晶体管及显示设备的制作方法

文档序号:6990235阅读:394来源:国知局
专利名称:晶体管及显示设备的制作方法
技术领域
本发明涉及使用氧化物半导体形成的晶体管以及包括晶体管的显示设备。
背景技术
近年来,使用形成于具有绝缘表面的基板之上的半导体薄膜(具有大约几纳米到几百纳米的厚度)来形成晶体管的技术已经引起了人们的注意。晶体管广泛应用于诸如IC 之类的电子器件及光电器件,并且特别地被人们预期将快速发展成为图像显示设备的开关元件。各种金属氧化物被用于各种应用中。氧化铟是众所周知的材料,并且被用作液晶显示器等所需的透光电极材料。某些金属氧化物具有半导体特性。此类具有半导体特性的金属氧化物的实例包括氧化钨、氧化锡、氧化铟及氧化锌。各自使用此类具有半导体特性的金属氧化物形成沟道形成区的晶体管是已知的(专利文献1和2)。在非结晶晶体管当中,其中应用了氧化物半导体的晶体管具有相对较高的场效应迁移率。因此,显示设备等的驱动电路同样能够使用晶体管来形成。[参考][专利文献1]日本公开专利申请No.2007-123861[专利文献2]日本公开专利申请No. 2007-09605
发明内容
在将像素部分(也称为像素电路)和驱动电路部分形成于显示设备等中的一个基板之上的情形中,诸如高通断比之类的卓越的开关特性为用于像素部分的晶体管所需,而高操作速度为用于驱动电路的晶体管所需。特别地,用于驱动电路的晶体管优选地以高速操作,因为显示图像的写入时间随着显示设备的像素密度的增加而减少。本说明书所公开的本发明的实施例涉及达成以上目标的晶体管和显示设备。本说明书所公开的本发明的实施例是一种晶体管,在该晶体管中用于形成沟道区的氧化物半导体层是非晶的或者由非晶质和微晶的混合物形成,其中除了包括由微晶层形成的结晶区的浅表部分之外,非晶区以微晶体来点缀或者由微晶群形成。此外,本说明书所公开的本发明的实施例是通过将由此类晶体管所构成的驱动电路部分和像素部分形成于一个基板之上而获得的显示设备。本说明书所公开的本发明的实施例是一种晶体管,包括栅极电极层、在栅极电极层之上的栅极绝缘层、在栅极绝缘层之上的氧化物半导体层、在栅极绝缘层之上与部分氧化物半导体层重叠的源极电极层和漏极电极层、以及与氧化物半导体层接触的氧化物绝缘层。氧化物半导体层包括浅表部分的第一区和其余部分的第二区。注意,本说明书中诸如“第一”和“第二”之类的序数词是出于简便而使用的,而并不表示步骤顺序和各层的堆叠顺序。另外,本说明书中的序数词不表示指定本发明的特定名称。本说明书所公开的本发明的实施例是一种晶体管,包括栅极电极层、在栅极电极层之上的绝缘层栅极、在栅极绝缘层之上的源极电极层和漏极电极层、在栅极绝缘层之上与源极电极层和漏极电极层的一部分重叠的氧化物半导体层、以及与氧化物半导体层接触的氧化物绝缘层。氧化物半导体层包括浅表部分的第一区和其余部分的第二区。氧化物半导体层的第一区由沿垂直于该层表面的方向的c轴取向的微晶形成。氧化物半导体层的第二区是非晶的或者由非晶质和微晶的混合物形成,其中非晶区以微晶体来点缀或者由微晶形成。作为氧化物半导体层,使用以RTA法等在高温下对其执行短时间的脱水或脱氢的那一种。通过该加热步骤,氧化物半导体层的浅表部分成为包括由微晶形成的结晶区,而其余部分成为非晶的或者由非晶质和微晶的混合物形成,其中非晶区以微晶来点缀或者由微晶群形成。通过使用具有该结构的氧化物半导体层,能够防止由归因于湿气进入浅表部分或者氧自浅表部分排除的转变为η型所致的电特性降低。此外,由于氧化物半导体层的浅表部分位于背沟道侧并且具有包括微晶的结晶区,因而能够抑制寄生沟道的产生。而且,在沟道蚀刻结构中,能够降低在其处电导由于结晶区的存在而增加的浅表部分与源极和漏极电极之间的接触电阻。此外,通过使用根据本发明的实施例的晶体管而将驱动电路部分和像素部分形成于一个基板之上,并且使用液晶元件、发光元件或电泳元件等,能够制造出显示设备。本说明书所公开的本发明的实施例是一种显示设备,包括在一个基板之上的含有晶体管的像素部分和驱动电路部分。晶体管每个都包括栅极电极层、在栅极电极层之上的栅极绝缘层、在栅极绝缘层之上的氧化物半导体层、在栅极绝缘层之上与部分氧化物半导体层重叠的源极电极层和漏极电极层、以及与氧化物半导体层接触的氧化物绝缘层。氧化物半导体层包括浅表部分的第一区和其余部分的第二区。本说明书所公开的本发明的实施例是一种显示设备,包括在一个基板之上的含有晶体管的像素部分和驱动电路部分。晶体管每个都包括栅极电极层、在栅极电极层之上的栅极绝缘层、在栅极绝缘层之上的源极电极层和漏极电极层、在栅极绝缘层之上与源极电极层和漏极电极层的一部分重叠的氧化物半导体层、以及与氧化物半导体层接触的氧化物绝缘层。氧化物半导体层包括浅表部分的第一区和其余部分的第二区。氧化物半导体层的第一区由沿垂直于该层表面的方向的c轴取向的微晶形成。第二区是非晶的或者由非晶质和微晶的混合物形成,其中非晶区以微晶体来点缀或者由微晶形成。在包括氧化物半导体层的晶体管中,氧化物半导体层的浅表部分包括结晶区,而其余部分是非晶的或者由非晶质和微晶的混合物形成,或者由微晶形成,由此晶体管能够具有有利的电特性和高可靠性,并且能够制造出具有有利的电特性和高可靠性的显示设备。


图IA和IB是各自示出晶体管的截面图。
图2A到2C是晶体管的过程截面图。图3A到3C是晶体管的过程截面图。图4A和4B是示出晶体管的平面图。图5是示出晶体管的平面图。图6是示出晶体管的平面图。图7是示出晶体管的平面图。图8A1、8A2、8B1和8B2是示出栅极接线端子部分的平面图和截面图。图9是示出晶体管的平面图。图IOA和IOB是各自示出晶体管的截面图。图IlA和IlB是各自示出显示设备的应用实例的示意图。图12是示出显示设备的实例的外观图。图13是示出显示设备的截面图。图14A和14B是示出液晶显示设备的框图。图15A和15B分别是信号线驱动电路的配置图和时序图。图16A到16D是各自示出移位寄存器的配置的电路图。图17A和17B分别是示出移位寄存器的配置的电路图和示出移位寄存器的操作的时序图。图18示出了显示设备的像素等效电路。图19A到19C是各自示出显示设备的截面图。图20A1、20A2、20B是示出显示设备的平面图和截面图。图21是示出显示设备的截面图。图22A和22B分别是示出显示设备的平面图和截面图。图23A和2 分别是示出电视装置和数字相框的实例的外观图。图24A和24B是示出游戏机的实例的外观图。图25A和25B是示出移动电话的实例的外观图。图26A和26B是氧化物半导体层的截面的TEM照片。图27A和27B是氧化物半导体层的截面的TEM照片。图28A和28B是氧化物半导体层的截面的TEM照片。图29A和29B分别是氧化物半导体层的截面的TEM照片和电子衍射图。图30是氧化物半导体层的EDX分析频谱。图31是氧化物半导体层的X光衍射图。图32A到32C是氧化物半导体层的SIMS分析深度分布。图33是简要说明科学计算的示意图。图34A和34B是简要说明科学计算的示意图。图35A和35B是说明科学计算机的示意图。图36是示出氧化物半导体的晶体结构的示意图。图37A和37B示出了还没有经过-BT测试的和已经经过-BT测试的晶体管的I_V 特性。图38A到38C是氧化物半导体层的SIMS分析深度分布。
图39A到39C是氧化物半导体层的SIMS分析深度分布。
具体实施例方式实施例和实例将参照附图来描述。注意,本发明并不限于下列描述,并且本领域技术人员应当容易理解,在不脱离本发明的精神和范围的情况下能够按照各种方式来修改本发明的模式和细节。因此,本发明不应被理解为仅限于以下关于实施例和实例的描述。注意,在以下所描述的本发明的结构中,相同的部分或者具有相似功能的部分在不同的附图中以相同的参考数字来表示,并且省略其描述。(实施例1)在本实施例中,晶体管的结构将参照图IA和IB来描述。图IA是沟道蚀刻型晶体管的截面图,而图4A是其平面图。图IA是沿图4A的线 A1-A2截取的截面图。在图IA和IB中所示出的晶体管各自包括在基板100之上的栅极电极层101、栅极绝缘层102、包括在浅表部分内的结晶区106的氧化物半导体层103、源极电极层10 和漏极电极层105b。氧化物绝缘层107被设置于包括在浅表部分内的结晶区106的氧化物半导体层103、源极电极层10 和漏极电极层10 之上。注意,图IA示出了正常沟道蚀刻型晶体管的结构,其中在源极电极层10 与漏极电极层10 之间的部分氧化物半导体层被蚀刻;但是,可以替代地采用其中氧化物半导体层没有被蚀刻从而如图IB所示出的那样留下在浅表部分内的结晶区的结构。栅极电极层101能够以使用诸如铝、铜、钼、钛、铬、钽、钨、钕及钪之类的任何金属材料,含有这些金属材料中的任何种作为其主要成分的合金材料或者含有这些金属材料中的任何种的氮化物的单层结构或层状结构来形成。在将诸如铝或铜之类的低电阻金属材料用于电极层的情况下,低电阻金属材料优选地结合难熔金属材料来使用,因为它具有诸如低耐热性和易于腐蚀之类的缺点。作为难熔金属材料,能够使用钼、钛、铬、钽、钨、钕、钪等。此外,为了提高像素部分的开口率,可以将氧化铟、氧化铟和氧化锡的合金、氧化铟和氧化锌的合金、氧化锌、氧化锌铝、氧氮化锌铝、氧化锌镓等透光氧化物导电层用作栅极电极层101。作为栅极绝缘层102,能够使用氧化硅、氧氮化硅、氮氧化硅、氮化硅、氧化铝、氧化钽等中的任何种的单层膜或层合膜。此类膜能够以CVD法、溅射法等来形成。作为氧化物半导体膜,能够使用以InMO3 (ZnO)mOii > 0)表示的薄膜。在此,M代表选自Ga、Al、Mn和Co的一种或多种金属元素。例如,M可以是Ga、( 和Al、( 和Mn、Ga禾口 Co等。在以InMO3(ZnO)mOii > 0)表示的氧化物半导体膜当中,包含作为M的( 的氧化物半导体被称为h-Ga-ai-Ο基氧化物半导体,以及h-Ga-ai-Ο基氧化物半导体的薄膜同样被称为h-Ga-Si-O基膜。氧化物半导体层103以溅射法形成达10-300nm的厚度,优选地为20-100nm。应当注意,在氧化物半导体层103的一部分按照图IA所示的那样来蚀刻的情况下,当器件完成时,氧化物半导体层103具有其厚度小于以上厚度的区域。作为氧化物半导体层103,使用以RTA法等在高温下对其执行短时间的脱水或脱氢的那一种。脱水或脱氢能够通过以高温气体(惰性气体,例如,氮气或稀有气体)或光在5000C -7500C (或者低于或等于玻璃基板的应变点的温度)下的进行大约1分钟到10分钟,优选地为在650°C下进行大约3分钟到6分钟的快速热退火(RTA)处理来执行。以RTA 法,能够短时间地执行脱水或脱氢;因此,该处理甚至能够在高于玻璃基板的应变点的温度下执行。氧化物半导体层103是在形成氧化物半导体层103的阶段具有许多悬挂键的非结晶层。通过用于脱水或脱氢的加热步骤,短距离内的悬挂键彼此键合,使得氧化物半导体层 103能够具有有序的非晶结构。随着排序进行,氧化物半导体层103变成为由非晶质和微晶的混合物形成,其中非晶区以微晶来点缀,或者由微晶群形成。在此,微晶是具有l-20nm的粒子尺寸的所谓纳米晶体,该粒子尺寸小于一般称为微晶的微晶粒子的粒子尺寸。在作为结晶区106的氧化物半导体层103的浅表部分内,优选地形成其中微晶是沿垂直于该层的表面的方向的c轴取向的微晶层。在这种情况下,晶体的长轴是沿着c轴方向的,而沿短轴方向的晶体管为l-20nm。在具有该结构的氧化物半导体层的浅表部分内,存在着包含微晶的致密的结晶区,并因而,能够防止由归因于湿气进入浅表部分或者氧自浅表部分排除的转变为η型所致的电特性降低。此外,由于氧化物半导体层的浅表部分位于背沟道侧,防止氧化物半导体层转变为η型对于抑制寄生沟道的生成同样是有效的。而且,能够降低在其处电导由于结晶区的存在而增加的浅表部分与源极电极层10 或漏极电极层10 之间的接触电阻。在此,可能生长的h-Ga-Si-O基膜的晶体结构取决于用于沉积氧化物半导体的靶子。例如,在使用用于沉积氧化物半导体的靶子来形成h-Ga-ai-Ο基膜,并且晶化通过加热步骤来执行的情况下,其中该h-Ga-Si-O基膜含有h、fei和Si,使得h203对Ga2O3对 SiO之比为摩尔比1 1 1,则可能形成其中含有( 和Si的一个氧化物层或两个氧化物层混合于氧化铟层之间的六方晶系层状化合物晶体结构。作为选择,在使用其In2O3对Gii2O3 对ZnO之比为摩尔比1 1 2的靶子,并且晶化通过加热步骤来执行的情况下,则插入氧化铟层之间的含有( 和Si的氧化物层可能具有双层结构。由于具有双层结构的后者的含有( 和Si的氧化物层的晶体结构是稳定的,并因而可能发生晶体生长,在使用其L2O3对 Ga2O3对SiO之比为摩尔比1 1 2的靶子,并且晶化通过加热步骤来执行的情况下,某些情况下会形成从含有( 和Si的氧化物层的外层到在栅极绝缘膜与含有( 和ai的氧化物层之间的界面连续的晶体。注意,摩尔比可以称为原子比。注意,如图IOA所示,在氧化物半导体层103的侧表面部分内没有形成结晶区,这取决于步骤的顺序,并且结晶区106仅形成于上层部分内。应当注意,侧表面部分的面积率低,并因而在这种情况下同样能够保持以上效果。源极电极层10 具有第一导电层112a、第二导电层113a及第三导电层11 的三层结构,而漏极电极层10 具有第一导电层112b、第二导电层11 及第三导电层114b的三层结构。作为源极和漏极电极层10 和10 的材料,能够使用与栅极电极层101的材料类似的材料。此外,透光氧化物导电层按照与栅极电极层101的方式类似的方式用于源极和漏极电极层10 和105b,由此能够提高像素部分的透光率并且还能够提高开口率。此外,氧化物导电层可以形成于之间氧化物半导体层103与将要作为源极和漏极电极层10 和10 的上述金属膜之间,使得能够降低接触电阻。
