专利名称:以锂矿为锂源生产磷酸亚铁锂的方法
技术领域:
本发明属于锂离子电池材料领域,具体涉及一种以锂矿为锂源生产磷酸亚铁锂的制备方法。
背景技术:
自1994年Goodenough研究组发现磷酸金属锂,1997年A. K. Padhi首次报道橄榄石型磷酸亚铁锂具有脱锂嵌锂功能以来,磷酸亚铁锂以其比容量高、循环寿命长、安全、原料来源丰富且便宜、环境友好等优点被广泛研究,并成为生产锂离子电池的理想正极材料。 近年来,在各国政府的大力支持下,磷酸亚铁锂动力电池的商品化应用程度日益提高。已有的磷酸亚铁锂制备方法包括高温固相合成法(例如,A. K. Padhi, K. S. Nanjundaswamy, J.B.Goodenough, Phospho-01ivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc. ,1997,144, 1188-1194)、低温液相合成法(如CN031(^665.6)、液相共沉淀法、水热合成法等。其中, 高温固相法生产过程中存在亚铁离子易氧化,Fe3+不易完全还原为狗2+,从而存在磷酸亚铁锂的电阻高,产品的一致性和稳定性较差等缺陷。另外,液相共沉淀法、水热合成法等现有磷酸亚铁锂制备方法中使用的起始原料通常为锂盐,例如,CN20051013M31.4公开了一种富锂型磷酸铁锂粉体的制备方法,以碳酸锂、草酸锂、醋酸锂或硝酸锂为锂源; ZL200410017382.5公开了含磷酸亚铁锂盐-碳的锂离子电池正极复合材料的制备方法, 以碳酸锂、氢氧化锂、草酸锂、醋酸锂或磷酸锂为锂源;CN200610136737. 1公开了一种合成纳米级磷酸铁锂粉体的方法,以碳酸锂、氢氧化锂、硝酸锂、氯化锂或磷酸二氢锂为锂源; CN200610035986. 1公开了高温固相合成磷酸铁锂正极材料的方法,以碳酸锂、氟化锂、醋酸锂、氢氧化锂或硝酸锂为锂源。然而,以成品锂盐为锂源制备磷酸亚铁锂的生产成本非常昂贵,锂盐的加工、精制、纯化、流通、储藏等环节,且需要进一步回收处理锂盐、磷酸亚铁锂生产过程中的副产品,不仅增加生产成本,且资源利用率不高,并带来环境污染,与现行提倡的循环经济不符。为了制备电池级的磷酸铁锂,尤其是为了提高放电容量,通常采用高纯度的碳酸锂、氢氧化锂、草酸锂、醋酸锂或磷酸锂,使其能够满足锂离子电池的使用。要得到IC放电容量可达140mAh/g以上的磷酸铁锂其成本显然很高。为此,本领域需要寻找一种更为经济、有效的磷酸亚铁锂的制备方法,既可以有效降低磷酸亚铁锂的生产成本,又能够保证产品具有优异的使用性能。
发明内容
本发明所要解决的技术问题是提供一种以锂矿为锂源生产磷酸亚铁锂的方法, 该方法可以很好地将锂矿制备锂源的生产与磷酸亚铁锂的生产相衔接,并且能得到纯度 99. 9%以上的磷酸亚铁锂,IC放电容量可达140mAh/g以上。本发明的技术方案
(1)锂矿处理得到锂源溶液将锂矿煅烧、酸化、加入水浸出,调节pH值到5. 7-6. 2,静置,过滤,得母液1 ;调节母液IpH 8. 5-9. 7,静置,过滤,得母液2 ;调节母液2pH 10-10. 8,静置,过滤,得母液3 ;检测母液3中Ca2+浓度,加入等摩尔的Na2CO3,搅拌,静置,过滤,得母液4 ;蒸发浓缩母液4,至其Li+浓度为65_75g/L,过滤,得母液5 ;检测母液5中的SO/—浓度,加入钠盐,将母液5中的SO/—全部转化成Na2SO4,搅拌,冷却结晶,过滤,得母液6;蒸发浓缩母液6,至其含锂量为25_27g/L,作为锂源溶液;(2)液相合成亚铁盐溶液、磷源溶液与步骤(1)制备得到的锂源溶液在搅拌状态下加入反应釜,继续搅拌并加热升温至150-220°C,保温220-720分钟,冷却后过滤收集滤饼;(3)固相包覆反应滤饼洗涤后加水成泥浆,再加入糖原料,混合均勻后干燥,然后在惰性气体保护下于650-1000°C下煅烧3-15小时,即得碳包覆的磷酸亚铁锂。