专利名称:薄膜晶体管和显示器件的制作方法
技术领域:
本发明涉及一种包括作为沟道的氧化物半导体层的薄膜晶体管(TFT)和提供有该薄膜晶体管的显示器件。
背景技术:
诸如氧化锌或氧化铟镓锌(IGZO)的氧化物半导体具有优良的特性而充当半导体器件的活性层,并且最近正在被开发,目的是应用于TFT、发光器件、透明导电膜等。例如,与先前在液晶显示器中使用的其中沟道是非晶硅(a-Si:H)的TFT相比,使用氧化物半导体的TFT具有高电子迁移率并具有优良的电特性。此类TFT还具有可能甚至在约室温的低温下实现高迁移率的优点。另一方面,已知氧化物半导体是不够耐热的,并且由于TFT制造过程中的热处理期间的氧、锌等的解吸附而引起晶格缺陷。此类晶格缺陷降低氧化物半导体层的电阻,因为在电学上,杂质水平随之变低。因此,在正常导通模式下(即在耗尽模式下)执行导致该结果发生的操作,在该模式下,甚至在不施加栅极电压的情况下也提供漏极电流的流动。结果,随着缺陷水平的增加,阈值电压降低,从而增加漏电流。先前提出的是通过使用非晶氧化铝(Al2O3)来构成栅极绝缘层以降低界面上的缺陷水平,所述栅极绝缘层与例如作为氧化物半导体的沟道层接触(作为示例,参考专利文献1) O引用列表专利文献专利文献1 专利No. 3913756的说明书非专利文献非专利文献l:Cetin Kilic 和 1 个其他人,n-type doping of oxides by hydrogen, "Applied Physics Letters,,,2002, Volume #81, issue No. 1, p. 73 to p. 75.
发明内容
然而,用专利文献1所述的结构,栅极绝缘层具有IOOnm或之上、并且更优选地 200nm或之上的厚度,因为氧化铝具有慢成膜速率,对于形成此类厚氧化铝层而言,成膜将花费的时间是长的。此外,除由于氧的解吸附引起的晶格缺陷之外,据报道氢也是降低氧化物半导体中的杂质水平的元素(作为示例,参考非专利文献1)。换言之,如果氧化物半导体被暴露于空气,则空气中的氢还原氧化物半导体中的氧。作为针对于此所采取的措施,先前,将TFT 形成为在其上面具有由氧化硅、氮化硅等制成的钝化膜(保护膜)以便没有那么多的氢从中通过。然而,此类先前钝化膜在保护方面仍被认为是不够的,并且因此已经需要开发一种具有能够充当针对氧和氢的阻挡层的增强能力的钝化膜。鉴于此类问题提出了本发明,并且本发明的第一目的是提供一种薄膜晶体管,其能够抑制氧等从氧化物半导体层的解吸附并减少成膜所花费的时间,并且提供一种提供有该薄膜晶体管的显示器件。本发明的第二目的是提供一种薄膜晶体管,其能够抑制由空气中的氢引起的氧化物半导体中的氧的还原,并抑制氧等从氧化物半导体层的解吸附,并且提供一种提供有该薄膜晶体管的显示器件。本发明的实施例中的第一薄膜晶体管设置有位于栅极电极与氧化物半导体层之间的栅极绝缘膜。在氧化物半导体层的栅极电极的一侧,和在与栅极电极相对的一侧,设置层积膜。该层积膜包括由氧化铝制成的第一层和由含有硅(Si)的绝缘材料制成的第二层。本发明的实施例中的第二薄膜晶体管在基板上按顺序设置栅极电极、栅极绝缘膜、氧化物半导体层、沟道保护层、源极/漏极电极和钝化膜。钝化膜由含有铝(Al)、钛(Ti) 和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。本发明的实施例中的第一显示器件设置有薄膜晶体管和显示元件。其中的薄膜晶体管由上述本发明的第一薄膜晶体管构成。本发明的实施例中的第二显示器件设置有薄膜晶体管和显示元件。其中的薄膜晶体管由上述本发明的第二薄膜晶体管构成。在本发明的实施例中的第一薄膜晶体管中,在氧化物半导体层的栅极电极的一侧和与栅极电极相对的一侧提供层积膜。该层积膜包括由氧化铝制成的第一层和由包含硅 (Si)的绝缘材料制成的第二层。因此,在得到的结构中,氧化物半导体层在两侧被由氧化铝制成的第一层夹在中间。因此,这抑制了氧等从氧化物半导体层的解吸附,从而使电特性稳定。此外,由于第二层由包括硅(Si)的绝缘材料制成,与由单层氧化铝构成的先前栅极绝缘层相比,能够减少成膜所花费的时间。在本发明的实施例中的第二薄膜晶体管中,钝化膜由包括铝(Al)、钛(Ti)和钽 (Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。此类结构抑制氢到达氧化物半导体层,使得在氧化物半导体层中不发生由于空气中的氢而引起的氧的还原。此外,在氧化物半导体层中也不发生氧等的解吸附,从而在得到的薄膜晶体管中使阈值电压稳定,并且抑制截止电流增加。根据本发明的实施例中的第一薄膜晶体管,在氧化物半导体层的栅极电极的一侧,和在与栅极电极相对的一侧,设置了层积膜,该层积膜包括由氧化铝制成的第一层和由包括硅(Si)的绝缘材料制成的第二层。因此,在得到的结构中,氧化物半导体层可以在两侧被由氧化铝制成的第一层夹在中间。因此,这抑制了氧等从氧化物半导体层的解吸附,从而使电特性稳定。此外,由于第二层由包括硅(Si)的绝缘材料制成,与由单层氧化铝构成的先前栅极绝缘层相比,能够减少成膜所花费的时间。在本发明的实施例中的第二薄膜晶体管中,钝化膜由包括铝(Al)、钛(Ti)和钽 (Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。此类结构能够抑制由空气中的氢引起的氧化物半导体层中的氧的还原,并且还能够抑制氧化物半导体层中的氧等的解吸附。