起着沟道保护层的作用的氧化物绝缘层107被设置于氧化物半导体层103、源极电极层10 和漏极电极层10 之上。氧化物绝缘层通过溅射法使用无机绝缘膜(典型地为氧化硅膜、氮氧化硅膜、氧化铝膜、氧氮化铝膜等)来形成。作为选择,在图IOB中示出的底接触型晶体管可以通过将相似的材料用于每个部分而形成。在图IOB中示出的晶体管包括在基板100之上的栅极电极层101、栅极绝缘层 102、源极电极层105a、漏极电极层10 以及包含在浅表部分内的结晶区106的氧化物半导体层103。此外,氧化物绝缘层107被设置于栅极绝缘层102、源极电极层105a、漏极电极层 105b和氧化物半导体层103之上。同样地,在该结构中,氧化物半导体层103是非晶的或者由非晶质和微晶的混合物形成,其中除了包括结晶区106的浅表部分由微晶层形成之外,非晶区以微晶来点缀或者由微晶群形成。当使用具有该结构的氧化物半导体层时,能够按照与沟道蚀刻结构的方式相似的方式来防止由归因于湿气进入浅表部分或者氧自浅表部分排除的转变为η型所致的电特性降低。此外,由于氧化物半导体层的浅表部分位于背沟道侧并且包括由微晶层形成的结晶区,因而能够抑制寄生沟道的产生。具有该结构,晶体管能够具有高可靠性和高的电特性。注意,虽然在本实施例中给出了沟道蚀刻型晶体管的实例,但是可以使用沟道保护晶体管。作为选择,可以使用包括与源极电极层和漏极电极层重叠的氧化物半导体层的底接触型晶体管。注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。(实施例2)在本实施例中,包括实施例1所描述的沟道蚀刻型晶体管的显示设备的制造过程将参照图2Α到2C、图3Α到3C、图4Α和4Β、图5、图6、图7、图8Α1、8Α2、8Β1和8Β2及图9 来描述。图2Α到2C和图3Α到3C是截面图,图4Α和4Β、图5、图6及图7是平面图,而在图4Α和4Β、图5、图6及图7中的线Α1-Α2和线Β1-Β2分别对应于在图2Α到2C和图3Α到 3C的截面图中的线Α1-Α2和线Β1-Β2。首先,制备基板100。作为基板100,能够使用下列基板中的任何种以熔融法或浮法用钡硼硅酸盐玻璃、铝硼硅酸盐玻璃、铝硅酸盐玻璃等制成的非碱性玻璃基板,陶瓷基板,具有足以经受住该制造过程的处理温度的耐热性的塑料基板等。作为选择,可以使用金属基板,例如,具有设置有绝缘膜的表面的不锈钢合金基板。注意,代替以上所描述的玻璃基板,可以将使用绝缘体形成的基板(例如,陶瓷基板、石英基板或蓝宝石基板)用作基板100。此外,作为基膜,绝缘膜还可以形成于基板100之上。基膜能够通过CVD法、溅射法等,使用氧化硅膜、氮化硅膜、氧氮化硅膜及氮氧化硅膜中的任何种的单层结构或层状结构来形成。在将含有可动离子的基板(例如,玻璃基板)用作基板100的情况下,含有氮的膜(例如,氮化硅膜或氮氧化硅膜)被用作基膜,由此能够防止可动离子进入半导体层。然后,以溅射法或真空蒸发法将待成为包含栅极电极层101、电容器布线108及第一端子121的栅极布线的导电膜形成于基板100的整个表面之上。然后,通过第一光刻过程,形成抗蚀剂掩模。通过蚀刻来去除非必要部分,以形成布线和电极(栅极布线包括电极层101、电容器布线108及第一端子121)。此时,优选地执行蚀刻,使得栅极电极层101的末端部分成锥形,以便避免形成于栅极电极层101之上的膜破裂。图2A示出了本阶段的截面图。注意,图4B是本阶段的平面图。
包括栅极电极层101、电容器布线108以及在端子部分内的第一端子121的栅极布线能够以使用诸如铝、铜、钼、钛、铬、钽、钨、钕及钪之类的任何金属材料,含有这些金属材料中的任何种作为其主要成分的合金材料或者含有这些金属材料中的任何种的氮化物的单层结构或层状结构来形成。在将诸如铝或铜之类的低电阻金属材料用于电极层的情况下,低电阻金属材料优选地结合难熔金属材料来使用,因为它具有诸如低耐热性或易于腐蚀之类的缺点。作为难熔金属材料,能够使用钼、钛、铬、钽、钨、钕、钪等。
例如,作为栅极电极层101的双层结构,下列结构是优选的其中钼层堆叠于铝层之上的双层结构、其中钼层堆叠于铜层之上的双层结构、其中氮化钛层或氮化钽层堆叠于铜层之上的双层结构以及氮化钛层和钼层的双层结构。作为三层结构,下列结构是优选的 包括在中间层的铝、铝和硅的合金、铝和钛的合金或者铝和钕的合金以及在顶层和底层的钨、氮化钨、氮化钛和钛中的任何种的层状结构。
在那时,透光氧化物导电层被用于电极层和布线层的一部分以提高开口率。例如, 能够将氧化铟、氧化铟和氧化锡的合金、氧化铟和氧化锌的合金、氧化锌、氧化锌铝、氧氮化锌铝、氧化锌镓等用于氧化物导电层。
然后,在栅极电极层101之上形成栅极绝缘层102。栅极绝缘层102以CVD法、溅射法等形成达50-250nm的厚度。
例如,对于栅极绝缘层102,以溅射法来形成具有IOOnm的厚度的氧化硅膜。不必说,栅极绝缘层102并不限于此类氧化硅膜,而是可以以使用诸如氧氮化硅膜、氮氧化硅膜、氮化硅膜、氧化铝膜及氧化钽膜之类的任意绝缘膜的单层结构或层状结构来形成。
作为选择,栅极绝缘层102可以通过CVD法与有机硅烷气体一起使用氧化硅层来形成。对于有机硅烷气体,能够使用含有硅的化合物,例如,正硅酸乙酯(TEOS)、四甲基硅烷 (TMS)、四甲基环四硅氧烷(TMCTS)、八甲基环四硅氧烷(OMCTS)、六甲基二硅氮烷(HMDS)、 三乙氧基硅烷(TRIEQ或三(二甲胺基)硅烷(TDMAS)。
作为选择,栅极绝缘层102可以使用铝、钇或铪的氧化物、氮化物、氧氮化物及氮氧化物,或者包含上述物质中的至少两种或更多种的化合物来形成。
注意,在本说明书中,术语“氧氮化物”指的是含有氧原子和氮原子,使得氧原子数大于氮原子数的物质,术语“氮氧化物”指的是含有氮原子和氧原子,使得氮原子数大于氧原子数的物质。例如,“氧氮化硅膜”意指含有氧原子和氮原子,使得氧原子数大于氮原子数的,并且在使用卢瑟福背散射光谱法(RBQ和氢前向散射(HR5)来执行测量的情况下,含有浓度范围分别为50%-70%、0.5%-15%、25%-;35%及0.(原子百分比)的氧、氮、硅和氢的膜。此外,“氮氧化硅膜”意指含有氮原子和氧原子,使得氮原子数大于氧原子数的,并且在使用RBS和HFS来执行测量的情况下,含有浓度范围分别为5% -30%、 20% -55%,25% -;35%及10% -30%的氧、氮、硅和氢的膜。注意,氮、氧、硅和氢的百分比落在以上给出的范围之内,其中包含于氧氮化硅膜或氮氧化硅膜内的总原子数被定义为 100%的原子百分比。
注意,在用于形成氧化物半导体层103的氧化物半导体膜形成之前,在栅极绝缘层的表面上的灰尘优选地通过执行其中引入氩气并生成等离子体的反向溅射来去除。反向溅射指的是其中使用RF电源来将电压施加于氩气气氛中的基板侧,从而在基板周围生成等离子体以使表面改性的方法。注意,代替氩气气氛,可以使用氮气气氛、氦气气氛等。作为选择,可以使用其中添加了氧气、N20等的氩气气氛。同样作为选择,可以使用其中添加了 Cl2, CF4等的氩气气氛。在反向溅射之后,氧化物半导体膜在不暴露于空气的情况下形成, 由此能够防止灰尘和湿气附着于栅极绝缘层102与氧化物半导体层103之间的界面上。
然后,氧化物半导体膜被形成于栅极绝缘层102之上,达5-200nm的厚度,优选地为 10-40nm。
作为氧化物半导体膜,能够使用四组分金属氧化物膜,例如,In-Sn-Ga-ai-Ο基膜;三组分金属氧化物膜,例如,h-Ga-Si-O基膜、h-Sn-ai-O基膜、I-Si-O基膜、 Sn-Ga-Zn-O基膜、Al-Ga-Zn-O基膜或Sn-Al-Si-O基膜;或者二组分金属氧化物膜,例如, In-Zn-O 基膜、Sn-Zn-O 基膜、Al-Si-O 基膜、Zn-Mg-O 基膜、Sn-Mg-O 基膜或 h-Mg-O 基膜; In-O基膜、Sn-O基膜或Si-O基膜。此外,氧化物半导体膜还可以含有Si02。
在此,使用用于沉积氧化物半导体的靶子来形成氧化物半导体膜,该靶子含有^、 ( 和Si (In2O3对(^a2O3对ZnO之比为摩尔比1 1 1或1 1 2),在以下条件下基板与靶子之间的距离为100mm,压力为0. 6Pa,以及直流电(DC)功率为0. 5kW,并且气氛为氧气气氛(氧气流量的比例为100%)。注意,当使用脉冲直流电(DC)电源时,能够减少灰尘并且膜厚度可能是均勻的。在本实施例中,作为氧化物半导体膜,30nm厚的^-Ga-Si-O基膜以溅射法使用用于沉积h-Ga-ai-Ο基氧化物半导体的靶子来形成。
溅射法的实例包括其中将高频电源用作溅射电源的RF溅射法、其中使用DC电源的DC溅射法以及其中按照脉冲的方式来施加偏压的脉冲DC溅射法。RF溅射法主要在形成绝缘膜的情况下使用,而DC溅射法主要在形成诸如金属膜之类的导电膜的情况下使用。
另外,还有其中能够设置多个不同材料的靶子的多源极溅射装置。以多源极溅射装置,不同材料的膜能够被形成以在同一腔室内堆叠,或者能够在同一腔室内同时形成多种材料的膜。
另外,还有在腔室内设置有磁体系统,用于磁控溅射法的溅射装置,以及用于ECR 溅射法的溅射装置,在ECR溅射法中,在不使用辉光放电的情况下使用利用微波产生的等离子体。
而且,作为使用溅射法的沉积方法,还有其中靶子物质与溅射气体成分在沉积期间相互化学反应以形成其化合物薄膜的反应溅射法,以及其中在沉积期间同样对基板施加电压的偏压溅射法。
然后,通过第二光刻过程,形成抗蚀剂掩模。然后,蚀刻h-Ga-Si-O基膜。在蚀刻中,能够将诸如柠檬酸或草酸之类的有机酸用作蚀刻剂。在此,h-Ga-ai-Ο基膜使用 IT0-07N(Kanto化学股份有限公司制造)通过湿法蚀刻来蚀刻以去除非必要部分。因而, h-Ga-ai-Ο基膜被处理以具有岛屿形状,由此形成氧化物半导体层103。氧化物半导体层 103的末端部分被蚀刻为具有锥形形状,由此能够防止布线因阶梯形状所致的破裂。注意, 蚀刻在此并不限于湿法蚀刻,而是可以执行干法蚀刻。
然后,氧化物半导体层受到脱水或脱氢。用于脱水或脱氢的第一热处理能够通过使用高温气体(惰性气体,例如,氮气或稀有气体)或光在50(TC-75(rC的温度(或者低于或等于玻璃基板的应变点的温度)下进行大约1分钟到10分钟,优选地在650°C下进行大约3分钟到6分钟的快速热退火(RTA)处理来执行。以RTA法,能够短时间地执行脱水或脱氢;因此,该处理甚至能够在高于玻璃基板的应变点的温度下执行。本阶段的截面图以及本阶段的平面图分别示出于图2B和图5中。注意,热处理的时序并不限于该时序,而是可以多次执行,例如,在光刻过程或沉积步骤之前和之后。
在此,氧化物半导体层103的浅表部分通过第一热处理来晶化,并从而变成具有包含微晶的结晶区106。氧化物半导体层103的剩余部分变成为非结晶的或者由非晶质和微晶的混合物形成,其中非晶区以微晶来点缀或者由微晶群形成。注意,结晶区106是氧化物半导体层103的一部分,并且在下文中,“氧化物半导体层103”包括结晶区106。
注意,在本说明书中,在惰性气体(例如,氮气或稀有气体)的气氛中的热处理被称为用于脱水或脱氢的热处理。在本说明书中,“脱氢”并非是指以热处理来仅排除h2。为了方便起见,H、OH等的排除也称为“脱水或脱氢”。
重要的是,受到过脱水或脱氢的氧化物半导体层不应当暴露于空气,从而能够防止水或氢进入氧化物半导体层之内。当晶体管使用通过执行脱水或脱氢将氧化物半导体层改变成低电阻氧化物半导体层(即,η型(例如,η"型或η+型)氧化物半导体层),以及通过将低电阻氧化物半导体层改变成高电阻氧化物半导体层使得氧化物半导体层变成i型氧化物半导体层而获得的氧化物半导体层来形成时,晶体管的阈值电压(Vth)是正的,从而实现所谓的常关性质。对于用于显示设备的晶体管而言,优选的是栅极电压是尽可能接近于OV的正的阈值电压。在有源矩阵显示设备中,包含于电路内的晶体管的电特性是重要的,并且显示设备的性能取决于电特性。特别地,晶体管的阈值电压是重要的。如果晶体管的阈值电压是负的,则晶体管具有所谓的常开性质,也就是,即使在栅极电压为OV时也有电流在源极电极与漏极电极之间流过,使得难以控制使用该晶体管形成的电路。在阈值电压为正,但阈值电压的绝对值为大的晶体管的情形中,该晶体管在某些情况下无法执行开关操作,因为驱动电压不是足够高的。在η沟道晶体管的情形中,优选的是在正电压被施加为栅极电压之后才形成沟道并且有漏极电流流过。其中除非驱动电压升高否则不形成沟道的晶体管以及其中即使在施加负电压时也会形成并且有漏极电流流过的晶体管不适用于在电路中使用的晶体管。
在从在其下执行脱水或脱氢的温度起的冷却中,气氛可以切换为与在其中升高温度或者执行热处理的气氛不同的气氛。例如,冷却能够在当炉子充满高纯度氧气、高纯度 N2O气或超干燥空气(具有-40°C或更低的,优选地为-60°C或更低的露点)时于其中执行脱水或脱氢的炉子内执行,不暴露于空气。
注意,在第一热处理中,优选的是在气氛中不含有水、氢等。作为选择,被引入热处理装置之内的惰性气体的纯度优选地为6N(99.9999% )或更高,更优选地为 7N(99. 99999% )或更高(也就是,杂质浓度为Ippm或更低,优选地0. Ippm或更低)。
在热处理于惰性气体气氛中执行的情况下,氧化物半导体层被改变成缺氧型氧化物半导体层,从而通过热处理使氧化物半导体层变成低电阻氧化物半导体层(即,η型(例如,η—型或η+型)氧化物半导体层)。其后,通过形成与氧化物半导体层接触的氧化物绝缘层而使氧化物半导体层变成为氧过量状态。因而,使氧化物半导体层成为i型的;也就是,氧化物半导体层被改变为高电阻氧化物半导体层。因此,有可能形成具有有利的电特性的高可靠性晶体管。
氧化物半导体层可以部分晶化,取决于第一热处理的条件或者氧化物半导体层的材料。在第一热处理之后,获得了氧空缺且具有低电阻的氧化物半导体层103。在第一热处理之后,载流子浓度高于刚在膜形成之后的氧化物半导体膜的载流子浓度,使得氧化物半导体层具有优选地为1 X IO1Vcm3或更高的载流子浓度。
用于氧化物半导体层的第一热处理可以在氧化物半导体膜被处理成岛状氧化物半导体层之前执行。在这种情况下,第二光刻过程在第一热处理之后执行。结晶区没有形成于岛状氧化物半导体层103的侧表面部分内,而是结晶区106仅形成于氧化物半导体层 103的上层部分内(参见图10A)。
然后,通过第三光刻过程,形成抗蚀剂掩模。非必要部分通过蚀刻来去除以形成达到由与栅极电极层101相同的材料形成的布线或电极层的接触孔。该接触孔被提供用于连接上述布线等与后面将要形成的导电膜。