本发明的优选技术方案中,所述锂矿可以选自锂辉石、锂磷铝石、磷锂铝石、锂云母、透锂长石的任一种或其组合。本发明的优选技术方案中,配制所述亚铁盐溶液的亚铁盐原料可以选自溴化亚铁、氯化亚铁、硫酸亚铁、高氯酸亚铁、硝酸亚铁的任一种或其组合。本发明的优选技术方案中,配制所述磷源溶液的磷源原料可以选自磷酸铵、磷酸、 磷酸锂、磷酸二氢铵的任一种或其组合。本发明的优选技术方案中,步骤C3)所述糖原料选自蔗糖、葡萄糖、乳糖的任一种或其组合。本发明的优选技术方案中,步骤(1)调节PH值采用氢氧化钠、氢氧化钾、碳酸钠、 碳酸钾的任一种或其组合,优选为氢氧化钠、碳酸钠的任一种或其组合。进一步地,步骤(1)所述钠盐选自碳酸钠、氯化钠、磷酸二氢钠、磷酸钠、氢氧化钠、草酸钠、硝酸钠中的任一种或其组合,优选为氯化钠、氢氧化钠中的任一种或其组合,优选冷却结晶温度为_15°C -0°C。步骤(2)过滤后的回收液副产品2 (含锂溶液)含有相应的锂溶液,比如硫酸锂溶液、碳酸锂溶液、氢氧化锂溶液、磷酸二氢锂溶液、磷酸锂溶液、氯化锂溶液、草酸锂溶液、硝酸锂溶液中的任一种或其组合。为了得到纯度更高的磷酸亚铁锂产品,本发明的优选技术方案中,步骤O)反应用锂源溶液中的Ca2+、Mg2+、Cl—、K+、Cu2+、Pb2+任一种的含量控制在质量百分比不高于 0.01%。若步骤(1)所得锂源溶液杂质含量高,可以返回步骤(1)中,从母液1开始循环除杂。上述方案作为优选的是,步骤( 所述的反应用锂源溶液中的锂含量25_27g/L, 优选为26. 2g/L。亚铁盐溶液中!^2+浓度为M_59g/L,优选为55. 8g/L。磷源溶液中P043_浓度为 680-800g/L,优选为 719. 2g/L。本发明的优选技术方案中,参与液相反应的锂溶液、亚铁盐溶液、磷源溶液之间的体积比为2. 5-3. 5 3-4 0.3-0. 7,优选的是锂溶液、亚铁盐溶液、磷源溶液之间的体积比为 3 ; 3. 5 ; 0. 5。为了实现循环经济,节约成本,本发明上述方案步骤(1)中,蒸发浓缩母液4所产生的冷凝水和蒸发浓缩母液6所产生的冷凝水回收,循环用于步骤( 配制亚铁盐溶液或磷源溶液。步骤( 过滤后的回收滤液和步骤C3)洗涤滤饼的回收滤液中含有一定量的锂, 可以返回步骤(1)的浸出工序,与水一起参与浸出,加以循环利用。可以大幅度地降低生产成本,提高了资源的利用率,实现循环经济。本发明的进一步优选的技术方案,步骤(1)在1100_1380°C下煅烧锂矿50-300分钟,冷却,磨细,以锂矿计,按酸料比1 4-7 (w/w)在锂矿中加入硫酸进行酸化处理50-200 分钟;以锂矿计,按液固比为2-3 1( / )加水或回收滤液,调节?!1值到5.7-6.2,搅拌 35-50分钟,静置,过滤,收集滤液,即得母液1。本发明的优选技术方案中,可以在步骤(2) 将用于掺杂的金属盐溶液与锂溶液、亚铁盐溶液和磷源溶液一起进行所述液相合成反应。 所述用于掺杂的金属盐溶液Co、Ni、Al、&中的至少一种的金属盐溶液。本发明上述方案中,步骤( 所述液相合成反应在密闭条件下进行,以有效地防止狗2+的氧化。步骤C3)所述惰性气体选自氩气、氮气、氢气的任一种或其组合。本发明的优选技术方案中,步骤(3)中在洗净滤饼中加入糖原料的量为洗净滤饼固含量的5-20wt. %,优选为IOwt. %0本发明的另一目的在于提供一种碳包覆的磷酸亚铁锂,由本发明所述的制备方法制备得到。