[图1]示出本发明的实施例中的显示器件的结构的视图。
[图2]示出图1的示例性像素驱动电路的等效电路图。[图3]示出图2的TFT的结构的横截面图。[图4]示出图1的显示器区域的结构的横截面图。[图5]图1的显示器件的横截面图,按照处理的顺序示出其制造方法。[图6]示出图5中的处理之后的处理的横截面图。[图7]示出修改示例1中的TFT的结构的横截面图。[图8]示出修改示例2中的TFT的结构的横截面图。[图9]示出修改示例3中的TFT的结构的横截面图。[图10]示出本发明的第二实施例中的TFT的结构的横截面图。[图11]图10的TFT的横截面图,按照处理的顺序示出其制造方法。[图12]示出图11中的那些处理之后的处理的横截面图。[图13]示出了关于氮的添加与钝化膜的密度之间的相关性的研究结果的图。[图14]示出本发明的第三实施例中的TFT的结构的横截面图。[图15]示出当在TFT中的钝化膜是层积膜或单层膜时的TFT的特性的图。[图16]示出包括上述一个或多个实施例中的显示器件的模块的示意性结构的平面图。[图17]上述实施例中的显示器件的立体图,示出应用示例1中的其外观图。[图18](A)是应用示例2中的从正面看的立体外部视图,并且⑶从其中的背面看的立体外观图。[图19]应用示例3中的立体外观图。[图20]应用示例4中的立体外观图。[图21](A)是应用示例5中的处于打开状态的前视图,⑶是其侧视图,(C)是处于闭合状态的前视图,(D)是其左视图,(E)是其右视图,(F)是其顶视图,并且(G)是其底视图。
具体实施例方式下面,通过参考附图,详细地描述本发明的实施例。请注意,按照以下顺序给出说明。第一实施例(在第一薄膜晶体管中,栅极绝缘膜、沟道保护层和钝化膜中的每一个都是层积膜的示例)第二实施例(在第二薄膜晶体管中具有单层钝化膜的示例)第三实施例(在第二薄膜晶体管中具有层积钝化膜的示例)修改示例1 (在第一薄膜晶体管中,栅极绝缘膜和沟道保护层都是层积膜的示例)修改示例2 (在第一薄膜晶体管中,栅极绝缘膜和钝化膜都是层积膜的示例)(第一实施例)图1是示出本发明的第一实施例中的显示器件的结构的图。此显示器件用于用作超薄型有机发光彩色显示器件。例如,在此显示器件中,在稍后将描述的TFT基板1上面设置有显示区域110,其中,以矩阵形式布置像素PXLC。每个像素PXLC由多个有机发光元件 10R、10G和IOB中的任何一个构成,其中每个有机发光元件都是显示元件且稍后将描述。此显示区域110周围设置有作为信号部的水平选择器(HSEL) 121、各自作为扫描器部的写扫描器(WSCN) 131和电源扫描器(DSCN) 132。在显示区域110中,沿着列方向布置信号线DTL 101至10η,并且沿着行方向布置扫描线WSL 101至IOm和电源线DSL 101至10m。在信号线DTL与扫描线WSL之间的每个交叉点处设置有包括有机发光元件PXLC (10R、IOG和IOB中的任何一个(子像素))的像素电路140。信号线DTL中的每一个被连接到水平选择器121,并且由此水平选择器121,为每个信号线DTL提供视频信号。扫描线WSL中的每一个被连接到写扫描器131。电源线DSL 中的每一个被连接到电源线扫描器132。图2是示出像素电路140的示例的图。像素电路140是有源型驱动电路,包括采样晶体管3A、驱动晶体管3B、存储电容3C和作为有机发光元件PXLC的发光元件3D。在采样晶体管3A中,其栅极被连接到相应的扫描线WSL 101,其源极或栅极被连接到相应的信号线DTL 101,并且其余电极被连接到驱动晶体管3B的栅极g。在驱动晶体管3B中,其漏极d被连接到相应的电源线DSL 101,并且其源极s被连接到发光元件3D的阳极。在发光元件3D中,其阴极被连接到接地配线图案3H。这里请注意,此接地配线图案3H被设置为用于所有像素PXLC之间的共享使用。存储电容3C被连接在驱动晶体管3B中的源极s与栅极g之间。依照来自相应扫描线WSL 101的控制信号来使采样晶体管3A导通,并且被操作用于对由相应信号线DTL 101提供的视频信号的信号电位进行采样以便存储到存储电容3C 中。驱动晶体管3B被操作用于在在第一电位下接收到来自电源线DSL 101的电流源之后, 依照存储在存储电容3C中的信号电位来向发光元件3D提供驱动电流。发光元件3D被配置为通过这样提供的驱动电流以依照视频信号的信号电位的亮度发光。图3是示出构成图2所示的采样晶体管3A和驱动晶体管3B的TFT20的横截面结构的图。TFT 20是氧化物半导体晶体管,在基板10上按顺序包括,例如,栅极电极21、栅极绝缘膜22、氧化物半导体层23、沟道保护层24、源极/漏极电极25和钝化膜26。在本文中, 氧化物半导体意指锌、铟、镓、锡或其混合物的氧化物,并且被已知具有优良的半导体特性。栅极电极21用于通过施加于TFT 20的栅极电压来控制氧化物半导体层23中的电子密度。栅极电极21具有例如双层结构,50nm厚度的钼(Mo)层和400nm厚度的铝(Al) 或铝合金层。以铝-钕合金层作为铝合金层的示例。栅极绝缘膜22、沟道保护层24和钝化膜26中的每一个都是第一层31和第二层 32的层积结构。第一层31由氧化铝制成,并且第二层32由包括硅(Si)的绝缘材料制成。 用此类结构,在得到的显示器件中,能够抑制氧等的解吸附(desorption)在氧化物半导体层23中的发生,并且能够减少栅极绝缘膜22、沟道保护层24和钝化膜26的形成所花费的时间。第一层31是用于通过抑制氧等的解吸附在氧化物半导体层23中的发生并通过由于氧化铝的优良的气体阻挡层电阻而抑制氧化物半导体层中的载流子浓度的任何变化来稳定TFT 20的电特性。第二层32是用于在不引起TFT 20的特性退化的情况下减少栅极绝缘膜22、沟道保护层24和钝化膜26的成膜所花费的时间。第二层32优选地包括氧化硅膜、氮化硅膜和氧氮化硅膜中的一个或多个。