然后,在氧化物半导体层103和栅极绝缘层102之上,以溅射法或真空蒸发法形成作为导电层的第一导电层112、第二导电层113和第三导电层114。图2C是本阶段的截面图。
第一导电层112、第二导电层113和第三导电层114能够各自使用与栅极电极层 101的材料相似的材料来形成。
在此,第一导电层112和第三导电层114使用为耐热性导电材料的钛来形成,而第二导电层113使用含有钕的铝合金形成。该结构能够利用铝的低电阻性质并且减少凸起产生。注意,虽然导电层在本实施例中具有三层结构,但是本发明的实施例并不限于此。可以采用单层结构或者包括两层或四层或者更多层的层状结构。例如,可以采用钛膜的单层结构或者钛膜和含有硅的铝膜的层状结构。
然后,通过第四光刻过程,形成抗蚀剂掩模131。非必要部分通过蚀刻来去除,由此形成源极和漏极电极层10 和10 、氧化物半导体层103以及连接电极120。此时采用湿法蚀刻或干法蚀刻来作为蚀刻方法。例如,当第一导电层112和第三导电层114使用钛形成以及第二导电层113使用含有钕的铝合金形成时,湿法蚀刻能够通过将溶液或加热的盐酸用作蚀刻剂来执行。通过该蚀刻步骤,氧化物半导体层103被部分蚀刻以具有在源极电极层10 与漏极电极层10 之间的薄的区域。本阶段的截面图和本阶段的平面图分别示出于图3A和图6中。
此时,蚀刻处理在氧化物半导体层103对第一导电层112和第三导电层114的选择比为足够低的条件下执行,由此晶体管具有如图IB所示出的那样留下了浅表部分的结晶区的结构。
第一导电层112、第二导电层113、第三导电层114及氧化物半导体层103能够使用过氧化氢溶液或加热的盐酸来完全蚀刻。因此,在源极电极层105a、漏极电极层10 或氧化物半导体层103的末端部分没有形成阶梯等。另外,湿法蚀刻允许各层各向同性地蚀刻;因而,源极和漏极电极层10 和10 被减小尺寸,使得它们的末端部分位于抗蚀剂掩模131的内侧。通过以上步骤,能够制造出其中氧化物半导体层103和结晶区106被用作沟道形成区的晶体管170。
在此,源极电极层10 和漏极电极层10 使用与栅极电极层101类似的透光氧化物导电层来形成,由此能够提高像素部分的透光率并且还能够提高开口率。
此外,氧化物导电层可以形成于氧化物半导体层103与将要成为源极和漏极电极层10 和10 的金属膜之间,从而能够降低接触电阻。
在第四光刻过程中,使用与源极电极层10 和漏极电极层10 相同的材料形成的第二端子122也留在了端子部分内。注意,第二端子122与源极布线(包括源极和漏极电极层10 和10 的源极布线)电连接。
另外,在端子部分内,连接电极120通过形成于栅极绝缘层102内的接触孔直接连接到端子部分的第一端子121。注意,虽然没有示出,但是驱动电路的晶体管的源极或漏极布线及栅极电极通过与以上步骤相同的步骤彼此直接连接。
此外,通过使用具有多个厚度(典型为两个不同的厚度)的区域的,使用多色调掩模形成的抗蚀剂掩模,能够减少抗蚀剂掩模的数量,从而造成简化的过程和较低的成本。
然后,去除抗蚀剂掩模131,并且形成覆盖晶体管170的氧化物绝缘层107。氧化物绝缘层107能够使用氧化硅膜、氧氮化硅膜、氧化铝膜、氧化钽膜等来形成。
在本实施例中,以溅射法将氧化硅膜形成用于氧化物绝缘层。在膜形成中的基板温度可以是从室温到300°C,而在本实施例中,是100°C。为了在膜形成中防止诸如水或氢之类的杂质进入,优选的是在膜形成之前,在降低的压力之下于150°C -350°C的温度下执行2-10分钟的预烘焙,以在不暴露于空气的情况下形成氧化物绝缘层。氧化硅膜能够以溅射法在稀有气体(典型为氩气)气氛、氧气气氛或者含有稀有气体(典型为氩气)和氧气的混合气氛中形成。此外,还能够将氧化硅靶或硅靶用作靶子。例如,使用硅靶,氧化硅膜能够以溅射法在氧气和稀有气体的气氛中形成。被形成为与在其电阻被降低的区域内的氧化物半导体层接触的氧化物绝缘层使用不含有诸如湿气、氢离子和OH—之类的杂质并且阻挡此类杂质从外部进入的无机绝缘膜来形成。
在本实施例中,膜形成通过脉冲DC溅射法使用以柱状多晶B(具有0. 01 Ω 的电阻率)掺杂的硅靶在以下条件执行并且具有6Ν纯度在基板与靶子之间的距离(T-S距离)为89mm,压力为0.4Pa,以及直流电(DC)功率为6kW,并且气氛是氧气气氛(氧气流量的比例为100% )。厚度为300nm。
然后,在惰性气体气氛中执行第二热处理(优选地,在200°C -400°C的温度下,例如,250°C -350°C )。例如,第二热处理在氮气气氛中于250°C下执行1小时。作为选择,如同在第一热处理中那样,RTA处理可以在高温下短时间地执行。在第二热处理中,由于氧化物绝缘层107被加热成与氧化物半导体层103的一部分接触,因而氧由氧化物绝缘层107 供应给变成为η型的并且通过第一热处理而具有较低电阻的氧化物半导体层103,使得氧化物半导体层103处于氧过量状态。因而,氧化物半导体层103能够是i型的(具有较高的电阻)。
在本实施例中,第二热处理在氧化硅膜形成之后执行;但是,热处理的时序并不限于刚形成氧化硅膜之后的时序,只要是在氧化硅膜形成之后即可。
在源极电极层10 和漏极电极层10 使用耐热材料形成的情况下,使用第一热处理的条件的步骤能够在第二热处理的时序执行。在这种情况下,热处理可以在氧化硅膜形成之后就立即执行。
然后,通过执行第五光刻过程,形成抗蚀剂掩模。氧化物绝缘层107被蚀刻,从而形成达到漏极电极层10 的接触孔125。另外,达到连接电极120的接触孔126以及达到第二端子122的接触孔127同样通过该蚀刻来形成。图:3B是本阶段的截面图。
然后,在去除了抗蚀剂掩模之后形成透光导电膜。通过溅射法、真空蒸发法等使用氧化铟(In2O3)、氧化铟和氧化锡的合金(In2O3-SnO2,以下缩写为ΙΤ0)等来形成透光导电膜。该材料以盐酸基溶液来蚀刻。应当注意,由于在蚀刻ITO时可能产生残留物,因而可以使用氧化铟和氧化锌的合金(In2O3-ZnO,以下缩写为ΙΖ0)来提高蚀刻加工性能。
然后,通过第六光刻过程,形成抗蚀剂掩模。透光导电膜的非必要部分通过蚀刻来去除,从而形成像素电极层110。在此,储能电容器以在电容器部分内用作电介质的栅极绝缘层102和氧化物绝缘层107、电容器布线108和像素电极层110来形成。
此外,在第六光刻过程和蚀刻步骤中,透光导电层1 和1 分别形成于第一端子 121和第二端子122之上。透光导电层1 和1 各自用作电极或者与FPC连接的布线。与第一端子121连接的透光导电层1 是起着栅极布线的输入端子的作用的连接端子电极。 形成于第二端子122之上的透光导电层1 用作起着源极布线的输入端子的作用的连接端子电极。
然后,去除抗蚀剂掩模。本阶段的截面图和本阶段的平面图分别示出于图3C和图 7中。
图8A1和8A2分别是本阶段的栅极布线端子部分的截面图及其平面图。图8A1是沿图8A2的线C1-C2截取的截面图。在图8A1中,透光导电层155形成于保护绝缘膜IM之上,并且连接电极153是起着输入端子的作用的连接端子电极。此外,在图8A1中,由与栅极布线相同的材料形成的第一端子151以及由与源极布线相同的材料形成的连接电极153 彼此重叠(栅极绝缘层152插入它们之间),并且彼此部分直接接触以及电连接。而且,连接电极153和透光导电层155通过形成于保护绝缘膜154内的接触孔彼此直接连接。
图8B1和8B2分别是源极布线端子部分的截面图及其平面图。图8B1是沿图8B2 的线D1-D2截取的截面图。在图8B1中,形成于保护绝缘膜巧4和连接电极150之上的透光导电层巧5是起着输入端子的作用的连接端子电极。此外,在图8B1中,由与栅极布线相同的材料形成的第二端子156与电连接至源极布线的连接电极150重叠,栅极绝缘层152 插入它们之间。第二端子156没有与连接电极150电连接,并且当第二端子156的电位被设置为与连接电极150的电位不同的电位,例如,GND或0V,或者第二端子156被设置为浮置状态时,能够形成用于防止噪声或静电的电容器。连接电极150通过形成于保护绝缘膜 154内的接触孔与透光导电层155电连接。
根据像素密度来提供多条栅极布线、源极布线及电容器布线。同样,在端子部分中,排布了电位与栅极布线相同的多个第一端子、电位与源极布线相同的多个第二端子、电位与电容器布线相同的多个第三端子等。每种端子的数量可以是任何数量,并且端子的数量可以由实施人酌情而定。
通过这六个光刻过程,从而能够完成沟道蚀刻型晶体管170和储能电容器部分。 通过将晶体管和储能电容器布置于像素部分内的矩阵中,能够获得用于制造有源矩阵显示设备的基板之一。在本说明书中,为方便起见,将此类基板称为有源矩阵基板。
在制造有源矩阵液晶显示设备的情况下,有源矩阵基板与设置有对电极的对基板彼此接合,液晶层插入它们之间。注意,与在对基板上的对电极电连接的公共电极被设置于有源矩阵基板之上,以及与公共电极电连接的第四端子被设置于端子部分内。提供第四端子使得公共电极被设置为固定电位,例如,GND或0V。
本实施例的像素结构并不限于图7内的像素结构。图9是示出另一种像素结构的实例的平面图。图9示出了其中不提供电容器布线并且储能电容器以彼此重叠的像素电极和相邻像素的栅极布线(保护绝缘膜和栅极绝缘层插入它们之间)来形成的实例。在这种情况下,能够省略电容器布线以及与电容器布线连接的第三端子。注意,在图9中,与图7 中的部分相同的部分以共同的参考数字来表示。
在有源矩阵液晶显示设备中,显示图形通过驱动按阵列排布的液晶元件来形成。 具体地,通过将电压施加于包含于所选的液晶元件内的像素电极与对电极之间,执行液晶层的光学调制,并且该光学调制由观看者感知为显示图形。
在显示液晶显示设备的运动图像时,存在着液晶分子本身的长响应时间导致余像的问题。为了减少此类余像,采用了一种称为黑插(blackinsertion)的驱动方法,在该驱动方法中,每隔一个帧周期就在整个屏幕上显示黑色。
此外,还有另一种称为双倍帧率驱动的驱动技术。在双倍帧率驱动中,垂直同步频率被设置为高至普通垂直同步频率的1. 5倍或更高,优选为2倍或更高,由此提高响应速度,并且在每一帧内为已经通过划分而获得的每多个场选择待写入的灰度。
而且,存在一种驱动技术,用以通过将多个LED (发光二极管)、多个EL光源等用作背光而形成平面光源,并且平面光源的每个光源被单独使用以在一个帧周期内执行间歇性照明驱动。例如,在使用LED的情况下,并非总是使用白色的LED,而是可以使用三种或更多颜色的LED。由于能够单独控制多个LED,因而LED的发光时序能够与对液晶层进行光学调制的时序同步。根据该驱动方法,LED能够部分关闭;因此,能够获得降低功率消耗的效果, 特别是在显示图像具有在一个屏幕内占据了大块的黑色显示区的情况下。
与常规的液晶显示设备的显示特性相比,通过结合这些驱动方法,能够提高液晶显示设备的显示特性,例如,运动图像特性。
在制造发光显示设备的情况下,发光元件在低电源电位一侧的电极(也称为阴极)被设置为GND、0V等;因而,在端子部分内提供用于将阴极设置于低电源电位(例如, GND或0V)的第四端子。同样地,在制造发光显示设备中,除了源极布线和栅极布线之外还提供了电源线。因此,端子部分设置有与电源线电连接的第五端子。
注意,在本实施例中,通过将沟道蚀刻型晶体管作为实例来描述制造方法;但是, 可以通过改变步骤的顺序来制造底接触型晶体管。
因为晶体管可能由于静电等而损坏,所以用于保护像素部分内的晶体管的保护电路被优选设置于基板之上,在该基板之上形成了栅极线或源极线。保护电路优选地使用包含氧化物半导体层的非线性元件来形成。
通过以上步骤,晶体管能够具有高可靠性和高的电特性,并且能够提供包括晶体管的显示设备。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例3)
在本实施例中,将在下面描述其中某些包括形成于一个基板之上的晶体管的驱动电路和像素部分被驱动的实例。
在本实施例中,使用用于制造根据实施例1的晶体管的方法将像素部分和驱动电路部分形成于一个基板之上。实施例1所描述的晶体管是η沟道晶体管,因而仅由η沟道晶体管构成的驱动电路部分仅限于电路的一部分。
图14Α示出了有源矩阵显示设备的框图的实例。像素部分5301、第一扫描线驱动电路5302、第二扫描线驱动电路5303和信号线驱动电路5304被设置于显示设备内的基板5300之上。在像素部分5301内,布置有从信号线驱动电路5304延伸出的多条信号线, 以及布置有从第一扫描线驱动电路5302和第二扫描线驱动电路5303延伸出的多条扫描线。注意,各自包括显示元件的像素按照矩排布于其中扫描线和信号线彼此相交的各个区域内。显示设备的基板5300通过诸如FPC(柔性印制电路)之类的连接部分与时序控制电路5305(也称为控制器或控制IC)连接。
在图14A中,第一扫描线驱动电路5302、第二扫描线驱动电路5303和信号线驱动电路5304形成于其中形成了像素部分5301的基板5300之上。因此,在外部提供的驱动电路等的构件的数量得以减少,从而能够降低成本。而且,能够减少在基板5300与外部驱动电路之间的连接部分(例如,FPC)的数量,并且能够提高可靠性或产量。
注意,时序控制电路5305将第一扫描线驱动电路起始信号(GSPl)(起始信号也称为起始脉冲)以及扫描线驱动电路时钟信号(GCKl)供应给第一扫描线驱动电路5302。而且,时序控制电路5305将第二扫描线驱动电路起始信号(GSP2)、扫描线驱动电路时钟信号 (GCK2)等供应给第二扫描线驱动电路5303。
而且,时序控制电路5305将信号线驱动电路起始信号(SSP)、信号线驱动电路时钟信号(SCK)、视频信号数据(DATA,也简称为视频信号)、锁存信号(LAT)等供应给信号线驱动电路5304。每个时钟信号可以是具有偏移相位的多个时钟信号,或者可以与通过使时钟信号反相而获得的信号(CKB) —起来供应。注意,有可能省略第一扫描线驱动电路5302 和第二扫描线驱动电路5303中的一个。
