制造导电粒子的方法和利用该方法的各向异性导电膜的制作方法

文档序号:7212750阅读:200来源:国知局
专利名称:制造导电粒子的方法和利用该方法的各向异性导电膜的制作方法
技术领域
本发明涉及一种制造导电粒子的方法以及一种利用该方法的各向异性导电膜,具体地,涉及一种制造导电粒子的方法和一种利用该方法的各向异性导电膜,其中,纳米粉末结合在基于大分子树脂的粒子上,并且镀覆非电解镀(electroless)导电层,从而省略了用于形成导电粒子的镀覆工艺的预处理工艺,并将镀覆工艺从两次简化到一次,从而减少了在传统工艺中产生的有毒物质,以提高该工艺的稳定性并降低制造成本。
背景技术
随着电子器件变得复杂和多功能化同时变得微型化且越来越薄,电子器件中集成电路的封装连接变得越来越重要。具体地,由于移动通信终端具有各种功能,并需要设计得轻薄,所以对用于移动通信终端的连接器件的高密度封装的研究变得更加活跃。
虽然高密度封装包括倒装(flip-flop)法和面向下(face-down)法,但是更为通用的是使用各向异性导电胶膜(anisotropic conductive adhesivefilm)的简单连接方法。
各向异性导电胶膜是一种其上散布有导电粒子(例如,涂覆有金属的塑料粒子或者金属粒子)的膜上的胶粘剂。各向异性导电胶膜广泛地用于LCD(液晶显示器)装配领域中的LCD面板、TCP(载带封装)或PCB(印刷电路板)和TCP之间的电连接、以及用于移动通信终端的PCB的粘合。
各向异性导电胶膜包含导电粒子和绝缘胶粘剂。导电粒子需要均匀地分布在膜片中,各向异性导电胶膜需要在顺连接(connection-wise)方向上具有高导电性同时不会在顺连接方向之外的方向上造成电短路。例如,在由3M INNOVATIVE PROPERTIES公司于2002年9月23日提交并于2003年9月29日公开的题目为“ANISOTROPICALLYCONDUCTIVE ADHESIVE COMPOSITION AND ANISOTROPICALLYCONDUCTIVE ADHENSIVE FILM FORMED FROM IT”的第10-2003-0076928号韩国专利公报以及由CHELL INDUSTRIES公司于2004年11月2日提交并于2005年5月11日公布的题目为“INSULATEDCONDUCTIVE PARTICLES AND AN ANISOTROPIC CONDUCTIVEFILM CONTAINING THE PARTICLES”的第10-2005-0043639号韩国专利公报中公开了传统的各向异性导电胶膜。
使用金属粒子、涂覆有树脂的金属粒子或涂覆有金属的树脂粒子作为各向异性导电胶膜的要素的导电粒子。
然而,当将金属粒子用作导电粒子时,无法在胶粘剂中均匀分布,金属粒子的形状和直径是不均匀的,在相邻粒子之间发生电短路。此外,当为了防止电短路而采用涂覆有树脂的金属粒子时,仍然存在分散性和不均匀性的问题。
因此,广泛地采用这样的方法在作为提供均匀性和分散性的基本粒子的树脂上涂覆金属。然而,在此情况下,金属的表面会在顺连接方向的垂直方向上接触,从而造成电短路。因此,经常采用其中附加涂覆了树脂的三层导电粒子(triple conductive particle)。将金属涂覆在树脂上的方法包括物理方法(例如淀积、溅射、镀覆和热喷涂)和化学方法。在此情况下,因为需要将金属均匀地涂覆在大分子树脂粒子上,所以通常采用镀覆。
然而,广泛用作用于制造导电粒子的技术的镀覆的缺点在于,镀覆对环境有害,并且由于导电用金属层和大分子树脂之间的粘合力低从而金属层不能正确地执行功能连接,所以大分子和镀膜是分开的。
因此,为了解决大分子树脂和金属层之间的间隔问题,需要一种用于提高镀膜和大分子之间的粘合力的方法。
为了实现此目的,已经开发了一种方法,在该方法中,在基于大分子树脂的粒子上镀覆与使用的传统金属中的物质相比具有相对较高的粘合力的金属层(诸如镍)和具有高导电性的金属(例如金)。即,传统大分子粒子的问题在于树脂粒子和金属层的粘合力。为了提高导电性,虽然覆盖具有低电阻率的金属(例如金)是有优势的,但是这种金属不易被镀在大分子上。因此,为了解决该问题,形成两层,其中,在大分子上覆盖了作为缓冲层的镍之后,再覆盖上金。