氧化物半导体由于氧和水分含量的影响而显示出半导体中的载流子浓度的很大变化。结果,当TFT 20被长时间驱动时,或者在TFT 20的制造过程期间,TFT 20常常显示出电特性的变化。考虑到此,通过将氧化物半导体层23夹在栅极绝缘膜22的第一层31与沟道保护层24的第一层31之间,能够减少诸如氧的气体的影响,从而能够增加TFT 20的电特性的稳定性和可靠性。第一层31和第二层32优选地被设置为彼此层叠,使得第一层31出现在氧化物半导体层23侧。这是因为此类结构允许直接将氧化物半导体层23夹在栅极绝缘膜22的第一层31与沟道保护层24的第一层31之间,使得从而能够增强产生的效果。此外,可以通过用钝化膜26的第一层31覆盖氧化物半导体层23来进一步地增加 TFT 20的稳定性和可靠性,使得从而能够增强产生的效果。例如,栅极绝缘膜22的第一层31优选地具有IOnm或之上但为IOOnm或之下的厚度,并且其第二层32优选地具有IOOnm或之上但为600nm或之下的厚度。例如,沟道保护层24的第一层31优选地具有IOnm或之上但为IOOnm或之下的厚度,并且其第二层32优选地具有IOOnm或之上但为600nm或之下的厚度。例如,钝化膜26的第一层31优选地具有IOnm或之上但为IOOnm或之下的厚度,并且其第二层32优选地具有IOOnm或之上但为 600nm或之下的厚度。例如,氧化物半导体层23具有20nm或之上但为IOOnm或之下的厚度,并且由氧化铟镓锌(IGZO)制成。源极/漏极电极25由钼、铝或钛的金属材料制成,或者通过由此类金属材料制成的多层膜构成。例如,源极/漏极电极25的具体结构优选地是从氧化物半导体层23的一侧起包括具有50nm厚度的钼层25A、具有500nm厚度的铝层25B和具有50nm厚度的钛层25C 的层积膜。其原因如下。在稍后将描述的每个有机发光元件10RU0G和IOB中,如果阳极 52由主要包括铝的金属材料制成,则需要使用磷酸、硝酸、醋酸等的混合溶液度对这些阳极 52应用湿法蚀刻。在这种情况下,由于蚀刻速率非常低,所以可以在基板10的一侧保留钛层25C。结果,其因此能够将在基板10的一侧的钛层25C连接到稍后将描述的有机发光元件10RU0G和IOB的阴极55。这里请注意,根据TFT 20的用途和应用,源极/漏极电极25还可以由钼层、铝层和另一钼层的层积膜或钛层、铝层和另一钛层的层积膜构成。图4是示出显示区域110的横截面结构的图。在显示区域110中,有机发光元件 10RU0G和IOB被如同矩阵一样按顺序布置在一起。每个有机发光元件IOR发射红光,每个有机发光元件IOG发射绿光,并且每个有机发光元件IOB发射蓝光。有机发光元件10R、 IOG和IOB的每一个被成形为在平面图中类似于条带的形状,并且相邻有机发光元件10R、 IOG和IOB中的组合形成像素。有机发光元件10RU0G和IOB中的每一个具有层积结构,该层积结构在TFT基板 1上按顺序包括平坦绝缘膜51、阳极52、电极间绝缘膜54、包括稍后将描述的发光层的有机层53和阴极55。此类有机发光元件10RU0G和IOB的每一个根据需要被由氮化硅(SiN)、氧化硅 (SiO)等制成的保护层56覆盖。此外,此类保护层56被在其上面经由附着层60整体地附加密封基板71,使得其被密封。密封基板71由玻璃等制成,并且附着层60由热固性树脂、紫外线可固化树脂等制成。根据需要,密封基板71可以提供有滤色器72和作为黑色矩阵的光屏蔽膜(未示出)。平坦绝缘膜51是用于使TFT基板1的表面平坦,其形成有包括由上述TFT 20组成的采样晶体管3A和驱动晶体管3B的像素驱动电路140。此类平坦绝缘膜51优选地由具有良好图案准确度的材料制成,因为在其上面形成了微小连接孔51A。例如,用于平坦绝缘膜51的此类材料包括诸如聚酰亚胺的有机材料或诸如氧化硅(SiO2)的无机材料。图2所示的驱动晶体管3B经由对平坦绝缘膜形成的连接孔51A被电连接到阳极52。阳极52被形成为对应于有机发光元件10RU0G和IOB中的每一个。阳极52具有作为反射电极的功能,该反射电极反射在发光层上产生的光,并且,鉴于增加发光效率,将其配置为具有尽可能高的反射系数是期望的。例如,阳极52具有IOOnm或之上但为IOOOnm 或之下的厚度,并且由诸如银(Ag)、铝(Al)、铬(Cr)、钛(Ti)、铁(Fe)、钴(Co)、镍(Ni)、· (Mo)、铜(Cu)、钽(Ta)、钨(W)、钼(Pt)、金(Au)等的金属元素或其合金制成。电极间绝缘膜54用于务必使阳极52和阴极55相互绝缘,并用于以良好的准确度以任何期望的形状形成发光区域。电极间绝缘膜54由诸如聚酰亚胺的有机材料或诸如氧化硅(SiO2)的无机绝缘材料制成。