图14B示出了以下结构具有较低的驱动频率的电路(例如,第一扫描线驱动电路5302和第二扫描线驱动电路5303)形成于其上形成了像素部分5301的基板5300之上, 而信号线驱动电路5304形成于与其上形成了像素部分5301的基板5300不同的基板之上。 以这种结构,即使在使用其场效应迁移率相对较低的晶体管的情况下,某些驱动电路也能够形成于其上形成了像素部分5301的基板5300之上。因而,能够实现成本降低、产量提高寸。
然后,由η沟道晶体管构成的信号线驱动电路的结构及操作的实例将参照图15Α 和15Β来描述。
信号线驱动电路包括移位寄存器5601和开关电路5602。开关电路5602由开关电路5602_1到5602_Ν(Ν是自然数)构成。开关电路5602_1到560_2Ν各自由晶体管5603_1 到5603_k(k是自然数)构成。在此,晶体管5603_1到5603_k是η沟道晶体管。
在信号线驱动电路内的连接关系通过将开关电路5602_1用作实例来描述。晶体管5603_1到5603_k的第一端子分别与布线5604_1到5604_k连接。晶体管5603_1到5603_ k的第二端子分别与信号线Sl到Sk连接。晶体管5603_1到5603_k的栅极与布线5605_1连接。
移位寄存器5601具有通过将H电平信号(也称为H信号或者处于高电源电位电平的信号)依次输出到布线5605_1到5605_N来依次选择开关电路5602_1到5602_N的功能。
开关电路5602_1具有控制在布线5604_1到5604_k与信号线Sl到Sk之间的导通状态(在第一端子与第二端子之间的电连续性)的功能,也就是,控制是否将布线5604_1 到5604_k的电位供应给信号线Sl到Sk的功能。以这种方式,开关电路5602_1起着选择器的作用。而且,晶体管5603_1到5603_k具有分别控制在布线5604_1到5604_k与信号线Sl到Sk之间的导通状态的功能,也就是,分别控制是否将布线5604_1到5604_k的电位供应给信号线Sl到Sk的功能。以这种方式,晶体管5603_1到5603_k每个都起着开关的作用。
视频信号数据(DATA)被输入每条布线5604_1到5604_k。视频信号数据(DATA) 通常是对应于图像数据或图像信号的模拟信号。
然后,参照图15B中的时序图来描述在图15A中的信号线驱动电路的操作。图15B 示出了信号Sout_l到Sout_N以及信号Vdata_l到Vdata_k的实例。信号Sout_l到Sout_ N是移位寄存器5601的输出信号的实例。信号Vdata_l到Vdata_k是输入布线5604_1到 5604_k的信号的实例。注意,在显示设备中,信号线驱动电路的一个操作时段对应于一个栅极选择时段。例如,一个栅极选择时段被划分成时段Tl到TN。每个时段Tl到TN是用于将视频信号数据(DATA)写入属于所选行的像素之内的时段。
注意,在本实施例的附图中的信号波形失真等在某些情况下为了简明起见而放大。因此,本实施例并不必要限定于附图所示的比例。
在时段Tl到TN内,移位寄存器5601将H电平信号按顺序输出到布线5605_1到 5605_N。例如,在时段Tl内,移位寄存器5601将高电平信号输出到布线5605_1。此时,晶体管5603_1到5603_k被开启,从而使布线5604_1到5604_k以及信号线Sl到Sk变为导通。然后,Data(Sl)到 Data(Sk)分别被输入布线 5604_1 到 5604_k。Data(Sl)到 Data(Sk) 分别通过晶体管5603_1到5603_k写入所选行内的第一到第k列中的像素之内。以这样的方式,在时段Tl到TN内,视频信号数据(DATA)按顺序逐k列地写入所选行中的像素之内。
如同以上所描述的那样,视频信号数据(DATA)按照多列的方式写入像素之内,由此能够减少视频信号数据(DATA)的数量或者布线的数量。因此,能够减少与外部电路连接的数量。而且,当视频信号按照多列的方式写入像素之内时,能够延长写入的时间;因而,能够防止视频信号写入不充分。
注意,由实施例1和2中的晶体管构成的任何电路都能够用于移位寄存器5601和开关电路5602。在这种情况下,移位寄存器5601能够仅由单极晶体管来构成。
然后,将描述扫描线驱动电路的结构。扫描线驱动电路包括移位寄存器。另外,扫描线驱动电路在某些情况下还可以包括电平移位器、缓冲器等。在扫描线驱动电路中,时钟信号(CLK)和起始脉冲信号(SP)被输入移位寄存器,从而生成选择信号。所生成的选择信号由缓冲器来缓冲和放大,并且所产生的信号被供应给相应的扫描线。在一条线路的像素内的晶体管的栅极电极与扫描线连接。由于在一条线路的像素内的晶体管必须全部同时开启,因而使用能够供应大电流的缓冲器。
用于扫描线驱动电路和/或信号线驱动电路的一部分的移位寄存器的一个实施例将参照图16A到16D及图17A和17B来描述。
移位寄存器包括第一到第N脉冲输出电路10_1到10_N(N是大于或等于3的自然数)(参见图16A)。在移位寄存器中,第一时钟信号CK1、第二时钟信号CK2、第三时钟信号 CK3及第四时钟信号CK4分别由第一布线11、第二布线12、第三布线13及第四布线14供应给第一到第N脉冲输出电路10_1到10_N。
起始脉冲SPl (第一起始脉冲)由第五布线15输出到第一脉冲输出电路10_1。来自前一级的脉冲输出电路的信号(该信号被称为前级信号OUT (η-l))被输入第二或后续级的第η脉冲输出电路10_η (η是大于或等于2且小于或等于N的自然数)。
来自下一级的后级的第三脉冲输出电路10_3的信号被输入第一脉冲输出电路 10_1。以类似的方式,来自下一级的后级的第(η+2)脉冲输出电路10_(η+2)的信号(该信号被称为后续级信号OUT (n+幻)被输入第二或后续级的第η脉冲输出电路10_η。
因而,各级的脉冲输出电路输出待输入后续级的脉冲输出电路和/或先前级的脉冲输出电路的第一输出信号(OUT(l) (SR)到OUT(N) (SR)),以及待输入不同的电路等的第二输出信号(OUT(I)到OUT(N))。注意,由于后续级信号OUT(n+幻没有被输入移位寄存器的最后两级,如图16A所示,因而第二起始脉冲SP2和第三起始脉冲SP3可以例如分别另外输入最后级的前级和最后级。
注意,时钟信号(CK)是按照固定的时间间隔在H电平和L电平(也称为L信号或处于低电源电位电平的信号)之间交替的信号。在此,第一时钟信号(CKl)到第四时钟信号(CK4)依次延迟1/4周期。在本实施例中,脉冲输出电路的驱动以第一到第四时钟信号 (CKl)到(CK4)来控制。注意,时钟信号在某些情况下也称为GCK或SCK,取决于该时钟信号所输入的驱动电路;在以下的描述中,时钟信号被称为CK。
第一输入端子21、第二输入端子22及第三输入端子23电连接至第一到第四布线 11到14中的任意一条布线。例如,在图16A中的第一脉冲输出电路10_1内,第一输入端子 21与第一布线11电连接,第二输入端子22与第二布线12电连接,而第三输入端子23与第三布线13电连接。在第二脉冲输出电路10_2中,第一输入端子21与第二布线12电连接, 第二输入端子22与第三布线13电连接,而第三输入端子23与第四布线14电连接。
假定第一到第η脉冲输出电路10_1到10_Ν每个都包括第一输入端子21、第二输入端子22、第三输入端子23、第四输入端子Μ、第五输入端子25、第一输出端子沈和第二输出端子27 (参见图16Β)。
在第一脉冲输出电路10_1中,第一时钟信号CKl被输入第一输入端子21 ;第二时钟信号CK2被输入第二输入端子22 ;第三时钟信号CK3被输入第三输入端子23 ;起始脉冲被输入第四输入端子M ;后续级信号0UTC3)被输入第五输入端子25 ;第一输出信号 OUT(I) (SR)由第一输出端子沈输出;以及第二输出信号OUT(I)由第二输出端子27输出。
在第一到第η脉冲输出电路10_1到10_Ν中,除了具有三个端子的晶体管之外,还能够使用具有四个端子的晶体管观(参见图16C)。注意,在本说明书中,当晶体管具有两个栅极电极(半导体层在它们之间)时,在半导体层下方的栅极电极称为下栅极电极,而在半导体层上方的栅极电极称为上栅极电极。晶体管观是能够以输入下栅极电极的第一控制信号Gl以及输入上栅极电极的第二控制信号G2来执行在IN端子与OUT端子之间的电控制的元件。
当氧化物半导体被用于晶体管中包括沟道形成区的半导体层时,阈值电压有时沿正或负方向偏移,取决于制造过程。由于该原因,其中氧化物半导体被用于包括沟道形成区的半导体层的晶体管优选地具有能够用来控制阈值电压的结构。在图16C中,栅极电极被设置于晶体管观的沟道形成区之上和之下,栅极绝缘层在它们之间。通过控制上栅极电极和/或下栅极电极的电位,能够控制阈值电压使之为所期望的值。
然后,将参照图16D来描述脉冲输出电路的特定电路配置的实例。
在图16D中所示出的脉冲输出电路包括第一到第十三晶体管31到43。第一到第十三晶体管31到43连接至第一到第五输入端子21到25、第一输出端子沈、第二输出端子 27、对其供应第一高电源电位VDD的电源线51、对其供应第二高电源电位VCC的电源线52 以及对其供应低电源电位VSS的电源线53。除了第一到第五输入端子21到25、第一输出端子26以及第二输出端子27之外,信号或电源电位还由供应第一高电源电位VDD的电源线51、供应第二高电源电位VCC的电源线52以及供应低电源电位VSS的电源线53供应给第一到第十三晶体管31到43。
在图16D中的电源线的电源电位的关系如下第一电源电位VDD高于或等于第二电源电位VCC,以及第二电源电位VCC高于第三电源电位VSS。注意,第一到第四时钟信号 (CKl)到(CK4)每个都按照固定的时间间隔在H电平与L电平之间交替;例如,处于H电平的时钟信号是VDD以及处于L电平的时钟信号为VSS。
通过使电源线51的电位VDD变得比电源线52的电位VCC高,能够降低施加于晶体管的栅极电极的电位,能够减小晶体管的阈值电压的偏移,并且能够抑制晶体管的劣化, 而对晶体管的操作没有不利影响。
如图16D所示,在图16C中具有四个端子的晶体管观优选地被用作在第一到第十三晶体管31到43当中的第一晶体管31和第六到第九晶体管36到39中的每个晶体管。
与用作第一晶体管31和第六到第九晶体管36到39中的每个晶体管的源极或漏极的一个电极连接的节点的电位需要用第一晶体管31和第六到第九晶体管36到39中的每个晶体管的栅极电极的控制信号来切换。此外,由于对于输入栅极电极的控制信号的相应快速(通态电流的上升急剧),因而第一晶体管31和第六到第九晶体管36到39各自优选地减少了脉冲输出电路的故障。因而,通过使用具有四个端子的晶体管,能够控制阈值电压,并且能够进一步减少脉冲输出电路的故障。注意,在图16D中,第一控制信号Gl和第二控制信号G2是相同的控制信号;但是,可以输入不同的控制信号。
在图16D中,第一晶体管31的第一端子与电源线51电连接,第一晶体管31的第二端子与第九晶体管39的第一端子电连接,以及第一晶体管31的栅极电极(下栅极电极和上栅极电极)与第四输入端子M电连接。
第二晶体管32的第一端子与电源线53电连接,第二晶体管32的第二端子与第九晶体管39的第一端子电连接,以及第二晶体管32的栅极电极与第四晶体管34的栅极电极电连接。
第三晶体管33的第一端子与第一输入端子21电连接,以及第三晶体管33的第二端子与第一输出端子26电连接。
第四晶体管34的第一端子与电源线53电连接,以及第四晶体管34的第二端子与第一输出端子26电连接。
第五晶体管35的第一端子与电源线53电连接,第五晶体管35的第二端子与第二晶体管32的栅极电极以及第四晶体管34的栅极电极电连接,以及第五晶体管35的栅极电极与第四输入端子M电连接。
第六晶体管36的第一端子与电源线52电连接,第六晶体管36的第二端子与第二晶体管32的栅极电极以及第四晶体管34的栅极电极电连接,以及第六晶体管36的栅极电极(下栅极电极和上栅极电极)与第五输入端子25电连接。
第七晶体管37的第一端子与电连接电源线52,第七晶体管37的第二端子与第八晶体管38的第二端子电连接,以及第七晶体管37的栅极电极(下栅极电极和上栅极电极) 与第三输入端子23电连接。
第八晶体管38的第一端子与第二晶体管32的栅极电极以及第四晶体管34的栅极电极电连接,以及第八晶体管38的栅极电极(下栅极电极和上栅极电极)与第二输入端子22电连接。
第九晶体管39的第一端子与第一晶体管31的第二端子以及第二晶体管32的第二端子电连接,第九晶体管39的第二端子与第三晶体管33的栅极电极以及第十晶体管40 的栅极电极电连接,以及第九晶体管39的栅极电极(下栅极电极和上栅极电极)与电源线 52电连接。
第十晶体管40的第一端子与第一输入端子21电连接,第十晶体管40的第二端子与第二输出端子27电连接,以及第十晶体管40的栅极电极与第九晶体管39的第二端子电连接。
第十一晶体管41的第一端子与电源线53电连接,第十一晶体管41的第二端子与第二输出端子27电连接,以及第十一晶体管41的栅极电极与第二晶体管32的栅极电极以及第四晶体管34的栅极电极电连接。
第十二晶体管42的第一端子与电源线53电连接,第十二晶体管42的第二端子与第二输出端子27电连接,以及第十二晶体管42的栅极电极与第七晶体管37的栅极电极 (下栅极电极和上栅极电极)电连接。
第十三晶体管43的第一端子与电源线53电连接,第十三晶体管43的第二端子与第一输出端子26电连接,以及第十三晶体管43的栅极电极与第七晶体管37的栅极电极 (下栅极电极和上栅极电极)电连接。
在图16D中,第三晶体管33的栅极电极、第十晶体管40的栅极电极以及第九晶体管39的第二端子相连接的部分被称为节点A。而且,第二晶体管32的栅极电极、第四晶体管34的栅极电极、第五晶体管35的第二端子、第六晶体管36的第二端子、第八晶体管38 的第一端子以及第十一晶体管41的栅极电极相连接的部分被称为节点B(参见图17A)。
图17A示出了在图16D所示的脉冲输出电路被应用于第一脉冲输出电路10_1的情况下被输入第一到第五输入端子21到25以及第一和第二输出端子沈和27的或者由其所输出的信号。
具体地,第一时钟信号CKl输入第一输入端子21 ;第二时钟信号CK2输入第二输入端子22 ;第三时钟信号CK3输入第三输入端子23 ;起始脉冲(SPl)输入第四输入端子M ; 后续级信号OUT C3)输入第五输入端子25 ;第一输出信号OUT(I) (SR)由第一输出端子沈输出;以及第二输出信号OUT(I)由第二输出端子27输出。