图1是示出了用于制造导电粒子的传统镀覆工艺的流程图。
如图1所示,执行去除表面上的灰尘或油脂物质的清洗工艺(S110)。清洗工艺可包括溶剂清洗、碱清洗和电解清洗。
然后,为了使后续工艺可有效地进行,执行用水的清洗工艺,以漂洗在所述清洗工艺中使用的化学制剂。
然后,执行用于形成微观凹凸部的蚀刻工艺(S120)。例如,根据该蚀刻工艺,将树脂浸入含有氧化剂的溶液中以提高表面粗糙度以及引起化学变化,从而提高了表面的粘合力。
然后,执行表面调整工艺,中和(neutralize)已经经受了利用强酸的蚀刻工艺的表面,以使得可以有效地执行后续的镀覆工艺(S130)。
然后,执行利用盐酸的预浸工艺和用于形成催化核(nucleus)的催化工艺(S140)。
然后,执行加速工艺(S150),并且执行非电解镀下层(underlayer)镀覆(S160)和非电解镀导电层镀覆(S170),以完成镀覆工艺。
然而,虽然在用于形成导电粒子的传统镀覆工艺中覆盖了用于提高粘合力的镍层和具有高导电性的金层来制造导电粒子,但是仍然需要预处理工艺,例如清洗工艺(S110)、蚀刻工艺(S120)、表面调整工艺(S130)、预浸/催化工艺(S140)和加速工艺(S150),并且用于执行预处理工艺的物质(例如强酸和强碱)产生对人体致命和有害的物质,这是环境污染的主要原因。此外,传统工艺的缺点在于,需要包括镀镍和镀金的两次镀覆工艺。此外,为了提高金属层和大分子之间的粘合力,经常需要将官能团键合在大分子树脂上的处理工艺。

发明内容
本发明的目的是提供一种制造导电粒子的方法,其中,纳米粉末键合在基于大分子树脂的粒子上,按这样的方式镀覆非电解镀导电层,即,省略了用于形成导电粒子的镀覆工艺的预处理工艺,并将镀覆工艺从两次简化到一次,从而减少了在传统工艺中产生的有毒物质,提高了工艺的稳定性并降低了制造成本。
本发明的目的是提供一种利用制造导电粒子的所述方法的各向异性导电膜。
为了实现上述目的,提供了一种制造导电粒子的方法,该方法包括以下步骤(a)制备基于大分子树脂的粒子;(b)在所述粒子的表面上形成纳米粉末的层;以及(c)使所述纳米粉末的层经受非电解镀。
根据本发明的制造导电粒子的方法,优选地,所述大分子树脂选自于由丙烯酸树脂、聚氨酯树脂和乙烯树脂组成的组。
根据本发明的制造导电粒子的方法,优选地,其中,所述粒子的直径范围为1μm至30μm。
根据本发明的制造导电粒子的方法,优选地,所述纳米粉末选自于由Ni、Ag、Cu、Al、Cr、及它们的混合物以及它们的化合物组成的组。
根据本发明的制造导电粒子的方法,优选地,所述纳米粉末选自于由Pt、Pd、Sn-Pd和Sn-Pt组成的组。
根据本发明的制造导电粒子的方法,优选地,所述纳米粉末的层的厚度范围为1nm至500nm。
根据本发明的制造导电粒子的方法,优选地,步骤(b)包括利用干燥物理粘合形成所述纳米粉末的层。
根据本发明的制造导电粒子的方法,优选地,步骤(c)中的非电解镀包括非电解镀金。
根据本发明的制造导电粒子的方法,优选地,该方法还包括在利用干燥物理粘合形成所述纳米粉末的层之后清洗所述纳米粉末的表面。
还提供了一种各向异性导电膜,其是利用本发明的制造导电粒子的方法而制造的。


图1是示出了制造导电粒子的传统镀覆工艺的流程图。
图2是示出了根据本发明优选实施例的制造导电粒子的方法的流程图。
图3是示出了利用根据本发明优选实施例的制造导电粒子的方法制造的导电粒子的放大图。
具体实施例方式
现在,将参照附图详细描述本发明的上述目的和其它目的以及特征和优点。
图2是示出了根据本发明优选实施例的制造导电粒子的方法的流程图。
如所示出的,根据本发明优选实施例的用于制造导电粒子的方法包括三个步骤。
首先,制备基于大分子树脂的粒子(S210)。
优选地,该大分子树脂选自于由丙烯酸树脂、聚氨酯(urethane)树脂和乙烯树脂组成的组,基于大分子树脂的粒子是直径范围为1μm到30μm的球形粒子。