电极间绝缘膜54具有与阳极52的发光区域相对应的孔径部分。请注意,可以不仅在发光区域中而且在相互紧挨着的电极间绝缘膜54上设置有机层53和阴极55。然而,光发射仅在电极间绝缘层54的孔径部分中发生。有机层53具有层积结构,其按照从阳极52的一侧开始的顺序包括例如空穴注入层、空穴传输层、发光层和电子传输层(全部未示出)。可以根据需要提供除发光层之外的层。有机层53不一定采取一个特定结构,并且可以根据有机发光元件10R、IOG和IOB进行的光发射的色彩而在结构方面改变。空穴注入层具有不仅用于增加空穴注入效率、而且用于防止泄漏的缓冲层。空穴传输层是用于增加到发光层的空穴传输的效率。发光层随着由于电场的施加使得电子和空穴之间进行复合而产生光。电子传输层是用于增加到发光层的电子传输的效率。请注意,有机层53在材料方面不受限制,只要其是一般低分子或高分子有机材料即可。阴极55具有5nm或之上但为50nm或之下的厚度,并且例如由诸如铝(Al)、镁 (Mg)、钙(Ca)、钠(Na)等金属元素或其合金制成。其中,优选材料是镁和银的合金(MgAg合金)或铝(Al)和锂(Li)的合金(AlLi合金)。阴极55可以由ITO(铟锡复合氧化物)或 IZO (铟锌复合氧化物)制成。例如,可以如下制造此显示器件。(TFT基板1的形成过程)首先,通过例如在由玻璃制成的基板10上进行溅射来形成具有50nm的厚度的钼 (Mo)层和具有400nm的厚度的铝(Al)层或铝合金层的双层结构。此后,对此双层结构应用光刻法和蚀刻,使得如图5(A)所示地形成栅极电极21。此后,同样如图5(A)所示,在基板10的整个表面上通过例如等离子体CVD (化学气相沉积)来形成由上述材料制成的具有上述厚度的栅极绝缘膜22的第二层32。接下来,如图5(B)所示,例如,通过原子层沉积或溅射来形成由上述材料制成的具有上述厚度的栅极绝缘膜22的第一层31。在形成栅极绝缘膜22的第一层31之后,同样如图5 (B)所示,例如,使用诸如氧化锌的氧化物靶通过溅射来形成由上述材料制成的具有上述厚度的氧化物半导体层23。这时,当例如通过用IGZO陶瓷靶进行DC溅射制备由IGZO制成的氧化物半导体层23时,通过用氩气(Ar)和氧气(O2)的气体混合物进行等离子体放电来在基板10上形成氧化物半导体层23。这里请注意,在等离子体放电之前,对真空容器进行抽气,直至其中的真空度达到 IX ICT4Pa或之下为止,然后向其通入氩气和氧气的气体混合物。此外,例如,当氧化物半导体层23由氧化锌制成时,通过用氧化锌陶瓷靶进行RF溅射或通过使用金属锌靶在包括氩气和氧气的气氛中进行DC溅射来形成氧化物半导体层23。在形成氧化物半导体层23之后,同样如图5(B)所示,例如,通过原子层沉积或通过溅射来形成由上述材料制成的具有上述厚度的沟道保护层24的第一层31。这时,优选地通过溅射来连续地形成栅极绝缘膜22的第一层31、氧化物半导体层 23和沟道保护层24的第一层31。在这种情况下,则能够在不暴露于空气的情况下在真空中形成氧化物半导体层23,使得在氧化物半导体层23与栅极绝缘膜22的第一层31之间的接触界面上和在氧化物半导体层23与沟道保护层24的第一层31之间的接触界面上,得到的界面可以是良好的,具有更少的缺陷和低固定电荷。因此,这产生良好的晶体管特性和可靠性。在形成沟道保护层24的第一层31之后,同样如图5(C)所示,例如,通过CVD来形成由上述材料制成的具有上述厚度的沟道保护层24的第二层32。然后,通过光刻法和蚀刻以预定形状形成沟道保护层24的第一层31和第二层32中的每一个。此后,如图6(A)所示,通过光刻法和蚀刻以预定形状形成氧化物半导体层23。此后,例如,通过溅射,以50nm的厚度形成钛层25A,以500nm的厚度形成铝层 25B,并以50nm的厚度形成钼层25C。然后,通过光刻法和蚀刻以预定形状来形成这些层中的每一个。这时,例如,通过使用磷酸、硝酸和醋酸的混合溶液进行湿法蚀刻,例如,对钼层 25C和铝层25B进行蚀刻,然后通过使用氯气进行的干法蚀刻,对钛层25A进行蚀刻。以这种方式,如图6(B)所示,形成源极/漏极电极25。在形成源极/漏极电极25之后,如图6(C)所示,例如,通过原子层沉积或通过溅射来形成由上述材料制成的具有上述厚度的钝化膜26第一层31。当所使用的方法是原子层沉积时,供用作原材料气体的三甲基铝气体被引入真空室中,并且在基板10的表面上形成作为原子层的铝膜。此后,将氧基引入基板10的表面,使得铝膜被氧化。氧基是用等离子体来激励臭氧气体或氧气的结果。第一次形成的铝膜具有原子层的厚度,因此很容易被臭氧或氧基所氧化。能够在基板10的整个表面上形成均勻的氧化铝膜。此后,通过重复形成铝膜的处理过程和氧化的处理,可以用具有期望厚度的氧化铝膜来形成第一层31。用这种方法,在不引起氧化铝膜中的氧浓度不足的情况下,得到的合成物可以处于一定的化学计量比。同样地,铝与氧之间的成分比可以理想地是2 3,得到的第一层31可以具有优良的电特性和优良的气体阻挡层电阻。此外,通过使用原子层沉积的方法,可以在控制氢的生成的情况下密集地形成由氧化铝制成的第一层31,所述氢的生成使氧化物半导体层23的电特性劣化。此后,例如,通过CVD,形成具有上述厚度的由上述材料制成的钝化膜26的第二层 32。同样地,所形成的是包括图3的TFT 20的TFT基板1。(有机发光元件10R、IOG和IOB的形成过程)