注意,晶体管是具有至少三个端子(栅极、漏极和源极)的元件,其中沟道区形成于漏极区与源极区之间,并且电流能够流过漏极区、沟道区及源极区。在此,由于晶体管的源极和漏极可以改变,取决于晶体管的结构、操作条件等,因而难以界定哪个是源极或漏极。因此,在某些情况下起着源极或漏极的作用的区域不称为源极或漏极。在这种情况下, 例如,此类区域可以称为第一端子和第二端子。
注意,在图17A中,可以另外提供用于通过使节点进入浮置状态来执行自举操作的电容器。而且,可以另外提供具有一个与节点B电连接的电极的电容器,以便保持节点B 的电位。
图17B示出了包括图17A所示的多个脉冲输出电路的移位寄存器的时序图。注意, 当移位寄存器是扫描线驱动电路之一时,在图17B中的时段61对应于垂直折回时段,以及时段62对应于栅极选择时段。
注意,其中第二电源电位VCC如图17A所示出的那样被施加于栅极电极的第九晶体管39的布置在自举操作之前和之后具有下列优点。
没有其中第二电源电位VCC被施加于栅极电极的第九晶体管39,如果节点的电位由自举操作来提升,则作为第一晶体管31的第二端子的源极的电位会上升至高于第一电源电位VDD的值。然后,第一晶体管31的源极被切换至第一端子,也就是,在电源线51 — 侧的端子。因此,在第一晶体管31中,高偏压电压被施加,并因而显著的应力被施加于栅极与源极之间以及于栅极与漏极之间,这可能导致晶体管劣化。
另一方面,以其中第二电源电位VCC被施加于栅极电极的第九晶体管39,能够防止第一晶体管31的第二端子的电位上升,而节点的电位通过自举操作来提升。换言之,第九晶体管39的布置能够降低施加于第一晶体管31的栅极与源极之间的负偏压电压的电平。因而,在本实施例中的电路配置能够降低施加于第一晶体管31的栅极与源极之间的负偏压电压,从而能够抑制因应力所致的第一晶体管31的劣化。
注意,可以提供第九晶体管39,使得第九晶体管39的第一端子和第二端子连接于第一晶体管31的第二端子与第三晶体管33的栅极之间。注意,在与扫描线驱动电路相比具有更多数量的级的信号线驱动电路中,在移位寄存器包括本实施例的多个脉冲输出电路的情况下,能够省略第九晶体管39,则有利于减少晶体管的数量。
注意,氧化物半导体被用于第一到第十三晶体管31到43中的每个晶体管的半导体层,由此能够降低晶体管的断态电流,能够提高通态电流和场效应迁移率。因此,能够降低晶体管的劣化程度,并从而减少电路的故障。而且,通过将高电位施加于栅极电极而使用氧化物半导体的晶体管的劣化程度使用小于使用非晶硅的晶体管的劣化程度。因此,即使在将第一电源电位VDD供应给供应第二电源电位VCC的电源线时也能够获得相似的操作, 并且能够减少布置于电路之间的电源线的数量;因而,能够减小电路的尺寸。
注意,即使在连接关系被改变,使得由第三输入端子23供应给第七晶体管37的栅极电极(下栅极电极和上栅极电极)的时钟信号以及由第二输入端子22供应给第八晶体管38的栅极电极(下栅极电极和上栅极电极)的时钟信号分别由第二输入端子22和第三输入端子23来供应时,也获得相似的功能。
在图17A所示的移位寄存器中,第七晶体管37和第八晶体管38的状态被改变,使得第七晶体管37和第八晶体管38两者都导通,然后第七晶体管37截止而第八晶体管38 导通,以及然后第七晶体管37和第八晶体管38都截止;因而,由第七晶体管37的栅极电极的电位下降以及第八晶体管38的栅极电极的电位下降而两度导致因第二输入端子22和第三输入端子23的电位下降所致的节点B的电位下降。
另一方面,在图17A所示的移位寄存器中,当第七晶体管37和第八晶体管38的状态被改变,使得第七晶体管37和第八晶体管38两者都导通,然后第七晶体管37导通而第八晶体管38截止,以及然后第七晶体管37和第八晶体管38都截止时,因第二输入端子22 和第三输入端子23的电位下降所致的节点B的电位下降仅发生一次,其中此次电位下降是由第八晶体管38的栅极电极的电位下降所导致的。
因此,以下连接关系是优选的时钟信号CK3由第三输入端子23供应给第七晶体管37的栅极电极(下栅极电极和上栅极电极)以及时钟信号CK2由第二输入端子22供应给第八晶体管38的栅极电极(下栅极电极和上栅极电极)。这是因为能够减少节点B的电位的改变次数,由此能够减少噪声。
以这样的方式,H电平信号在第一输出端子26和第二输出端子27的电位被保持于L电平的时段内被有规律地供应给节点B ;因而,能够抑制脉冲输出电路的故障。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例4)
在本实施例中,将描述通过将实施例1和2所描述的晶体管用于像素部分和驱动电路内而形成的具有显示功能的显示设备。
显示设备包括显示元件。作为显示元件,能够使用液晶元件(也称为液晶显示元件)或发光元件(也称为发光显示元件)。在其种类中,发光元件包括其亮度通过电流或电压来控制的元件,具体地,包括无机电致发光(EL)元件、有机EL元件等。而且,能够使用其对比度通过电效应来改变的显示介质,例如,电子墨水。
注意,本说明书中的显示设备指的是图像显示设备、显示设备或光源(包括照明设备)。此外,显示设备在其种类中包括下列模块包括诸如柔性印制电路(FPC)、带式自动接合(TAB)卷带之类的连接器的模块;具有在其末端设置有印制布线板的TAB卷带的模块; 以及具有以玻璃上芯片(COG)方法直接安装于显示元件上的集成电路(IC)的模块。
在本实施例中,将参照图20A1、20A2及20B来描述作为半导体设备的一种实施例的液晶显示屏的外观和截面。图20A1和20A2是液晶显示屏的顶视平面图。图20B是沿着图20A1和20A2中的M-N的截面图。液晶显示屏具有以下结构液晶元件4013以密封剂 4005密封于设置有各自包括氧化物半导体层的晶体管4010和4011的第一基板4001与第二基板4006之间。
密封剂4005被这样提供使得包围设置于第一基板4001之上的像素部分4002和扫描线驱动电路4004。第二基板4006被设置于像素部分4002和扫描线驱动电路4004之上。因此,像素部分4002和扫描线驱动电路4004与液晶层4008 —起由第一基板4001、密封剂4005及第二基板4006来密封。使用单晶半导体或多晶半导体形成的信号线驱动电路 4003被安装于与在第一基板4001之上的由密封剂4005包围的区域不同的区域内。
注意,对于单独形成的驱动电路的连接方法没有特别的限制,并且能够使用COG法、丝线键合法、TAB法等。图20A1示出了以COG法来安装信号线驱动电路4003的实例。 图20A2示出了以TAB法来安装信号线驱动电路4003的实例。
设置于第一基板4001之上的像素部分4002和扫描线驱动电路4004包括多个晶体管。作为实例,图20B示出了包含于像素部分4002内的晶体管4010以及包含于扫描线驱动电路4004内的晶体管4011。绝缘层4020和4021被设置于晶体管4010之上,而绝缘层4020被设置于晶体管4011之上。
实施例1和2所描述的包含氧化物半导体层的任何高可靠性的晶体管都能够用作晶体管4010和4011。在本实施例中,晶体管4010和4011是η沟道晶体管。
导电层4040被设置于绝缘层4044的一部分之上,该导电层4040与在晶体管4011 内用于驱动电路的氧化物半导体层的沟道形成区重叠。导电层4040被设置于与氧化物半导体层的沟道形成区重叠的位置,由此能够降低晶体管的阈值电压4011在BT测试前后之间的变化量。导电层4040的电位是与晶体管4011的栅极电极层的电位相同的,由此导电层4040能够起着第二栅极电极层的作用。作为选择,导电层4040可以是与晶体管4011的栅极电极层的电位不同的给定电位。仍然,作为选择,导电层4040的电位可以是GND或0V, 或者导电层4040可以处于浮置状态。
包含于液晶元件4013内的像素电极层4030与晶体管4010电连接。液晶元件4013 的对电极层4031形成于第二基板4006上。像素电极层4030、对电极层4031及液晶层4008 相互重叠的部分对应于液晶元件4013。像素电极层4030和对电极层4031分别设置有起着对准膜的作用的绝缘层4032和绝缘层4033。注意,虽然没有示出,但是可以将彩色滤光片设置于第一基板4001 —侧或者于第二基板4006 —侧。
注意,玻璃、陶瓷或塑料能够用作第一基板4001和第二基板4006。作为塑料,能够使用玻璃纤维增强塑料(FRP)板、聚氟乙烯(PVF)膜、聚酯膜或丙烯酸树脂膜。作为选择, 可以使用具有其中铝箔夹在PVF膜、聚酯膜等之间的结构的薄片。
柱状隔件4035被提供以便控制液晶层4008的厚度(单元间隙)。柱状隔件4035 通过绝缘膜的选择性蚀刻来获得。作为选择,可以使用球形隔件。
对电极层4031与形成于其内形成了晶体管4010的基板之上的公共电位线电连接。对电极层4031和公共电位线能够通过布置于使用公共连接部分的一对基板之间的导电粒子来相互电连接。注意,导电粒子包含于密封剂4005内。
作为选择,可以使用展现出不需要对准膜的蓝相的液晶。蓝相是一种液晶相,该液晶相仅于胆留相在胆留液晶的温度增加的同时改变成各向同性相之前产生。由于蓝相仅在窄小的温度范围内产生,因而将含有重量百分比为5%或更高的手性剂的液晶组成用于液晶层4008,以便增大温度范围。包含展现出蓝相的液晶和手性剂的液晶组成具有 IO-IOOysec的短的响应时间,并且是光学各向同性的;因此,不需要对准处理并且视角依赖性是小的。注意,在使用蓝相的情况下,本发明的实施例并不限于图20Α1、20Α2及20Β中的结构,而是可以使用所谓的水平电场模式的结构,在该结构中,与对电极层4031对应的电极层形成于其上形成了像素电极层4030的基板的侧面上。
注意,本实施例是透射液晶显示设备的实例,并且同样能够应用于反射液晶显示设备和透反液晶显示设备。
在根据本实施例的液晶显示设备的实例中,偏光板设置于基板的外表面上(在观看者一侧),以及用于显示元件的着色层和电极层依次设置于基板的内表面上;作为选择, 偏光板可以设置于基板的内表面上。偏光板和着色层的层状结构并不限于本实施例中的结构,而是可以根据偏光板和着色层的材料或者制造过程的条件适当地设定。此外,还可以设置用作黑色基质的阻光膜。
在本实施例中,为了降低因晶体管所致的表面粗糙度以及提高可靠性,晶体管以用作保护膜和平面化绝缘膜的绝缘层(绝缘层4020和4021)来覆盖。注意,保护膜被提供用于防止存在于空气中的诸如有机物质、金属及湿气之类的污染杂质进入,并且优选为致密膜。保护膜可以用使用氧化硅膜、氮化硅膜、氧氮化硅膜、氮氧化硅膜、氧化铝膜、氮化铝膜、氧氮化铝膜及氮氧化铝膜中的任何种的单层结构或层状结构来形成。虽然本实施例描述了其中保护膜以溅射法来形成的实例,但是任何其它方法都可以使用。
在本实施例中,具有层状结构的绝缘层4020被形成为保护膜。在此,氧化硅膜以溅射法形成为绝缘层4020的第一层。将氧化硅膜用作保护膜具有防止用作源极和漏极电极层的铝膜的凸起的效果。
此外,作为保护膜的第二层,氮化硅膜以溅射法形成。将氮化硅膜用作保护膜能够防止钠等可动离子进入半导体区,从而能够抑制晶体管的电特性的变化。
在保护膜形成之后,可以执行氧化物半导体层的退火(300°C -400°C )。
绝缘层4021形成为平面化绝缘膜。绝缘层4021能够使用诸如丙烯酸树脂、聚酰亚胺、苯并环丁烯树脂、聚酰胺或环氧树脂之类的耐热性有机材料形成。除了此类有机材料之外,还有可能使用低介电常数的材料(低k值材料)、硅氧烷基树脂、PSG(磷硅酸盐玻璃)、 BPSG(硼磷硅酸盐玻璃)等。注意,绝缘层4021可以通过堆叠使用这些材料中的任何种形成的多个绝缘膜来形成。
注意,硅氧烷基树脂是使用硅氧烷基材料作为起始材料形成的包含Si-O-Si键的树脂。硅氧烷基树脂可以包含作为取代基的有机基团(例如,烷基或芳基)或氟基。而且, 有机基团可以包括氟基。
对于形成绝缘层4021的方法没有特别的限制,并且能够根据材料采用下列方法或装置方法,例如,溅射法、SOG法、旋涂法、浸渍法、喷涂法或液滴释放法(例如,喷墨法、 丝网印刷或胶版印刷),或者工具,例如,刮刀、辊涂机、幕涂机或刮涂机。在使用液体材料形成绝缘层4021的情况下,氧化物半导体层的退火(300°C -400°C )可以与烘焙步骤同时执行。绝缘层4021的烘焙步骤还用作氧化物半导体层的退火,由此能够减少步骤。
像素电极层4030和对电极层4031能够使用透光导电材料来形成,例如,含有氧化钨的氧化铟、含有氧化钨的氧化铟锌、含有氧化钛的氧化铟、含有氧化钛的氧化铟锡、氧化铟锡、氧化铟锌或者其中添加了氧化硅的氧化铟锡。
作为选择,包含导电高分子(也称为导电聚合物)的导电组成能够用于像素电极层4030和对电极层4031。使用导电组成形成的像素电极优选具有小于或等于每平方10000 欧姆的薄层电阻以及在^Onm的波长下大于或等于70%的透光率。此外,包含于导电组成内的导电高分子的电阻率优选小于或等于0.1 Ω ·_。
作为导电高分子,能够使用所谓的η-电子共轭型导电聚合物。实例是聚苯胺及其衍生物、聚吡咯及其衍生物、聚噻吩及其衍生物以及这些材料中的两种或更多种材料的共聚物。
此外,还通过FPC4018将各种信号和电位被供应给单独形成的信号线驱动电路 4003、扫描线驱动电路4004或像素部分4002。
在本实施例中,连接端子电极4015使用与包含于液晶元件4013内的像素电极层 4030相同的导电膜形成。端子电极4016使用与晶体管4010和晶体管4011的源极和漏极电极层相同的导电膜形成。
连接端子电极4015穿过各向异性导电膜4019与包含于FPC4018内的端子电连接。
注意,图20A1、20A2及20B示出了其中信号线驱动电路4003安装于第一基板4001 上的实例;但是,本实施例并不限于这种结构。可以仅安装扫描线驱动电路的一部分和信号线驱动电路的一部分或者扫描线驱动电路的一部分。
图21示出了使用实施例1和2所描述的晶体管形成于其上的基板沈00形成的液晶显示模块的实例。