本发明可以根据需要控制反应用锂溶液中的锂离子浓度或其杂质含量,所合成的磷酸亚铁锂具有纯度高、电化学性能优、稳定性、一致性好等优点,IC放电容量可达 140mAh/g以上。所述碳包覆的磷酸亚铁锂的纯度高达99. 97%,优选IC比容量高达141mAh/ g,更优选碳包覆的磷酸亚铁锂中Ca2+、Mg2+、S042_、Cl_、Na+、K+、Cu2+、Pb2+任一种的含量不高于 0. 01%。本发明的另一目的在于本发明工艺制备所得的碳包覆的磷酸亚铁锂用于制备锂离子电池材料中的应用,优选用于制备锂离子动力电池材料中的应用。为了清楚地表述本发明的保护范围,本发明对下述术语进行如下解释本发明所述的初级锂液制备过程中蒸发浓缩母液4所产生的冷凝水,或者反应用锂液制备过程中蒸发浓缩母液6所产生的冷凝水又称为“副产品1”。本发明所述的“回收滤液”在本发明中又称为“副产品2”,是指磷酸亚铁锂液相合成过程中过滤收集的滤液,或者磷酸亚铁锂滤饼洗涤过程中收集的洗涤滤液;所述的回收滤液是含锂溶液,选自硫酸锂溶液、碳酸锂溶液、氢氧化锂溶液、磷酸二氢锂溶液、磷酸锂溶液、氯化锂溶液、草酸锂溶液、硝酸锂溶液的任一种或其组合;可将其返回初级锂液的浸出工序,加以循环利用。本发明所述的“转化冷冻”是指步骤(1)中母液5中的Li2SO4与钠盐反应,生产另一种锂盐和Na2SO4,从而将母液5中的硫酸锂转化为另一种锂盐,再将溶液冷却,将生成的硫酸钠结晶析出后过滤除去,得含锂母液(即母液6),其中,所述钠盐选自碳酸钠、氢氧化钠、磷酸二氢钠、磷酸钠、氯化钠、草酸钠、硝酸钠中的任一种或其组合,优选为氯化钠、氢氧化钠中的任一种或其组合;所述另一种锂盐包括碳酸锂、氢氧化锂、磷酸二氢锂、磷酸锂、氯化锂、草酸锂、硝酸锂中的任一种或其组合。
6
除非另有说明,本发明所述的百分比为重量百分比。目前,国内外从锂矿石中制取锂盐的工业方法包括硫酸钾法、石灰法、硫酸法和纯碱压热浸出法等。硫酸法从锂辉石中制取锂盐其制备过程包括焙烧、酸化、浸出、中和、转化、蒸发、结晶、过滤等步骤。其中,采用石灰石(CaCO3)来调节pH值,使得中和后的浆料中产生大量的Ca2+等离子,并部分生成Li2CO3沉淀而损失部分Li+,且蒸发浓缩过程中产生大量的冷凝水等副产品未加以综合利用。本发明改用其他PH值(如氢氧化钠、氢氧化钾、碳酸钠、碳酸钾中的任一种或其组合)调节物质代替CaCO3,避免在反应体系中带入大量的Ca2+, 且采用分级调节PH值进行分级静置沉淀,可以有效地清除Ca2+、Mg2+、S042—等杂质。另外,本发明通过合理控制反应用锂溶液中的锂离子浓度及其杂质含量,将反应用锂溶液中的锂离子浓度与参与液相合成反应的磷酸溶液浓度、亚铁溶液浓度之间进行有机地匹配,可有效降低以锂矿为锂源制备反应用锂溶液过程中的纯化、精制和蒸发浓缩所增加的生产成本,又利于亚铁盐的溶解。本发明以锂矿为锂源用于生产磷酸亚铁锂的制备方法,无需将制得的反应用锂液进行繁杂的精制、纯化处理,部分省略了硫酸法制备锂盐中的冷却结晶、分离、除杂、干燥等步骤,并缩短了母液的蒸发浓缩时间,节省了锂盐的营销成本,并且,制备锂源过程中产生的冷凝水副产品循环用于配制亚铁盐溶液或磷源溶液,磷酸亚铁锂生产中的含锂副产品又循环用于锂矿制备锂源的过程。因此,本发明的循环工艺具有工艺流程短、能耗低、综合效益高、实现循环经济等优点,不仅可以大幅度地降低生产成本,提高了资源的利用率,实现循环经济,且可以根据需要控制反应用锂溶液中的锂离子浓度或其杂质含量。本发明工艺中的副产品(蒸发浓缩产生的蒸馏水、液相合成生成的含锂副产品等)加以循环利用,省略了副产品的回收处理工序,降低了甚至避免了废水排放,节省废水处理成本,显著提高资源利用率,显著降低生产成本,同时实现循环经济;本发明很好地去除和控制了磷酸亚铁锂中的Ca2+、Mg2+、S042_、Cr、Na+、K+、Cu2+、Pb2+ 等杂质含量,制备所得的磷酸亚铁锂具有纯度高、电化学性能优、稳定性、一致性好等优点, IC放电容量可达140mAh/g以上。更加预料不到的是本发明工艺的磷酸亚铁锂综合成本可节约12,000元/吨以上。