首先,整体地在TFT基板1上涂敷光致抗蚀剂,然后使其暴露于光并进行显影,从而形成并烘焙平坦绝缘膜51和连接孔51A。此后,例如,通过直流溅射,形成由上述材料制成的阳极52,然后例如使用平版印刷技术选择性地对其进行蚀刻,从而将其图案化成预定形状。此后,例如,通过CVD来形成具有上述厚度的由上述材料制成的电极间绝缘膜54,然后例如使用平版印刷技术来形成孔径部分。此后,例如,通过气相沉积,按顺序形成分别由上述材料制成的有机层53和阴极55,然后形成有机发光元件10RU0G和10B。然后用由上述材料制成的保护膜56来覆盖得到的有机发光元件10RU0G和10B。此后,在保护膜56上,形成附着层60。然后提供滤色器72,并且制备由上述材料制成的密封基板71。然后将TFT基板1与密封基板71通过在其间设置的附着层60附着在一起。以这种方式,完成图4所示的显示器件。在此显示器件中,依照每个来自扫描线WSL的控制信号来使采样晶体管3A导通, 并且在每个来自信号线DTL的视频信号的信号电位方面对该视频信号进行采样以便存储在存储电容3C中。并且,从处于第一电位的任何电源线DSL为驱动晶体管3B提供电流,并且,依照存储在存储电容3C中的信号电位,向发光元件3D (有机发光元件10RU0G和10B) 提供驱动电流。通过这样提供的驱动电流,发光元件3D (有机发光元件10RU0G和10B)以依照视频信号的信号电位的亮度进行发光。此光在通过阴极55、滤色器72和密封基板71 之后被提取。在本示例中,栅极绝缘膜22、沟道保护层24和钝化膜26中的每一个都具有包括由氧化铝制成的第一层31和由包含硅(Si)的绝缘材料制成的第二层32的层积结构。在得到的结构中,氧化物半导体层23在两侧被由氧化铝制成的第一层31夹在中间。因此,能够抑制在氧化物半导体层23中发生的氧等的解吸附,使得在TFT 20中的阈值电压稳定,并且抑制截止电流增加。因此,在TFT 20中减小了漏电流,由此,得到的显示器能够以高水平的亮度发光。此外,由于第二层32由包括硅(Si)的绝缘材料制成,所以与作为单层氧化铝的先前的栅极绝缘层相比,能够缩短成膜所花费的时间。此外,由于TFT 20的特性可以是均勻的,所以得到的显示器质量可以是均勻的, 没有粗糙。除此之外,能够增加TFT 20的可靠性,从而能够被长时间驱动。同样地,在本实施例中,栅极绝缘膜22、沟道保护层24和钝化膜26中的每一个具有包括由氧化铝制成的第一层31和由包括硅(Si)的绝缘材料制成的第二层32的层积结构。在得到的结构中,氧化物半导体层23可以在两侧被由氧化铝制成的第一层31夹在中间。因此,可以抑制氧等的解吸附在氧化物半导体层23中的发生,使得TFT 20的电特性能够稳定。此外,通过使用包括硅(Si)的绝缘材料来构成第二层32,与作为单层氧化铝的先前的栅极绝缘层相比,能够缩短成膜所花费的时间。特别地,第一层31和第二层32被设置为彼此层叠,使得第一层31出现在氧化物半导体层23侧。因此,这允许直接将氧化物半导体层23夹在栅极绝缘膜22的第一层31 与沟道保护层24的第一层31之间,使得从而能够更加增强产生的效果。同样特别地,栅极绝缘膜22、沟道保护层24和钝化膜26中的每一个具有包括由氧化铝制成的第一层31和由包括硅(Si)的绝缘材料制成的第二层32的层积结构。这允许将氧化物半导体层23夹在栅极绝缘膜22的第一层31与沟道保护层24的第一层31之间, 并且还由钝化膜26的第一层31将其覆盖。因此,能够进一步地增加TFT 20的稳定性和可靠性,使得能够从而更加增强产生的效果。(修改示例1)请注意,在上述第一实施例中,举例说明的是其中栅极绝缘膜22、沟道保护层24 和钝化膜26中的每一个具有包括由氧化铝制成的第一层31和由包括硅(Si)的绝缘材料制成的第二层32的层积结构的情况。可替换地,如图7所示,只有栅极绝缘膜22和沟道保护层24中的每一个可以具有包括由氧化铝制成的第一层31和由包括硅(Si)的绝缘材料制成的第二层32的层积结构。此结构还使得能够通过将氧化物半导体层23夹在栅极绝缘膜22的第一层31与沟道保护层24的第一层31之间来减少诸如氧的气体的影响,从而能够增加TFT 20的电特性的稳定性和可靠性。在这种情况下,例如,钝化膜26具有约300nm的厚度,并且由氧化铝膜、氧化硅膜、 氮化硅膜和氧氮化硅膜中的一种或多种构成。(修改示例2)仍可替换地,如图8所示,只有栅极绝缘膜22和钝化膜26可以各自具有包括由氧化铝制成的第一层31和由包括硅(Si)的绝缘材料制成的第二层32的层积结构。此结构还使得能够通过将氧化物半导体层23夹在栅极绝缘膜22的第一层31与钝化膜26的第一层31之间来减少诸如氧的气体的影响,从而能够增加TFT 20的电特性的稳定性和可靠性。在这种情况下,例如,沟道保护层24具有约300nm的厚度,并且由氧化铝膜、氧化硅膜、氮化硅膜和氧氮化硅膜中的一种或多种构成。(修改示例3)请注意,在上述实施例中,举例说明的是其中钝化膜26的第一层31和第二层32 被设置为相互层叠、使得第一层31出现在氧化物半导体层23侧的情况。可替换地,如图9 所示,可以执行这样的层设置,使得第二层32出现在氧化物半导体层23侧。并且,在栅极绝缘膜22和沟道保护层24中,第一层31和第二层32可以被设置为相互层叠,使得第二层 32出现在氧化物半导体层23侧。