图21示出了液晶显示模块的实例,在该显示模块中,基板沈00和对基板沈01以密封剂沈02来相互固定,并且包括晶体管等的像素部分沈03、包括液晶层的显示元件沈04 以及着色层2605被设置于基板之间以形成显示区。着色层沈05是执行彩色显示所必需的。 在RGB系统中,与颜色红色、绿色和蓝色对应的着色层被提供用于像素。偏光板沈06和沈07 以及漫射板2613被设置于基板沈00和对基板沈01的外部。光源包括冷阴极管沈10和反射板沈11。电路板沈12通过柔性布线板沈09与基板沈00的布线电路部分沈08连接,并且包括外部电路,例如,控制电路或电源电路。可以堆叠偏光板和液晶层,延迟板在它们之间。
对于液晶显示模块,能够使用扭曲向列(TN)模式、共面开关(IPS)模式、边缘场开关(FR5)模式、多畴垂直取向(MVA)模式、图形化垂直取向(PVA)模式、轴对称取向微单元 (ASM)模式、光学补偿双折射(OCB)模式、铁电液晶(FLC)模式、反铁电液晶(AFLC)模式等。
通过以上步骤,能够形成高可靠性的液晶显示屏。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例5)
在本实施例中,电子纸的实例将作为其中应用了实施例1和2所描述的晶体管的显示设备来描述。
图13示出了作为显示设备的实例的有源矩阵电子纸。实施例1和2所描述的晶体管能够用作显示设备的晶体管581。
图13中的电子纸是使用扭曲球显示系统的显示设备的实例。扭曲球显示系统指的是其中各自着色为黑色和白色的球形粒子被排列于第一电极层与第二电极层之间,并且在第一电极层与第二电极层之间产生电位差以控制球形粒子的取向,从而执行显示的方法。
晶体管581是底栅晶体管,并且晶体管581的源极电极层或漏极电极层通过形成于绝缘层583、584和585内的开口与第一电极层587电连接。球形粒子589被设置于第一电极层587与第二电极层588之间。每个球形粒子589都包括黑区590a、白区590b以及在黑区590a和白区590b周围充满液体的空腔594。在球形粒子589周围的空间以诸如树脂之类的填充物595来填充(参见图1 。在本实施例中,第一电极层587对应于像素电极, 以及第二电极层588对应于公共电极。第二电极层588与设置于其中形成了晶体管581的基板之上的公共电位线电连接。
作为选择,有可能使用电泳元件来代替扭曲球。具有大约10-200 μ m的直径,其内封装了透明的液体、带正电的白色微粒及带负电的黑色微粒的微胶囊被使用。在设置于第一电极层与第二电极层之间的微胶囊内,当通过第一电极层和第二电极层来施加电场时, 白色微粒和黑色微粒沿相反的方向移动,从而能够显示出白色或黑色。应用这种原理的显示元件是电泳显示元件,以及包括电泳显示元件的设备一般地称为电子纸。电泳显示元件与液晶显示元件相比具有更高的反射率;因而,不需要辅助光,功率消耗低,并且显示部分在昏暗的地方也能够识别。另外,即使在不给显示部分供电时,也能够维持之前已经显示的图像。因此,即使具有显示功能的显示设备(也称为半导体设备或设置有显示设备的半导体设备)远离电波源,也能够存储所显示的图像。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例6)
在本实施例中,发光显示设备的实例将作为包括实施例1和2所描述的晶体管的显示设备来描述。作为包含于显示设备内的显示元件,在此描述利用电致发光的发光元件。 利用电致发光的发光元件根据发光材料是有机化合物还是无机化合物来划分。一般地,前者称为有机EL元件,而后者称为无机EL元件。
在有机EL元件中,通过将电压施加于发光元件,使电子和空穴分别从一对电极注入含有发光有机化合物的层内,并且有电流流过。载流子(电子和空穴)重新结合,并因而, 发光有机化合物被激发。发光有机化合物从激发态返回至基态,由此发光。因为该机制,这种发光元件被称为电流激励发光元件。
无机EL元件根据它们的元件结构划分成分散型无机EL元件和薄膜无机EL元件。 分散型无机EL元件具有其中发光材料的粒子分散于粘合剂中,且其发光机制是利用施主能级和受主能级的施主-受主再结合型发光的发光层。薄膜无机EL元件具有其中发光层夹在电介质层之间的结构,该电介质层还夹在电极之间,并且发光层的发光机制是利用金属离子的内壳层电子跃迁的局部型发光。
注意,在此描述了作为发光元件的有机EL元件的实例。图18示出了其中能够应用数字时间灰度驱动的像素结构的实例。
以下描述其中能够应用数字时间灰度驱动的像素的结构和操作。在此,描述了一个像素包括两个η沟道晶体管的实例,其中每个η沟道晶体管都在实施例1和2中进行了描述,并且每个η沟道晶体管都在沟道形成区内包含氧化物半导体层。
像素6400包括开关晶体管6401、驱动晶体管6402、发光元件6404及电容器6403。 开关晶体管6401的栅极与扫描线6406连接,开关晶体管6401的第一电极(源极电极和漏极电极之一)与信号线6405连接,以及开关晶体管6401的第二电极(源极电极和漏极电极中的另一个)与驱动晶体管6402的栅极连接。驱动晶体管6402的栅极经由电容器6403与电源线6407连接,驱动晶体管6402的第一电极与电源线6407连接,以及驱动晶体管6402 的第二电极与发光元件6404的第一电极(像素电极)连接。发光元件6404的第二电极对应于公共电极6408。公共电极6408与设置于同一基板之上的公共电位线电连接。
发光元件6404的第二电极(公共电极6408)被设置为低电源电位。注意,低电源电位是比设置于电源线6407的高电源电位低的电位。作为低电源电位,可以采用例如GND、 OV等。在高电源电位与低电源电位之间的电位差被施加于发光元件6404,并且对发光元件 6404供应电流,从而使发光元件6404发光。在此,为了使发光元件6404发光,每个电位都被设置,使得在高电源电位与低电源电位之间的电位差是发光元件6404发光所需的电压或更高的电压。
注意,驱动晶体管6402的栅极电容器可以用作电容器6403的替代,从而能够省略电容器6403。驱动晶体管6402的栅极电容器可以形成于沟道形成区与栅极电极之间。
在电压输入型电压驱动方法的情形中,视频信号被输入驱动晶体管6402的栅极, 使得驱动晶体管6402处于充分导通或截止这两种状态之一。也就是,驱动晶体管6402在线性区内操作。由于驱动晶体管6402在线性区内操作,因而比电源线6407的电压高的电压被施加于驱动晶体管6402的栅极。注意,高于或等于(电源线的电压+驱动晶体管6402 的Vth)的电压被施加于信号线6405。
在执行代替数字时间灰度驱动的模拟灰度驱动的情况下,能够通过改变信号输入来使用与图18相同的像素配置。
在执行模拟灰度驱动的情况下,高于或等于(发光元件6404的正向电压+驱动晶体管6402的Vth)的电压被施加于驱动晶体管6402的栅极。发光元件6404的正向电压表示于其下获得所需亮度的电压,并且包括至少正向阈值电压。输入用以使驱动晶体管6402 在饱和区内操作的视频信号,从而能够将电流供应给发光元件6404。为了驱动晶体管6402 在饱和区内操作,电源线6407的电位被设置为高于驱动晶体管6402的栅极电位。当使用模拟视频信号时,有可能根据视频信号将电流馈入发光元件6404并且执行模拟灰度驱动。
注意,图18所示的像素结构并不仅限于此。例如,可以将开关、电阻器、电容器、晶体管、逻辑电路等添加到图18所示的像素中。
然后,将参照图19A到19C来描述发光元件的结构。在此,示出了其中驱动晶体管是η沟道晶体管的情形,并且描述了像素的截面结构。作为用于图19Α到19C所示的显示设备的晶体管7001、7011及7021的每个晶体管,能够使用实施例1和2所描述的晶体管。
为了引出由发光元件发射的光,需要阳极和阴极中的至少一个是透射光的。例如, 发光元件能够具有其中光发射穿过与基板侧相对的那侧表面而引出的顶发射结构;其中光发射穿过基板侧的表面而引出的底发射结构;或者其中光发射穿过与基板侧相对的那侧表面以及基板侧的表面而引出的双发射结构。能够将根据本发明的实施例的像素结构应用于具有这些发射结构中的任何种的发光元件。
然后,将参照图19Α来描述具有底发射结构的发光元件。
图19Α是其中晶体管7011为η沟道晶体管并且在发光元件7012内产生的光被发射穿过第一电极7013的像素的截面图。在图19Α中,发光元件7012的第一电极7013形成于与晶体管7011的漏极层电连接的透光导电层7017之上,并且EL层7014和第二电极 7015按此顺序堆叠于第一电极7013之上。
作为透光导电层7017,能够使用透光导电膜,例如,含有氧化钨的氧化铟膜、含有氧化钨的氧化铟锌膜、含有氧化钛的氧化铟膜、含有氧化钛的氧化铟锡膜、氧化铟锡膜、氧化铟锌膜或者其中添加了氧化硅的氧化铟锡膜。
任何各种材料都能够用于发光元件的第一电极7013。例如,第一电极7013优选地使用具有相对低的逸出功的材料形成,例如,碱金属(例如,Li或Cs);碱土金属(例如, Mg、Ca或Sr);含有碱金属和碱土金属中的任何种的合金(例如,Mg:Ag或Al:Li);或稀土金属(例如, 或Er)。在图19A中,第一电极7013被形成为具有足以透射光的厚度(优选地,大约5-30nm)。例如,将厚度为20nm的铝膜用作第一电极7013。
作为选择,可以堆叠并然后选择性地蚀刻透光导电膜和铝膜,使得形成透光导电层7017和第一电极7013。在这种情况下,蚀刻能够使用相同的抗蚀剂掩模来执行。
第一电极7013的外周部分以分割物7019覆盖。分割物7019能够使用聚酰亚胺、 丙烯酸、聚酰胺、环氧等有机树脂膜;无机绝缘膜;或有机聚硅氧烷来形成。在将光敏树脂材料用于分割物7019的情况下,能够省去形成抗蚀剂掩模的步骤。
形成于第一电极7013之上的EL层7014及分割物7019可以包括至少发光层,并且使用单层或堆叠的多个层形成。当EL层7014使用多个层形成时,电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于用作阴极的第一电极7013之上。注意,除了发光层外,并不需要提供全部这些层。
堆叠顺序并不限于上述堆叠顺序,并且空穴注入层、空穴传输层、发光层、电子传输层及电子注入层可以按此顺序堆叠于用作阳极的第一电极7013之上。但是,与上述情形相比,在第一电极7013用作阴极,并且电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于第一电极7013之上的情况下,能够抑制驱动电路部分的电压上升并且能够降低功率消耗。
作为形成于EL层7014之上的第二电极7015,能够使用各种材料。例如,在将第二电极7015用作阳极时,优选的是使用具有相对较高的逸出功的材料,例如,ZrN, Ti、W、Ni、 卩10、或者透光导电材料1110、120或&10。此外,还将阻光膜7016、阻挡光的金属、反射光的金属等设置于第二电极7015之上。在本实施例中,将ITO膜用作第二电极7015,以及将 Ti膜用作阻光膜7016。
发光元件7012对应于其内堆叠了第一电极7013、EL层7014及第二电极7015的区域。在如图19A所示的元件结构的情况下,光由发光元件7012发射到第一电极7013 — 侧,如箭头所示。
注意,在图19A中,由发光元件7012发射的光穿过彩色滤光层7033、绝缘层7032、 氧化物绝缘层7031、栅极绝缘层7030及基板7010,以发射出。
彩色滤光层7033能够以液滴释放法(例如,喷墨法)、印刷法、应用光刻技术的蚀刻方法等来形成。
彩色滤光层7033以外涂层7034和保护绝缘层7035覆盖。注意,虽然在图19A中将外涂层7034示出为具有小的厚度,但是外涂层7034还具有降低由彩色滤光层7033所引起的不平整度的功能。注意,外涂层7034能够使用诸如丙烯酸树脂之类的树脂材料形成。
形成于氧化物绝缘层7031、绝缘层7032、彩色滤光层7033、外涂层7034及保护绝缘层7035内,并且达到漏极电极层的接触孔被形成于与分割物7019重叠的部分内。
然后,将参照图19B来描述具有双发射结构的发光元件。
在图19B中,包含于发光元件7022内的第一电极7023、EL层70 及第二电极7025按此顺序堆叠于与晶体管7021的漏极电极层电连接的透光导电层7027之上。
作为透光导电层7027,能够使用透光导电膜,例如,含有氧化钨的氧化铟膜、含有氧化钨的氧化铟锌膜、含有氧化钛的氧化铟膜、含有氧化钛的氧化铟锡膜、氧化铟锡膜、氧化铟锌膜或者其中添加了氧化硅的氧化铟锡膜。
任何各种材料都能够用于第一电极7023。例如,当第一电极7023用作阴极时,第一电极7013优选地使用具有相对低的逸出功的材料形成,例如,碱金属(例如,Li或Cs); 碱土金属(例如,Mg、Ca或Sr);含有碱金属和碱土金属中的任何种的合金(例如,Mg:Ag或 Al:Li);或稀土金属(例如, 或Er)。在本实施例中,第一电极7023用作阴极,并且第一电极7023的厚度被形成为足以透射光的厚度(优选地,大约5-30nm)。例如,将厚度为20nm 的铝膜用于第一电极7023。
作为选择,可以堆叠并然后选择性地蚀刻透光导电膜和铝膜,使得形成透光导电层7027和第一电极7023。在这种情况下,蚀刻能够使用相同的抗蚀剂掩模执行。
第一电极7023的外周以分割物70 覆盖。分割物70 能够使用聚酰亚胺、丙烯酸、聚酰胺、环氧等有机树脂膜;无机绝缘膜;或有机聚硅氧烷形成。在将光敏树脂材料用于分割物70 的情况下,能够省去形成抗蚀剂掩模的步骤。
形成于第一电极7023和分割物70 之上的EL层70 可以包括至少发光层并且使用单层或堆叠的多个层形成。当EL层70M使用多个层形成时,使电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于用作阴极的第一电极7023之上。注意,除了发光层外,并不需要提供全部这些层。
