CoptCr或具有高矫顽力(Hc)的某些其它磁材料。
沉积硬磁材料802之后,沉积导电材料例如Cu、Au、Rh或者Ta的层804以提供用于导线434、436(图4)的材料。额外的CMP保护层806例如DLC沉积在该导电材料之上。其后,参考图9,可实施化学机械抛光工艺(CMP),以除去掩模508并平坦化导线804。CMP终止层806防止该CMP工艺损坏导线804。第一CMP保护层506在该CMP工艺期间保护该传感器免于损坏。CMP工艺之后全部留下的保护材料806和506通过RIE工艺被移除。其后,可沉积非磁的电绝缘材料例如氧化铝的层以形成第二间隙层424(图4)。
参见图10,将总结如上所述的用于制造磁致电阻传感器的方法。步骤1002中提供衬底。此衬底可以是例如氧化铝间隙层504。然后,步骤1004中沉积一系列传感器层502完整膜。其后,步骤1006中,CMP终止层506被沉积,步骤1008中ARC层508被沉积。然后,步骤1010中旋涂上光致抗蚀剂材料的层,然后被光刻构图以形成光致抗蚀剂掩模510,其覆盖传感器区域且留下非传感器区域未覆盖。其后,步骤1012中,实施材料去除工艺,例如反应离子蚀刻(RIE)。RIE工艺600实施时具有相对高或者至少70W的电极台板功率。该电极台板功率可以为从70W到500W且优选为250W到350W或约300W。RIE 600产生具有圆锥或圆顶形状的光致抗蚀剂掩模,没有任何蘑菇状悬垂。
继续参考图10,步骤1014中实施离子研磨工艺700以除去未被掩模508和CMP终止层506所覆盖的所需量的传感器材料。然后,步骤1016中沉积硬磁材料的层802,步骤1018中沉积导电导线材料的层804。步骤1019中沉积耐CMP材料例如类金刚石碳DLC的层。然后,步骤1020中实施化学机械抛光工艺(CMP)以除去剩余的耐研磨掩模508,并且平坦化导线材料层804。可实施可选的第二反应离子蚀刻(RIE)工艺以除去CMP终止掩模506。然后,步骤1022中可沉积非磁的电绝缘材料例如氧化铝的层以形成间隙层424。
虽然上面描述了各种实施例,但是应明白的是它们仅以示例的方式被说明,而不是限制。落入本发明范围内的其它实施例对本领域技术人员也将变得明显。因此,本发明的广度和范围不应局限于任何上述示例性实施例,而应仅根据下面的权利要求和其等价物来定义。
权利要求
1.一种用于制造磁致电阻传感器的方法,包括提供衬底;沉积多个传感器层;沉积抗反射涂覆(ARC)层;在该抗反射涂覆(ARC)层上形成光致抗蚀剂掩模;实施反应离子蚀刻(RIE)从而除去该ARC层的未被该光致抗蚀剂掩模覆盖的部分,在具有电极台板的等离子体室中实施该RIE,该RIE的实施还包括施加至少70W的电极台板功率。
2.如权利要求1所述的方法,其中该电极台板功率为70W和500W之间。
3.如权利要求1所述的方法,其中该电极台板功率为250W和350W之间。
4.如权利要求1所述的方法,其中该电极台板功率为约300W。
5.一种用于制造磁致电阻传感器的方法,包括提供衬底;沉积多个传感器层;沉积对通过化学机械抛光的去除有抵抗力的材料的层(CMP终止层);沉积耐离子研磨掩模层;在该耐离子研磨层上形成光致抗蚀剂掩模;实施反应离子蚀刻(RIE)从而除去该耐离子研磨掩模的未被该光致抗蚀剂掩模覆盖的部分,在具有电极台板的等离子体室中实施该RIE,实施该RIE还包括施加至少70W的电极台板功率。
6.如权利要求5所述的方法,其中该CMP终止层含有类金刚石碳。
7.如权利要求5所述的方法,其中该耐离子研磨材料包括Duramide。
8.如权利要求5所述的方法,其中施加到该电极台板的该电极台板功率为70W和500W之间。
9.如权利要求5所述的方法,其中施加到该电极台板的该电极台板功率为250W和350W之间。
10.如权利要求5所述的方法,其中施加到该电极台板的该电极台板功率为约300W。
11.如权利要求5所述的方法,其中该RIE在含有O2气氛的等离子体室中实施。
12.如权利要求5所述的方法,还包括实施离子研磨之后沉积硬磁材料的层。
13.如权利要求12所述的方法,还包括沉积该硬磁材料之后沉积导电导线材料。
14.如权利要求5所述的方法,还包括,实施离子研磨之后沉积硬磁材料的层;沉积导电导线材料;以及实施化学机械抛光(CMP)。
15.如权利要求14所述的方法,还包括实施该CMP之后,沉积非磁的电绝缘材料的层。
16.如权利要求5所述的方法,其中该光致抗蚀剂掩模是TIS。
17.如权利要求5所述的方法,还包括,实施离子研磨之后沉积种子层;沉积硬磁材料的层;沉积非磁的导电导线材料的层;实施化学机械抛光;以及沉积非磁的电绝缘间隙材料的层。
18.如权利要求17所述的方法,其中该非磁的导电导线材料包括Rh。
19.如权利要求17所述的方法,其中该非磁的导电导线材料包括Ta。
20.如权利要求17所述的方法,其中该非磁的导电导线材料包括Au。
全文摘要
本发明提供一种用于构造磁致电阻传感器的方法,其避免了传感器限定期间掩模结构的遮蔽效应。该方法包括抗反射涂覆(ARC)及沉积在其上的光致抗蚀剂掩模的使用。形成该光致抗蚀剂掩模以覆盖所需传感器区域,留下非传感器区域暴露着。实施反应离子蚀刻以转印该光致抗蚀剂掩模的图案到下面的该ARC层上。该反应离子蚀刻(RIE)实施时具有较高的电极台板功率。此更高的电极台板功率增加了晶片的离子轰击,从而相对于化学部分增加了材料去除的物理(即机械)部分。该材料去除的物理部分的增加导致该光致抗蚀剂掩模材料相对于该耐离子研磨掩模的增加的去除速率。这避免了球根状或蘑菇形的光致抗蚀剂掩模的形成,因此避免了随后的制造工艺期间的遮蔽效应。
文档编号H01L43/12GK1812150SQ20051011843
公开日2006年8月2日 申请日期2005年10月28日 优先权日2005年1月28日
发明者理查德·J·康特雷拉斯, 迈克尔·费尔德鲍姆, 穆斯塔法·M·皮纳巴西 申请人:日立环球储存科技荷兰有限公司