(第二实施例)图10是示出本发明的第二实施例中的薄膜晶体管(TFT)20B的横截面结构的图。 在此TFT 20B中,以不同的方式构成钝化膜26B,但是其余结构与上述第一实施例的TFT 20 的结构类似。因此,为任何相应的结构组件提供相同的附图标记以进行描述。以与第一实施例中的那些结构组件类似的方式构成基板10、栅极电极21和源极/ 漏极元件25。栅极绝缘膜22B由绝缘膜形成,该绝缘膜为下列一种或更多种类型氧化硅膜、氮化硅膜、氧氮化硅膜、氧化铪膜、氧化铝膜、氧化钽膜和氧化锆膜,或其氧氮化物膜。此外,如果栅极绝缘膜22B是包括这些绝缘膜中的两种或更多种类型的绝缘膜31B和32B的层积结构,则能够增强与氧化物半导体层23B的界面的特性,并且防止包括在基板10中的任何杂质扩散至氧化物半导体层23B中。类似于第一实施例,氧化物半导体层23B可以由氧化铟镓锌(IGZO)制成,或者可以另外包含锡(Sn)、钛等元素。例如,氧化物半导体层23B具有在约20nm至IOOnm范围内
的厚度。沟道保护层24B由绝缘膜形成,该绝缘膜为下列一种或多种类型氧化硅膜、氮化硅膜、氧氮化硅膜、氧化铪膜、氧化铝膜、氧化钽膜和氧化锆膜,或其氧氮化物膜。钝化膜26B由包含铝(Al)、钛(Ti)和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。用此类结构,在TFT 20B中,在氧化物半导体层中不发生由于空气中的氢引起的氧等的还原,并且还能够在氧化物半导体层中抑制氧等的解吸附。特别地,钝化膜26B优选地由氧氮化铝或氮化铝制成。这是因为能够由此增强产生的效果。钝化膜26B优选地具有3. Og/cm3或之上但为4. Og/cm3或之下的密度。这是因为能够由此增强阻挡层能力以防止在制造过程中或由空气中的氢引起的氧化物半导体的还原, 并防止由于热处理而引起的氧化物半导体中的氧的解吸附。具有更高密度的钝化膜通常更好地充当保护膜,因为其不允许氧和氢那么多地从中通过。例如,氧化铝(Al2O3)的理想体积密度是4. Og/cm3。例如,钝化膜26B是单层膜。钝化膜26B的厚度优选地为IOnm或之上但为IOOOnm 或之下,并且特别地约为例如50nm。可以如下制造TFT 20B。图11和12中的每一个是按照处理的顺序示出TFT 20B的制造方法的图。首先, 如图11㈧所示,制备与上述第一实施例中的基板类似的基板10。例如,然后如图Il(B)所示,通过溅射或CVD在基板10上形成由上述材料制成的栅极电极21。接下来,同样如图11 (B)所示,在栅极电极21和基板10的整个表面上形成由上述材料制成的栅极绝缘膜22B的膜32B。此后,如图Il(C)所示,在栅极绝缘膜22B的膜32B上按顺序形成分别由上述材料制成的具有上述厚度的栅极绝缘膜22B的膜31B、氧化物半导体层23B和沟道保护层24B。 当氧化物半导体膜23B由氧化铟镓锌制成时,通过使用用氧化铟镓锌陶瓷靶进行DC溅射的方法,使用氩气(Ar)和氧气(O2)的气体混合物通过等离子体放电在基板10上形成氧化物半导体。在本文中,在等离子体放电之前,对真空容器进行抽气,直至其中的真空度达到 IX ICT4Pa或之下为止,然后向其中引入氩气和氧气的气体混合物。例如,当氧化物半导体层23B由氧化锌制成时,通过用氧化锌陶瓷靶进行RF溅射或通过使用金属锌靶在包括氩气和氧气的气氛中进行DC溅射来形成用作氧化物半导体层23的氧化锌膜。此后,如图12(A)所示,例如,通过光刻法和蚀刻对沟道保护层24B进行图案化以将其形成为预定形状。在沟道保护层24B的图案化之后,通过例如溅射,分别以约50nm、500nm和50nm的厚度按顺序形成钛层25A、铝层25B和钛层25C。此后,通过使用氯气进行干法蚀刻,对钛层 25A、铝层25B和钛层25C进行图案化,使得如图12(B)所示,形成源极/漏极电极25。这里请注意,例如,源极/漏极电极25可以是应用于用来驱动液晶面板的薄膜晶体管的钼和铝的层积膜。在形成源极/漏极电极25之后,如图12(C)所示,形成由上述材料制成的具有上述厚度的钝化膜26B。优选地通过溅射来形成钝化膜26B。下面详细描述其原因。据报告称,化学计量氧化铝具有约3. 5g/cm3至4g/cm3的膜密度,并且如果通过 ALD (原子层沉积)来形成氧化铝膜,则其实现良好的可靠性,ALD被视为理想的薄膜形成方法。然而,这在批量生产中具有低产量的问题,因为例如用于成膜的时间过长,并且需要使用铝的有机金属。另一方面,溅射的方法允许减少成膜所花费的时间,但是同时,结果形成的氧化铝膜由于其中的大量氧缺陷而不像ALD形成的氧化铝那样可靠。考虑到此,在氧化铝膜(钝化膜26B)的成膜期间,进行氮气的添加被视为是优选的。这样,用氮来补偿氧缺陷,使得能够以高密度密集地形成钝化膜26B。至于对添加氮气的具体要求,例如,相对于0. 1至5Pa 的总压力而言,添加0. 1至70%的氮气或氨气(NH3)气体是优选的。图13是示出关于氮的添加量与氧化铝/氮化铝的密度之间的相关性的研究结果的图,并且示出针对不添加氮、少量添加氮和大量添加氮的情况的九个样本及其平均值的结果。从图13可知,氮的添加使氧化铝/氮化铝膜的密度增加约0.2g/cm3。此外,增加要添加的氮的浓度能够进一步地增加密度。