堆叠顺序并不限于上述顺序;将第一电极7023用作阳极,并且空穴注入层、空穴传输层、发光层、电子传输层及电子注入层可以按此顺序堆叠于第一电极7023之上。但是, 与上述情形相比,在第一电极7023用作阴极,并且电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于第一电极7023之上的情况下,能够抑制驱动电路部分的电压上升并且能够降低功率消耗。
作为形成于EL层70 之上的第二电极7025,能够使用各种材料。例如,当将第二电极7025用作阳极时,优选的是使用具有相对较高逸出功的材料,例如,透光导电材料 ΙΤ0、ΙΖ0或&10。在本实施例中,将第二电极7025用作阳极,并且形成了含有氧化硅的ITO膜。
发光元件7022对应于其中堆叠了第一电极7023、EL层70M及第二电极7025的区域。在图19B所示的元件结构的情况下,由发光元件7022发射的光从第二电极7025 — 侧和第一电极7023 —侧射出,如箭头所示。
注意,在图19B中,由发光元件7022发射到第一电极7023 —侧的光穿过彩色滤光层7043、绝缘层7042、氧化物绝缘层7041、第一栅极绝缘层7040及基板7020,以发射出。
彩色滤光层7043能够以液滴释放法(例如,喷墨法)、印刷法、使用光刻技术的蚀刻方法等形成。
彩色滤光层7043以外涂层7044和保护绝缘层7045覆盖。
形成于氧化物绝缘层7041、绝缘层7042、彩色滤光层7043、外涂层7044及保护绝缘层7045内的,并且达到漏极电极层的接触孔形成于与分割物70 重叠的部分内。
注意,在使用具有双发射结构的发光元件并且在两个显示表面上执行全彩显示的情况下,来自第二电极7025 —侧的光不穿过彩色滤光层7043 ;因此,优选地将设置有另一彩色滤光层的密封基板设置于第二电极7025上。
然后,将参照图19C来描述具有顶发射结构的发光元件。
在图19C中,发光元件7002的第一电极7003被形成为与晶体管7001的漏极电极层电连接,并且EL层7004和第二电极7005按此顺序堆叠于第一电极7003之上。
第一电极7003能够使用任何各种材料来形成。例如,当将第一电极7003用作阴极时,第一电极7003优选地使用具有相对较低逸出功的材料形成,例如,碱金属(例如,Li 或Cs);碱土金属(例如,Mg、Ca或Sr);含有碱金属和碱土金属中的任何种的合金(例如, Mg: Ag或Al: Li);或者稀土金属(例如Jb或Er)。
第一电极7003的外周以分割物7009覆盖。分割物7009能够使用聚酰亚胺、丙烯酸、聚酰胺、环氧等有机树脂膜;无机绝缘膜;或有机聚硅氧烷来形成。在将光敏树脂材料用于分割物7009的情况下,能够省去形成抗蚀剂掩模的步骤。
形成于第一电极7003和分割物7009之上的EL层7004可以包括至少发光层,并且使用单层或堆叠的多个层形成。当EL层7004使用多个层形成时,EL层7004通过将电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于第一电极7003之上而形成。注意,除了发光层外,并不需要提供全部这些层。
堆叠顺序并不限于上述堆叠顺序,并且可以将空穴注入层、空穴传输层、发光层、 电子传输层及电子注入层按此顺序堆叠于第一电极7003之上。
在本实施例中,空穴注入层、空穴传输层、发光层、电子传输层及电子注入层按此顺序堆叠于层合膜之上,在该层合膜中,钛膜、铝膜及钛膜按此顺序来堆叠,并且在它们之上形成了 Mg:Ag合金薄膜与ITO的叠层。
注意,当晶体管7001是η沟道晶体管是,优选的是将电子注入层、电子传输层、发光层、空穴传输层及空穴注入层按此顺序堆叠于第一电极7003之上,因为能够抑制驱动电路的电压上升并且能够降低功率消耗。
第二电极7005以透光导电材料制成,例如,含有氧化钨的氧化铟、含有氧化钨的氧化铟锌、含有氧化钛的氧化铟、含有氧化钛的氧化铟锡、氧化铟锡、氧化铟锌或者其中添加了氧化硅的氧化铟锡。
发光元件7002对应于第一电极7003、EL层7004及第二电极7005堆叠于其内的区域。在图19C所示的像素的情形中,光由发光元件7002发射到第二电极7005 —侧,如箭头所示。
晶体管7001的漏极电极层通过形成于氧化物绝缘层7051、保护绝缘层7052及绝缘层7055内的接触孔与第一电极7003电连接。
平面化绝缘层7053能够使用树脂材料形成,例如,聚酰亚胺、丙烯酸、苯并环丁烯、聚酰胺或环氧。除了此类树脂材料之外,还有可能使用低介电常数的材料(低k值材料)、硅氧烷基树脂、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)等。注意,平面化绝缘层 7053可以通过堆叠由这些材料形成的多个绝缘膜而形成。对于形成平面化绝缘层7053的方法没有特别的限制,并且平面化绝缘层7053能够根据材料而用以下方法或工具来形成 诸如溅射法、SOG法、旋涂法、浸涂法、喷涂法或液滴释放法(例如,喷墨法、丝网印刷或胶版印刷)之类的方法,或者诸如刮刀、辊涂机、幕涂机或刮涂机之类的工具(设备)。
设置分割物7009以使第一电极7003与相邻像素的第一电极绝缘。分割物7009 能够使用聚酰亚胺、丙烯酸、聚酰胺、环氧等有机树脂膜;无机绝缘膜;或有机聚硅氧烷来形成。在将光敏树脂材料用于分割物7009的情况下,能够省去形成抗蚀剂掩模的步骤。
在图19C所示的结构中,为了执行全彩显示,发光元件7002、与发光元件7002相邻的一个发光元件以及相邻发光元件中的另一个发光元件分别是例如绿色发光元件、红色发光元件及蓝色元件。作为选择,能够全彩显示的发光显示设备可以使用四种发光元件来制造,这四种发光元件除了上述三种发光元件之外还包括白色发光元件。
作为选择,能够全彩显示的发光显示设备可以按照以下方式来制造所布置的多个发光元件全部都是白色发光元件,并且将具有彩色滤光片等的密封基板布置于发光元件 7002上。展现出单一颜色(例如,白色)的材料被形成并且与彩色滤光片或颜色转换层结合,由此能够执行全彩显示。
不必说,同样能够执行单色光显示。例如,可以使用白光发射来形成照明系统,或者使用单色光发射来形成区域彩色发光设备。
如果需要,可以设置光学膜,例如,包括圆形偏光板的偏光膜。
注意,虽然在此将有机EL元件作为发光元件来描述,但是同样能够通过无机EL元件作为发光元件。
注意,虽然在此描述了其中用于控制发光元件的驱动的晶体管与发光元件电连接的实例;但是,可以采用其中用于电流控制的晶体管被连接于晶体管与发光元件之间的结构。
本实施例所描述的显示设备的结构并不限于图19A和19C所示的那些结构,并且能够基于本发明的技术的精神以各种方式来修改。
然后,参照图22A和22B来描述发光显示屏(也称为发光屏)的外观和截面对应, 该发光显示屏对应于其中应用了实施例1和2所描述的晶体管的显示设备的一种实施例。 图22A是其中晶体管和发光元件由密封剂密封于第一基板与第二基板之间的屏板的顶视图。图22B是沿图22A的线H-I截取的截面图。
提供密封剂4505,使得包围设置于第一基板4501之上的像素部分4502、信号线驱动电路4503a和4503b以及扫描线驱动电路450 和4504b。另外,将第二基板4506设置于像素部分4502、信号线驱动电路4503a和4503b以及扫描线驱动电路450 和4504b之上。因此,像素部分4502、信号线驱动电路4503a和4503b以及扫描线驱动电路450 和 4504b与填充物4507 —起由第一基板4501、密封剂4505及第二基板4506密封。按照这种方式,优选的是屏板用保护膜(例如,层合膜或紫外光固化树脂膜)或者具有高气密性及少脱气的覆盖材料来封装(密封),使得屏板不暴露于外部空气。
形成于第一基板4501之上的像素部分4502、信号线驱动电路4503a和4503b以及扫描线驱动电路450 和4504b各自包括多个晶体管,并且包含于像素部分4502内的晶体管4510以及包含于信号线驱动电路4503a内的晶体管4509在图22B中作为实例来示出。
对于每个晶体管4509和4510,能够应用实施例1和2所描述的包含作为氧化物半导体层的h-Ga-Si-O基膜的高可靠性的晶体管。在本实施例中,晶体管4509和4510是η 沟道晶体管。
在绝缘层4544之上,将导电层4540设置于与用于驱动电路的晶体管4509的氧化物半导体层的沟道形成区重叠的位置内。通过设置导电层4540使得与氧化物半导体层的沟道形成区重叠,能够减小晶体管4509的阈值电压在BT测试前后的变化量。导电层4540 的电位与晶体管4509的栅极电极层的电位相同,由此导电层4540能够起着第二栅极电极层的作用。作为选择,导电层4540可以是与晶体管4509的栅极电极层的电位不同的给定电位。仍作为选择,导电层4540的电位可以是GND或0V,或者导电层4540可以处于浮置状态。
此外,参考数字4511表示发光元件。作为包含于发光元件4511内的像素电极的第一电极层4517与晶体管4510的源极或漏极电极层电连接。注意,发光元件4511的结构是第一电极层4517、电致发光层4512及第二电极层4513的层状结构,但是对于该结构没有特别的限制。发光元件4511的结构能够根据光从发光元件4511中引出的方向等适当地改变。
分割物4520使用有机树脂膜、无机绝缘膜或有机聚硅氧烷形成。优选的是,分割物4520使用光敏材料形成,并且在第一电极层4517之上形成开口使得开口的侧壁形成为具有曲率的倾斜表面。
电致发光层4512可以以单层或堆叠的多个层来形成。
保护膜可以形成于第二电极层4513和分割物4520之上,以便防止氧、氢、湿气、二氧化碳等进入发光元件4511。作为保护膜,能够形成氮化硅膜、氮氧化硅膜、DLC膜等。
另外,各种信号和电位由FPC4518a和4518b供应给信号线驱动电路4503a和 4503b、扫描线驱动电路450 和4504b或像素部分4502。
在本实施例中,连接端子电极4515使用用于包含在发光元件4511内的第一电极层4517的相同的导电膜形成。端子电极4516使用用于包含于晶体管4509和4510内的源极和漏极电极层的相同的导电膜形成。
连接端子电极4515经由各向异性导电膜4519与包含于FPC4518a内的端子电连接。
位于光从发光元件4511引出的方向上的基板应当具有透光性质。在这种情况下, 诸如玻璃板、塑料板、聚酯膜或丙烯酸膜之类的透光材料被用于基板。
作为填充物4507,除了惰性气体(例如,氮气或氩气)外还能够使用紫外光固化树脂或热固性树脂。例如,能够使用聚氯乙烯(PVC)、丙烯酸、聚酰亚胺、环氧树脂、有机硅树脂、聚乙烯醇缩丁醛(PVB)或乙烯醋酸乙烯酯(EVA)。在本实施例中,使用氮气。
另外,若需要,可以在发光元件的发光表面上适当地设置光学膜,例如,偏光板、圆形偏光板(包括椭圆形偏光板)、延迟板(1/4波片或1/波片)或彩色滤光片。此外,可以给偏光板或圆形偏光板设置减反射膜。例如,能够执行用以能够通过在表面上的凸起和凹陷使反射光漫射以便减少眩光的防眩光处理。
使用单晶半导体或多晶半导体单独形成的驱动电路可以安装作为信号线驱动电路4503a和4503b以及扫描线驱动电路450 和4504b。另外,只有信号线驱动电路或其部分或者扫描线驱动电路或其部分可以单独形成和安装。本实施例并不限于图22A和22B所示的结构。
通过以上过程,能够制造出高可靠性的发光显示设备(显示屏)。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例7)
能够将其中应用了实施例1和实施例2中的任一实施例所描述的晶体管的显示设备用作电子纸。电子纸能够用于各种领域的电子设备,只要它们能够显示数据。例如,电子纸能够应用于电子书阅读器(电子书)、海报、车厢广告(例如,火车)或者各种卡(例如, 信用卡)的显示。在图IlA和IlB及图12中示出了电子设备的实例。
图IlA示出了使用电子纸的海报沈31。在广告媒体为印刷纸的情况下,广告通过手动来更换;但是,通过使用电子纸,广告显示能够在短时间内改变。注意,海报沈31可以具有能够无线发送和接收数据的配置。
图IlB示出了车辆(例如,火车)内的广告沈32。在广告媒体为纸质的情况下,广告通过手动来更换,但是在其为电子纸的情况下,不需要大量的人力,并且能够在短时间内改变广告显示。而且,能够获得稳定的图像,没有显示缺陷。注意,车厢广告可以具有能够无线发送和接收数据的配置。
图12示出了电子书阅读器的实例。例如,电子书阅读器2700包括两个外壳,外壳 2701和外壳2703。外壳2701和外壳2703以铰链2711来结合,使得电子书阅读器2700能够以铰链2711为轴来打开和合上。由于该结构,读者能够几乎如同他/她在阅读纸质书那样来操作电子书阅读器2700。
显示部分2705和显示部分2707分别并入外壳2701和外壳2703内。显示部分 2705和显示部分2707可以显示同一图像或者不同的图像。在不同的图像显示于不同的显示部分的结构中,例如,右侧显示部分(在图12中为显示部分270 能够显示文字,而左侧显示部分(在图12中为显示部分2707)能够显示图像。
在图12所示的实例中,外壳2701设置有操作部分等。例如,外壳2701设置有电源开关2721、操作键2723、扬声器2725等。以操作键2723,能够翻转页面。注意,键盘、指点装置等可以设置于与外壳的显示部分相同的表面上。而且,可以将外部连接端子(耳机端子、USB端子、能够与诸如AC适配器和USB线之类的各种线缆连接的端子等)、记录媒体插入部分等设置于外壳的背面或侧面上。而且,电子书阅读器2700可以具有电子词典的功能。
电子书阅读器2700可以具有能够无线发送和接收数据的配置。通过无线通信,能够从电子书服务器上购买和下载所需的图书数据等。
注意,本实施例所描述的结构能够与其它实施例所描述的任意结构适当地结合。
(实施例8)
使用实施例1和实施例2中的任一实施例所描述的晶体管的显示设备能够应用于各种电子产品(包括游戏机)。电子设备的实例是电视装置(也称为电视或电视接收器)、 计算机的监视器等、摄像机(例如,数码相机或数字视频摄像机)、数字相框、移动电话(也称为移动电话手机或移动电话装置)、便携式游戏机、便携式信息终端、音频再现装置、大型游戏机(例如,弹球盘)等。
图23A示出了电视装置的实例。在电视装置9600中,显示部分9603被并入外壳 9601内。显示部分9603能够显示图像。在此,外壳9601由支座9605支撑。