图1以锂矿为锂源生产磷酸亚铁锂的制备工艺流程简图。图2以锂矿为锂源生产磷酸亚铁锂的制备工艺流程详图。图3实施例2制备的磷酸亚铁锂-碳复合正极材料的X射线衍射图谱。
具体实施例方式本发明的技术方案(1)锂矿处理得到锂源溶液将锂矿煅烧、酸化、加入水浸出,调节pH值到5. 7-6. 2,静置,过滤,得母液1 ;调节母液1的pH为8. 5-9. 7,静置,过滤,得母液2 ;调节母液2的pH为10-10. 8,静置,过滤,得母液3 ;检测母液3中Ca2+浓度,加入等摩尔的Na2CO3,搅拌,静置,过滤,得母液4 ;
蒸发浓缩母液4,至其Li+浓度为65_75g/L,过滤,得母液5 ;检测母液5中的SO/—浓度,加入钠盐,将母液5中的SO/—全部转化成Na2SO4,搅拌,冷却结晶,过滤,得母液6;蒸发浓缩母液6,至其含锂量为25_27g/L,作为锂源溶液;(2)液相合成亚铁盐溶液、磷源溶液与步骤(1)制备得到的锂源溶液在搅拌状态下加入反应釜,继续搅拌并加热升温至150-220°C,保温220-720分钟,冷却后过滤收集滤饼;(3)固相包覆反应滤饼洗涤后加水成泥浆,再加入糖原料,混合均勻后干燥,然后在惰性气体保护下于650-1000°C下煅烧3-15小时,即得碳包覆的磷酸亚铁锂。本发明的优选技术方案中,所述锂矿可以选自锂辉石、锂磷铝石、磷锂铝石、锂云母、透锂长石的任一种或其组合。本发明的优选技术方案中,配制所述亚铁盐溶液的亚铁盐原料可以选自溴化亚铁、氯化亚铁、硫酸亚铁、高氯酸亚铁、硝酸亚铁的任一种或其组合。本发明的优选技术方案中,配制所述磷源溶液的磷源原料可以选自磷酸铵、磷酸、 磷酸锂、磷酸二氢铵的任一种或其组合。本发明的优选技术方案中,步骤C3)所述糖原料选自蔗糖、葡萄糖、乳糖的任一种或其组合。本发明的优选技术方案中,步骤(1)调节PH值采用氢氧化钠、氢氧化钾、碳酸钠、 碳酸钾的任一种或其组合,优选为氢氧化钠、碳酸钠的任一种或其组合。进一步地,步骤(1)所述钠盐选自碳酸钠、氯化钠、磷酸二氢钠、磷酸钠、氢氧化钠、草酸钠、硝酸钠中的任一种或其组合,优选为氯化钠、氢氧化钠中的任一种或其组合,优选冷却结晶温度为_15°C -0°C。步骤(2)过滤后的回收液副产品2 (含锂溶液)含有相应的锂溶液。比如硫酸锂溶液、碳酸锂溶液、氢氧化锂溶液、磷酸二氢锂溶液、磷酸锂溶液、氯化锂溶液、草酸锂溶液、硝酸锂溶液中的任一种或其组合。为了得到纯度更高的磷酸亚铁锂产品,本发明的优选技术方案中,步骤O)反应用锂源溶液中的Ca2+、Mg2+、Cl—、K+、Cu2+、Pb2+任一种的含量控制在质量百分比不高于 0.01%。若步骤(1)所得锂源溶液杂质含量高,可以返回步骤(1)中,从母液1开始循环除杂。上述方案作为优选的是,步骤( 所述的反应用锂源溶液中的锂含量25_27g/L, 优选为26. 2g/L。亚铁盐溶液中!^2+浓度为M_59g/L,优选为55. 8g/L。磷源溶液中P043_浓度为 680-800g/L,优选为 719. 2g/L。本发明的优选技术方案中,参与液相反应的锂溶液、亚铁盐溶液、磷源溶液之间的体积比为2. 5-3. 5 3-4 0.3-0. 7,优选的是锂溶液、亚铁盐溶液、磷源溶液之间的体积比为 3 ; 3. 