此TFT 20B能够与在上述第一实施例中类似地构成显示器件。显示器件的制造方法与在上述第一实施例中描述的方法相同。与在上述第一实施例中类似地操作使用此TFT 20B的显示器件。在本示例中,TFT 20B中的钝化膜26B由包含铝(Al)、钛(Ti)和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。此类结构抑制氢到达氧化物半导体层23B,使得在氧化物半导体层23B中不发生由于空气中的氢而引起的氧的还原。此外,在氧化物半导体层23B中也不发生氧等的解吸附,使得在得到的TFT20B中的阈值电压稳定,并且抑制截止电流增加。这样,在TFT 20B中减小了漏电流,由此,得到的显示器能够以高水平的亮度发光。此外,由于TFT 20B的特性可以是均勻的,所以得到的显示器质量可以是均勻的,没有粗糙。除此之外,可以增加 TFT20B的驱动可靠性。这样,在本实施例中,钝化膜26B由包含铝(Al)、钛(Ti)和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。此类结构能够抑制由空气中的氢引起的氧化物半导体层中的氧的还原,并且还能够抑制氧化物半导体层中的氧等的解吸附。(第三实施例)图14是示出本发明的第三实施例中的薄膜晶体管(TFT) 20C的横截面结构的图。 在此TFT 20C中,钝化膜25C是层积膜,但是其余结构与上述第二实施例中的TFT 20B的结构类似,并且可以与之类似地方法进行制造。因此,为任何相应的结构组件提供相同的附图标记以进行描述。钝化膜26C是具体地包括下层35C和上层36C的层积膜。下层35C由包含铝(Al) 的氧化物制成,并且上层36C由包含铝(Al)的氧氮化物或氮化物制成。其原因如下。当钝化膜26C是上述氧化物的单层膜时,在成膜期间通过溅射在氧气气氛中执行该处理,使得抑制在氧化物半导体层23B中发生氧的解吸附,并且能够以稳定的晶体管特性来执行该处理。另一方面,当钝化膜26C是上述氧氮化物或氮化物的单层膜时,由于如第二实施例所述在通过溅射成膜期间添加氮化物,所以减少了上述氧气气氛的效果,并因此存在使晶体管特性劣化的可能性。在如上所述钝化膜26C是层积膜的情况下,由包含铝 (Al)的氧化物制成的下层35C能够抑制在氧化物半导体层23B中发生氧的解吸附,并且由包含铝(Al)的氧氮化物或氮化物制成的上层36C能够抑制氢的通过。图15是示出钝化膜是氧化铝的单层膜时和其为层积膜时(由氧化铝制成的下层 25B及氧氮化铝的上层36C)的情况下的关于BTS (偏置温度应力)之后的阈值电压的偏移量的研究结果的图。从图15可知,当钝化膜26B是层积膜时,与其为单层膜时的情况相比, 阈值电压的偏移量较小。换言之,在如上所述钝化膜26B是层积膜的情况下,能够进一步地使得到的TFT 20C的阈值电压稳定,使得能够抑制截止电流增加。此外,可以增加薄膜晶体管的驱动可靠性。此TFT 20C能够与上述第一和第二实施例类似地构成显示器件。关于显示器件, 其制造方法、优点和效果与上述第一和第二实施例中的描述相同。同样地,在本实施例中,钝化膜26C是层积膜,具体地,被配置为包括由包含铝 (Al)的氧化物制成的下层35C和由包含铝(Al)的氧氮化物制成的上层36C。通过此类结构,用由包含铝(Al)的氧化物制成的下层35C,能够抑制在氧化物半导体层23B中发生氧的解吸附,并且用由包含铝(Al)的氧氮化物制成的上层36C能够抑制氢的通过。在上述第三实施例中,举例说明了钝化膜26C是包括由氧化铝制成的下层35C和由氧氮化铝制成的上层36C的层积膜。可替换地,层积膜可以包括含有金属的氧化物膜和由除铝之外的金属制成的氧氮化物膜,或者可以是两层或更多层的多层膜。(模块和应用示例)下面,描述以上实施例所述的显示器件的应用示例。以上实施例中的显示器件能够应用于用作各个领域中的任何电子设备的显示器件,只要其将外部提供的视频信号或内部生成的视频信号显示为图像或视频即可,例如电视设备、数字照相机、笔记本式个人计算机、诸如移动电话的移动终端设备或视频照相机。(模块)以上实施例中的显示器件各自(例如,被作为图16所示的模块)结合到各种类型的电子设备中,诸如稍后将描述的应用示例1至5。在此模块中,例如,在基板10的一侧,提供了从密封基板71和附着层60暴露的区域210,并且此暴露区域210通过扩展信号线驱动电路120和扫描线驱动电路130的配线而形成有外部连接端子(未示出)。可以为外部连接端子提供柔性印刷电路(FPC) 220以进行信号输入/输出。(应用示例1)图17是示出应用上述实施例的显示器件的电视设备的外观的图。例如,此电视设备设置有包括前面板310和滤光玻璃320的视频显示屏幕部300。此视频显示屏幕部300 由上述实施例的任一显示器件构成。(应用示例2)图18是示出应用上述实施例的显示器件的数字照相机的外观的图。例如,此数字照相机设置有用于闪光的发光部410、显示部420、菜单开关430和快门按钮440。显示部 420由上述实施例的任一显示器件构成。(应用示例3)图19是示出应用上述实施例的显示器件的笔记本式个人计算机的外观的图。例如,此笔记本式个人计算机设置有主体510、用于文本等的输入操作的键盘520和用于显示图像的显示部530。显示部530由上述实施例的任一显示器件构成。