然后,在粒子的表面上形成纳米粉末的层(S220)。可利用干燥物理粘合来形成该层。纳米粉末用来代替用于镀覆具有高导电性的金属层的下层,并且采用了在形成层之后允许在其表面上进行非电解镀的物质。例如,纳米粉末可以是Ni、Ag、Cu、Al、Cr、其混合物或其化合物,并且厚度范围为1nm至500nm。也可使用Pt、Pd、Sn-Pd或Sn-Pt。
虽然未示出,但是可进一步执行纳米粉末的表面的清洗工艺。
在执行了步骤S220之后,纳米粉末层将经受具有高导电性的金属的非电解镀,以形成导电层(S230)。例如,可通过非电解镀来镀Au。
如上所述,根据用于制造导电粒子的方法,可省略传统方法中所需的用于形成导电粒子的镀覆工艺的预处理工艺,与传统方法中执行两次镀覆工艺相比,可仅执行一次镀覆工艺,以允许通过非电解镀来制造导电粒子。
图3是示出了利用根据本发明优选实施例的制造导电粒子的方法制造的导电粒子的放大图。
图3中示出的导电粒子是利用Nara Machinery公司制造的杂化设备以16000rpm的速度执行3分钟干燥物理粘合的结果,其中,直径为90nm的由Cu组成的25克的纳米粉末层形成在基于4μm球形PMMA的大分子树脂的25克粒子上,并执行清洗工艺和非电解镀金。
此外,本发明提供了一种利用该制造导电粒子的方法制造的各向异性导电膜。利用参照图2描述的导电粒子来制造该各向异性导电膜。除了利用图2中示出的方法制造的导电粒子之外,所述各向异性导电膜与传统的各向异性导电膜相同。因此,将省略详细的描述。
虽然已经参照本发明的优选实施例具体示出和描述了本发明,但是本领域的技术人员应该理解,在不脱离由所附权利要求限定的本发明的精神和范围的情况下,可在形式和细节上进行各种改变。
如上所述,根据本发明,纳米粉末结合在基于大分子树脂的粒子上,并镀覆非电解导电层,从而省略了用于形成导电粒子的镀覆工艺的预处理工艺并将镀覆工艺从两次简化到一次,从而减少了在传统工艺中产生的有毒物质,提高了工艺的稳定性,并降低了制造成本。
本公开涉及包含在于2005年10月31号提交的第10-2005-0102912号在先韩国申请内的主题,其全部内容通过引用包含于此。
权利要求
1.一种制造导电粒子的方法,该方法包括以下步骤(a)制备基于大分子树脂的粒子;(b)在所述粒子的表面上形成纳米粉末的层;以及(c)使所述纳米粉末的层经受非电解镀。
2.根据权利要求1所述的方法,其中,所述大分子树脂选自于由丙烯酸树脂、聚氨酯树脂和乙烯树脂组成的组。
3.根据权利要求1所述的方法,其中,所述粒子的直径范围为1μm至30μm。
4.根据权利要求1所述的方法,其中,所述纳米粉末选自于由Ni、Ag、Cu、Al、Cr、及它们的混合物以及它们的化合物组成的组。
5.根据权利要求1所述的方法,其中,所述纳米粉末选自于由Pt、Pd、Sn-Pd和Sn-Pt组成的组。
6.根据权利要求1所述的方法,其中,所述纳米粉末的层的厚度范围为1nm至500nm。
7.根据权利要求1所述的方法,其中,所述步骤(b)包括利用干燥物理粘合形成所述纳米粉末的层。
8.根据权利要求1所述的方法,其中,所述步骤(c)中的非电解镀包括非电解镀金。
9.根据权利要求1所述的方法,其中,所述方法还包括在利用干燥物理粘合形成所述纳米粉末的层之后清洗所述纳米粉末的表面。
10.一种各向异性导电膜,其是利用根据权利要求1至权利要求9中的一项所述的方法而制造的。
全文摘要
本发明提供了制造导电粒子的方法和利用该方法的各向异性导电膜。该方法包括以下步骤(a)制备基于大分子树脂的粒子;(b)在该粒子的表面上形成纳米粉末的层;以及(c)使纳米粉末的层经受非电解镀。根据本发明,纳米粉末结合在基于大分子树脂的粒子上,并镀覆非电解镀导电层,从而省略了用于形成导电粒子的镀覆工艺的预处理工艺,并将镀覆工艺从两次简化到一次,由此减少了在传统工艺中产生的有毒物质,提高了工艺的稳定性并降低了制造成本。
文档编号H01B5/14GK1959867SQ20061014271
公开日2007年5月9日 申请日期2006年10月30日 优先权日2005年10月31日
发明者李美贞, 洪性齐, 金元根, 韩正仁 申请人:电子部品研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1