5 ; 0. 5。为了实现循环经济,节约成本,本发明上述方案步骤(1)中,蒸发浓缩母液4所产生的冷凝水和中蒸发浓缩母液6所产生的冷凝水回收,循环用于步骤( 配制亚铁盐溶液或磷源溶液。步骤( 过滤后的回收滤液和步骤C3)洗涤滤饼的回收滤液中含有一定量的锂,可以返回步骤(1)的浸出工序,与水一起参与浸出,加以循环利用。可以大幅度地降低生产成本,提高了资源的利用率,实现循环经济。本发明的进一步优选的技术方案,步骤(1)在1100-1380°C下煅烧锂矿50-300分钟,冷却,磨细,以锂矿计,按酸料比1 4-7 (w/w)在锂矿中加入硫酸进行酸化处理50-200 分钟;以锂矿计,按液固比为2-3 1( / )加水或回收滤液,调节?!1值到5.7-6.2,搅拌 35-50分钟,静置,过滤,收集滤液,即得母液1。本发明的优选技术方案中,可以在步骤( 将用于掺杂的金属盐溶液与锂溶液、 亚铁盐溶液和磷源溶液一起进行所述液相合成反应。所述用于掺杂的金属盐溶液Co、Ni、 Al、Zr中的至少一种的金属盐溶液。本发明上述方案中,步骤( 所述液相合成反应在密闭条件下进行,以有效地防止狗2+的氧化。步骤C3)所述惰性气体选自氩气、氮气、氢气的任一种或其组合。本发明的优选技术方案中,步骤(3)中在洗净滤饼中加入糖原料的量为洗净滤饼固含量的5-20wt. %,优选为IOwt. %0本发明的另一目的在于提供一种碳包覆的磷酸亚铁锂,由本发明所述的制备方法制备得到。本发明可以根据需要控制反应用锂溶液中的锂离子浓度或其杂质含量,所合成的磷酸亚铁锂具有纯度高、电化学性能优、稳定性、一致性好等优点,IC放电容量可达 140mAh/g以上。所述碳包覆的磷酸亚铁锂的纯度高达99. 97%,优选IC比容量高达141mAh/ g,更优选碳包覆的磷酸亚铁锂中磷酸亚铁锂中Ca2+、Mg2+、S042—、Cl—、Na+、K+、Cu2+、Pb2+任一种的含量不高于0.01%。本发明的另一目的在于本发明工艺制备所得的碳包覆的磷酸亚铁锂用于制备锂离子电池材料中的应用,优选用于制备锂离子动力电池材料中的应用。为了清楚地表述本发明的保护范围,本发明对下述术语进行如下解释本发明所述的初级锂液制备过程中蒸发浓缩母液4所产生的冷凝水,或者反应用锂液制备过程中蒸发浓缩母液6所产生的冷凝水又称为“副产品1”。本发明所述的“回收滤液”在本发明中又称为“副产品2”,是指磷酸亚铁锂液相合成过程中过滤收集的滤液,或者磷酸亚铁锂滤饼洗涤过程中收集的洗涤滤液;所述的回收滤液是含锂溶液,选自硫酸锂溶液、碳酸锂溶液、氢氧化锂溶液、磷酸二氢锂溶液、磷酸锂溶液、氯化锂溶液、草酸锂溶液、硝酸锂溶液的任一种或其组合;可将其返回初级锂液的浸出工序,加以循环利用。本发明所述的“转化冷冻”是指步骤(1)中母液5中的Li2SO4与钠盐反应,生产另一种锂盐和Na2SO4,从而将母液5中的硫酸锂转化为另一种锂盐,再将溶液冷却,将生成的硫酸钠结晶析出后过滤除去,得含锂母液(即母液6),其中,所述钠盐选自碳酸钠、氢氧化钠、磷酸二氢钠、磷酸钠、氯化钠、草酸钠、硝酸钠中的任一种或其组合,优选为氯化钠、氢氧化钠中的任一种或其组合;所述另一种锂盐包括碳酸锂、氢氧化锂、磷酸二氢锂、磷酸锂、氯化锂、草酸锂、硝酸锂中的任一种或其组合。除非另有说明,本发明所述的百分比为重量百分比。本发明所述磷酸亚铁锂的纯度检测方法为X射线衍射分析方法和化学成分分析方法相结合,其中,X射线衍射分析方法摘自仪器信息网《XRD粉末X射线分析方法》,http://www. instrument, com. cn/download/DownLoadFile. asp ? id = 1673