(应用示例4)图20是示出应用上述实施例的显示器件的视频照相机的外观的图。此视频照相机设置有主体部610、在此主体部610的正面表面上设置的、用于进行对象拍摄的透镜620、供在拍摄期间使用的开始/停止开关630和显示部640。显示部640由上述实施例的任一显示器件构成。(应用示例5)图21是示出应用上述实施例的显示器件的移动电话单元的外观的图。此移动电话单元包括被耦合部(转轴部)730耦合的上机壳710和下机壳720,并且例如设置有显示器740、副显示器750、画面灯760和照相机770。显示器740或副显示器750由上述实施例的任一显示器件构成。同样地,虽然已经通过参考实施例详细地描述了本发明,但本发明不限于上述实施例,并且可以设计许多其它修改和变更。作为示例,在上述第一实施例中,举例说明的是其中栅极绝缘膜22、沟道保护层24和钝化膜26完全地或部分地是层积结构的情况,该层积结构包括由氧化铝制成的第一层31和由包含硅(Si)的绝缘材料制成的第二层32。可替换地,可以在氧化物半导体层23的栅极电极21的一侧和在与栅极电极21相对的一侧,与栅极绝缘膜22、沟道保护层24和钝化膜26分开地设置层积膜,该层积膜包括由氧化铝制成的第一层31和由包含硅(Si)的绝缘材料制成的第二层32。此外,例如,关于上述实施例等所述的层、材料、厚度或成膜方法及对成膜的要求都不是限制性的,并且任何其它材料和厚度也可以,或者任何其它成膜方法和对成膜的要求也可以。此外,在上述实施例等中,具体地描述了有机发光元件10RU0B和IOG的结构,但是不需要包括每个层,或者可以额外提供任何其它层。更进一步地,本发明可适用于不仅使用此类有机发光元件、而且使用诸如液晶显示元件、无机电致发光元件、电镀型或电致变色型等任何其它类型的显示元件的显示器件。
权利要求
1.一种薄膜晶体管,包括栅极电极与氧化物半导体层之间的栅极绝缘膜,其中在氧化物半导体层的栅极电极的一侧和与栅极电极相对的一侧,设置有包括由氧化铝制成的第一层和由包含硅(Si)的绝缘材料制成的第二层的层积膜。
2.根据权利要求1所述的薄膜晶体管,其中第一层和第二层被布置为彼此层叠,第一层位于氧化物半导体层的一侧。
3.根据权利要求1或2所述的薄膜晶体管,其中在基板上面按顺序设置有栅极电极、栅极绝缘膜、氧化物半导体层、沟道保护膜、源极/ 漏极电极和钝化膜,以及沟道保护膜和钝化膜中的一者或两者以及栅极绝缘膜都是层积膜。
4.根据权利要求1所述的薄膜晶体管,其中第二层包括氧化硅膜、氮化硅膜和氧氮化硅膜中的一种或多种。
5.一种薄膜晶体管,其中,在基板上面按顺序设置有栅极电极、栅极绝缘膜、氧化物半导体层、沟道保护膜、源极/ 漏极电极和钝化膜,以及钝化膜由包含铝(Al)、钛(Ti)和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。
6.根据权利要求5所述的薄膜晶体管,其中所述钝化膜由氧氮化铝或氮化铝制成。
7.根据权利要求5所述的薄膜晶体管,其中钝化膜具有3. Og/cm3或之上但为4. Og/cm3或之下的密度。
8.根据权利要求5所述的薄膜晶体管,其中所述钝化膜是单层膜。
9.根据权利要求6所述的薄膜晶体管,其中所述钝化膜是层积膜。
10.根据权利要求9所述的薄膜晶体管,其中所述层积膜包括由包含铝(Al)的氧化物制成的下层和由包含铝(Al)的氧氮化物或氮化物制成的上层。
11.根据权利要求5所述的薄膜晶体管,其中通过溅射来形成所述钝化膜。
12.—种显示器件,包括 薄膜晶体管;以及显示元件,其中所述薄膜晶体管包括在栅极电极与氧化物半导体层之间的栅极绝缘膜,以及在所述氧化物半导体层的栅极电极的一侧和与栅极电极相对的一侧,设置有包括由氧化铝制成的第一层和由包含硅(Si)的绝缘材料制成的第二层的层积膜。
13.根据权利要求12所述的显示器件,其中所述显示元件是从薄膜晶体管的一侧开始按顺序包括阳极、包含发光层的有机层和阴极的有机发光元件。
14.一种显示器件,包括 薄膜晶体管;以及显示元件,其中所述薄膜晶体管按在基板上的顺序包括栅极电极、栅极绝缘膜、氧化物半导体层、沟道保护膜、源极/漏极电极和钝化膜,以及钝化膜由包含铝(Al)、钛(Ti)和钽(Ta)中的一种或多种的氧化物、氮化物或氧氮化物制成。
15.根据权利要求14所述的显示器件,其中所述显示元件是从薄膜晶体管的一侧开始按顺序包括阳极、包含发光层的有机层和阴极的有机发光元件。
全文摘要
本发明提供了一种能够抑制氧等从氧化物半导体层解吸附并减少成膜所花费的时间的薄膜晶体管和设置有该薄膜晶体管的显示器件。栅极绝缘膜22、沟道保护层24和钝化膜26中的每一个是层积结构,该层积结构包括由氧化铝制成的第一层31和由包含硅(Si)的绝缘材料制成的第二层32。第一层31和第二层32优选地设置为彼此层叠,使得第一层31出现在氧化物半导体层23侧。氧化物半导体层23在两侧被由氧化铝制成的第一层31夹在中间,从而抑制氧等的解吸附,并使TFT 20的电特性稳定。此外,由于第二层32由含有硅(Si)的绝缘材料制成,与由氧化铝制成的单层相比,能够减少成膜所花费的时间。
文档编号H01L29/786GK102171833SQ20098013903
公开日2011年8月31日 申请日期2009年10月7日 优先权日2008年10月8日
发明者寺井康浩, 荒井俊明, 诸泽成浩 申请人:索尼公司