电视装置9600能够以外壳9601的操作开关或分离的遥控器9610来操作。能够以遥控器9610的操作键9609来切换及控制频道和音量,从而能够控制显示于显示部分9603 上的图像。而且,遥控器9610可以设置有用于显示由遥控器9610输出的数据的显示部分 9607。
注意,电视装置9600设置有接收器、调制解调器等。使用接收器,能够接收通用的电视广播。而且,当显示设备经由调制解调器以有线或无线的方式与通信网络连接时,能够执行单向(从发送器到接收器)或双向(在发送器与接收器之间或者在接收器之间)的信息ifi^[曰ο
图2 示出了数字相框的实例。例如,在数字相框9700中,显示部分9703被并入外壳9701之内。显示部分9703能够显示各种图像。例如,显示部分9703能够显示以数码相机等拍摄的图像的数据并且起着普通相框的作用。
注意,数字相框9700设置有操作部分、外部连接部分(USB端子、能够与诸如USB 线之类的各种线缆连接的端子等)、记录媒体插入部分等。虽然这些构件可以设置于其上设置有显示部分的表面上,但是对于数字相框9700的设计而言,优选的是将它们设置于上侧面或背面。例如,存储以数码相机拍摄的图像数据的存储器被插入数字相框的记录媒体插入部分内,由此图像数据能够被转移并且然后被显示于显示部分9703上。
可以将数字相框9700配置为以无线方式发送和接收数据。可以采用其中以无线的方式传输将要显示的所需的图像数据的结构。
图24A是便携式游戏机并且由外壳9881和外壳9891两个外壳构成,这两个外壳以接合部分9893连接,使得便携式游戏机能够打开或合上。显示部分9882和显示部分9883 分别并入外壳9881和外壳9891内。另外,图24A所示的便携式游戏机设置有扬声器部分 9884、记录媒体插入部分9886、LED灯9890、输入装置(操作键9885、连接端子9887、传感器 9888(具有测量力、位移、位置、速度、加速度、角速度、旋转数、距离、光、液体、磁性、温度、化学物质、声音、时间、硬度、电场、电流、电压、电功率、辐射线、流率、湿度、倾斜度、振动、气味或红外线的功能),以及麦克风9889)等。不必说,便携式游戏机的结构并不限于上述及结构,而是可以采用至少设置有本发明的显示设备的其它结构。便携式游戏机可以适当地包括其它附件。图24A所示的便携式游戏机具有读取存储于记录媒体内的程序或数据以将其显示于显示部分上的功能,以及通过无线通信与别的便携式游戏机共享信息的功能。注意, 图24A所示的便携式游戏机的功能并不限于上述功能,而是便携式游戏机能够具有各种功能。
图24B示出了作为大型游戏机的投币机的实例。在投币机9900中,显示部分9903 被并入外壳9901内。另外,投币机9900包括操作装置,例如,启动杆或停止开关、投币口、 扬声器等。不必说,投币机9900的结构并不限于上述结构,而是能够采用至少设置有本发明的显示设备的其它结构。投币机9900可以适当地包括其它附件。
图25A示出了移动电话的实例。移动电话1000包括并入外壳1001内的显示部分 1002、操作按钮1003、外部连接端口 1004、扬声器1005、麦克风1006等。
当以手指等来触摸图25A所示的显示部分1002时,能够将数据输入移动电话1000 内。而且,诸如拨打电话以及发送和接收邮件之类的操作能够通过以手指等触摸显示部分 1002来执行。
主要有显示部分1002的三种屏幕模式。第一模式是主要用于显示图像的显示模式。第二模式是主要用于输入数据(例如,文字)的输入模式。第三模式是其中结合了显示模式和输入模式这两种模式的显示和输入模式。
例如,在拨打电话或写邮件的情况下,主要用于输入文字的文字输入模式被选择用于显示部分1002,从而能够输入显示于屏幕上的文字。
当将包括用于检测倾角的传感器(例如,陀螺仪)或加速度传感器的检测设备设置于移动电话1000内时,在显示部分1002的屏幕上的显示能够通过确定移动电话1000的放置方向(究竟是将移动电话1000水平放置为全景模式还是垂直放置为肖像模式)而自动切换。
屏幕模式通过触摸显示部分1002或者操作外壳1001的操作按钮1003来切换。作为选择,屏幕模式可以根据显示部分1002上所显示的图像的种类来切换。例如,当显示于显示部分上的图像的信号是运动图像数据的信号时,屏幕模式切换成显示模式。当信号是文字数据的信号时,屏幕模式切换成输入模式。
此外,在输入模式中,当在一定时间内没有执行通过触摸显示部分1002的输入, 而检测到了通过显示部分1002内的光学传感器来检测的信号时,屏幕模式可以被控制使得从输入模式切换至显示模式。
显示部分1002可以起着图像传感器的作用。例如,在以手掌或手指触摸显示部分 1002时获取掌纹、指纹等的图像,由此能够执行个人识别。此外,通过在显示部分内设置背光或者发射近红外光的传感光源,能够获取手指静脉、手掌静脉等的图像。
图25B还示出了移动电话的实例。图25B中的移动电话包括其中显示部分9412 和操作按钮9413包含于外壳9411内的显示设备9410,以及其中操作按钮9402、外部输入端子9403、麦克风9404、扬声器9405以及在接收来电时发射光的发光部分9406包含于外壳9401内的通信设备9400。具有显示功能的显示设备9410能够按照箭头所示的两个方向与具有电话功能的通信设备9400分离或连接。因而,显示设备9410的短轴能够连接至通信设备9400的短轴,而显示设备9410的长轴能够连接至通信设备9400的长轴。另外,当只需要显示功能时,显示设备9410能够与通信设备9400分离并且单独使用。图像或输入信息能够通过无线或有限通信的方式在通信设备9400与显示设备9410之间发送或接收, 其中通信设备9400和显示设备9410各自具有可充电的电池。
注意,本实施例所描述的结构能够适当地结合其它实施例所描述的任何结构来使用。
(实施例9)
当氧化物半导体层与金属层或氧化物绝缘层接触时,会发生氧移动的现象。在本实施例中,使用对该现象的科学计算来描述非结晶氧化物半导体层与结晶氧化物半导体层之间的差异。
图33是其中氧化物半导体层与氧化物绝缘层和金属层接触以在作为本发明的实施例的晶体管的结构中用作源极电极和漏极电极的状态的示意图。箭头的方向指示了在这些层彼此接触的状态或者这些层被加热的状态中的氧移动方向。
当出现氧空位时,i型氧化物半导体层具有η型导电性,然而当氧供应过量时,由氧空位所引起的η型氧化物半导体层会变成i型氧化物半导体层。这种效应被利用于实际设备过程中,以及在与金属层接触以用作源极电极和漏极电极的氧化物半导体层中,氧被拉到金属一侧,而氧空位出现于与金属层接触的部分区域内(在小厚度的情况下,则在膜厚度方向的整个区域内),由此氧化物半导体层变成η型氧化物半导体层并且能够获得与金属层的有利接触。另外,氧由氧化物绝缘层供应给与氧化物绝缘层接触的氧化物半导体层,以及与氧化物绝缘层接触的氧化物半导体层的部分区域(在小厚度的情况下,则在膜厚度方向的整个区域内)含有过氧的氧,将成为i型区域,由此氧化物半导体层变成i型氧化物半导体层并且起着晶体管的沟道形成区的作用。
在本发明的实施例中,在氧化物半导体层与氧化物绝缘层和金属层接触以用作源极电极和漏极电极的区域内,形成氧化物半导体的结晶区。因此,通过在其中氧化物半导体层与氧化物绝缘层或金属层接触的区域包括结晶区的情形与其中氧化物半导体层与氧化物绝缘体或金属层接触的区域为非结晶的情形之间进行科学计算来确定氧移动状态的差已
用于科学计算的模型具有h-Ga-Si-O基非晶结构和h-Ga-Si-O基晶体结构。在每种模型中,沿实线矩形的纵向方向的区域之一与另一个区域相比氧不足达10% (参见图 34A和34B)。该计算是用于在650°C的加速条件下的10纳秒之后比较在h-Ga-Si-O基非晶结构与^-Ga-Si-O基晶体结构中的氧分布。在表1和表2中示出了各种条件。
[表 1]
权利要求
1.一种晶体管,包括 栅极电极层;在所述栅极电极层之上的栅极绝缘层; 在所述栅极绝缘层之上的氧化物半导体层;在所述栅极绝缘层之上与所述氧化物半导体层的一部分重叠的源极电极层和漏极电极层;以及在所述源极电极层和所述漏极电极层之上的并且在所述氧化物半导体层上且与其接触的氧化物绝缘层,其中所述氧化物半导体层包括浅表部分的第一区和其余部分的第二区,以及其中所述氧化物半导体层的所述第二区是非晶的或者由非晶质和微晶的混合物形成, 或者由微晶形成。
2.根据权利要求1所述的晶体管,其中所述氧化物半导体层的所述第一区由沿垂直于所述氧化物半导体层的表面的方向的c轴取向的微晶形成。
3.根据权利要求1所述的晶体管,其中每个所述微晶的粒子尺寸为lnm-20nm。
4.根据权利要求1所述的晶体管,还包括设置于所述氧化物半导体层与所述源极电极层及所述漏极电极层之间的氧化物导电层。
5.根据权利要求1所述的晶体管,其中所述源极电极层和所述漏极电极层各自具有由第一导电层、第二导电层及第三导电层形成的三层结构。
6.根据权利要求1所述的晶体管,其中所述晶体管具有透光性质。
7.根据权利要求1所述的晶体管,其中在所述第二区内的非晶区以所述微晶来点缀。
8.一种晶体管,包括 栅极电极层;在所述栅极电极层之上的栅极绝缘层; 在所述栅极绝缘层之上的源极电极层和漏极电极层;在所述栅极绝缘层之上与所述源极电极层和所述漏极电极层的一部分重叠的氧化物半导体层;以及在所述氧化物半导体层上并与其接触的氧化物绝缘层, 其中所述氧化物半导体层包括浅表部分的第一区和其余部分的第二区,以及其中所述氧化物半导体层的所述第二区是非晶的或者由非晶质和微晶的混合物形成, 或者由微晶形成。
9.根据权利要求8所述的晶体管,其中所述氧化物半导体层的所述第一区由沿垂直于所述氧化物半导体层的表面的方向的c轴取向的微晶的形成。
10.根据权利要求8所述的晶体管,其中每个所述微晶的粒子尺寸为lnm-20nm。
11.根据权利要求8所述的晶体管,还包括设置于所述氧化物半导体层与所述源极电极层及所述漏极电极层之间的氧化物导电层。
12.根据权利要求8所述的晶体管,其中所述源极电极层和所述漏极电极层各自具有由第一导电层、第二导电层及第三导电层形成的三层结构。
13.根据权利要求8所述的晶体管,其中所述晶体管具有透光性质。
14.根据权利要求8所述的晶体管,其中在所述第二区内的非晶区以所述微晶来点缀。
15.一种显示设备,包括形成于基板之上的像素部分,所述像素部分包括第一晶体管;以及形成于所述基板之上的驱动电路部分,所述驱动电路部分包括第二晶体管, 其中所述第一晶体管和所述第二晶体管各自包括 栅极电极层,在所述栅极电极层之上的栅极绝缘层, 在所述栅极绝缘层之上的氧化物半导体层,在所述栅极绝缘层之上与所述氧化物半导体层的一部分重叠的源极电极层和漏极电极层,以及与所述氧化物半导体层接触的氧化物绝缘层,其中所述氧化物半导体层包括浅表部分的第一区和其余部分的第二区,以及其中所述氧化物半导体层的所述第二区是非晶的或者由非晶质和微晶的混合物形成, 或者由微晶形成。
16.根据权利要求15所述的显示设备,其中所述氧化物半导体层的所述第一区由沿垂直于所述氧化物半导体层的表面的方向的c轴取向的微晶的形成。
17.根据权利要求15所述的显示设备,其中每个所述微晶的粒子尺寸为lnm-20nm。
18.根据权利要求15所述的显示设备,还包括设置于所述氧化物半导体层与所述源极电极层及所述漏极电极层之间的氧化物导电层。
19.根据权利要求15所述的显示设备,其中所述源极电极层和所述漏极电极层各自具有由第一导电层、第二导电层及第三导电层形成的三层结构。
20.根据权利要求15所述的显示设备,其中所述像素部分具有透光性质。
21.根据权利要求15所述的显示设备,其中在所述第二区内的非晶区以所述微晶来点
22.—种显示设备,包括形成于基板之上的像素部分,所述像素部分包括第一晶体管;以及形成于所述基板之上的驱动电路部分,所述驱动电路部分包括第二晶体管, 其中所述第一晶体管和所述第二晶体管各自包括 栅极电极层,在所述栅极电极层之上的栅极绝缘层, 在所述栅极绝缘层之上的源极电极层和漏极电极层,在所述栅极绝缘层之上与所述源极电极层和所述漏极电极层的一部分重叠的氧化物半导体层,以及与所述氧化物半导体层接触的氧化物绝缘层,其中所述氧化物半导体层包括浅表部分的第一区和所述其余部分的第二区,以及其中所述氧化物半导体层的所述第二区是非晶的或者由非晶质和微晶的混合物形成, 或者由微晶形成。
23.根据权利要求22所述的显示设备,其中所所述氧化物半导体层的述第一区由沿垂直于所述氧化物半导体层的表面的方向的c轴取向的微晶的形成。
24.根据权利要求22所述的显示设备,其中每个所述微晶的粒子尺寸为lnm-20nm。
25.根据权利要求22所述的显示设备,还包括设置于所述氧化物半导体层与所述源极电极层及所述漏极电极层之间的氧化物导电层。
26.根据权利要求22所述的显示设备,其中所述源极电极层和所述漏极电极层各自具有由第一导电层、第二导电层及第三导电层形成的三层结构。
27.根据权利要求22所述的显示设备,其中所述像素部分具有透光性质。
28.根据权利要求22所述的显示设备,其中在所述第二区内的非晶区以所述微晶来点
全文摘要
本发明提供一种具有有利的电特性和高可靠性的晶体管以及包括该晶体管的显示设备。该晶体管是将氧化物半导体用于沟道区而形成的底栅晶体管。经过通过热处理进行的脱水或脱氢的氧化物半导体层被用作活动层。该活动层包括微晶化的浅表部分的第一区以及其余部分的第二区。通过使用具有该结构的氧化物半导体层,能够抑制归因于湿气进入浅表部分或者氧自浅表部分排除的转变为n型以及寄生沟道的产生。另外,还能够降低在氧化物半导体层与源极和漏极电极之间的接触电阻。
文档编号H01L51/50GK102498553SQ20108004123
公开日2012年6月13日 申请日期2010年8月26日 优先权日2009年9月16日
发明者坂仓真之, 坂田淳一郎, 宫永昭治, 山崎舜平, 岸田英幸, 广桥拓也, 渡边了介, 秋元健吾 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1