948&huodong = 3 ;磷酸亚铁锂的化学分析方法摘自中国标准质量网http//hi. baidu. com/795007/blog/item/018fbcd3132e5531970al6ac. html)。本发明所述IC比容量(mAh/g)的测定方法和Ca2+、Mg2+、Cl—、Na+、K+、Cu2+Jb2+等杂质含量的检测方法摘自科技部863现代交通技术领域办公室2010年3月31日发布的《锂离子动力蓄电池用关键材料性能测试规范》,http://doc. mbalib. com/view/2679ed041aa01elad4401643428c6f43. html)。其中,IC比容量的测定方法如下正极材料导电剂(SP) PVDF(HSV900) = 83 10 7 ;负极金属Li ;电解液 1. IML1PF6, EC DEC DMC = 1 1 1,隔膜Celgard 2325 组成扣式电池(2430)。在25°C 士 2°C条件下,半电池以IC恒流充电至充电截至电压(3. 9V),然后以IC恒电流放电至放电截至电压(2. 0V),循环3次。根据三次放电容量的平均值计算正极材料的比容量。平行测试半电池样品5个,去除异常值后,取平均值。C = C平均放电/ [ (M电极-M铝箔)*0· 83]其中C 正极材料的比容量mAh/g ;C平均放电半电池的三次放电容量的平均值 mAh ;M电极正极片的质量g ;M铝箔铝箔的质量g。以下将结合实施例具体说明本发明,本发明的实施例仅用于说明本发明的技术方案,并非限定本发明的实质。实施例1磷酸亚铁锂的制备(1)称取50kg锂辉石,在1100°C下煅烧50分钟,冷却,磨细,加入7. Ikg硫酸(酸料比1 7)处理50分钟,边搅拌边倒入114kg (液固比2 1)水中,用NaOH调节pH值到 5. 7,搅拌35分钟,静置,过滤,得母液1 ;(2)用NaOH调节母液IpH值到8. 5,搅拌反应5分钟,静置,过滤,得母液2,再用 NaOH调节母液2的pH值到10. 8,搅拌反应5分钟,静置,过滤,得母液3 ;加入236. 6克 Na2CO3,搅拌反应30分钟,静置,过滤,得母液4 ;(3)蒸发浓缩母液4,至其锂含量为65g/L,静置,过滤,得母液5,其中,蒸发浓缩所得的冷凝水用于配制亚铁盐溶液或磷源溶液;(4)在母液5中加入5. 46kg NaOH,搅拌,冷却至-15_0°C,结晶,过滤,得母液6 ; (5)蒸发浓缩母液6,至其锂含量25. 34g/L,得反应用锂溶液,其中,蒸发浓缩所得的冷凝水用于配制亚铁盐溶液或磷源溶液。(6)称取5531. 0克含量为62. 0%的氯化亚铁,配制亚铁盐溶液36升0 2+浓度 58. 3g/L);(7)称取14071. 6克98. 0%三水磷酸铵配制磷源溶液5升(P043—浓度685. 9g/L);(8)取3升锂溶液、3. 5升亚铁盐溶液和0. 5升磷源溶液,在搅拌状态下加入反应釜,继续搅拌,加热升温至150°C,保温720分钟,冷却后放出过滤,得滤饼,并收集滤液,将滤液返回步骤(1)加以循环利用。(9)洗涤滤饼2次,直至滤饼洗涤液中未检出锂离子,得滤饼,并收集滤液,将滤液返回步骤(1)加以循环利用;在滤饼中加入适量的水,将其稀释成泥浆,再加入27. 5克蔗糖 (5% ),混合均勻,干燥,得糖原料与滤饼的均勻混合干燥物。
(10)在氩气保护下,将糖原料与滤饼的均勻混合干燥物在650°C下煅烧12小时, 即得碳包覆的磷酸亚铁锂。按照本发明所述测定方法,测出所得碳包覆分磷酸亚铁锂的纯度为99. 99%,IC 比容量(mAh/g)为 141mAh/g,且磷酸亚铁锂中 Ca2+、Mg2+、S042—、Cl—、Na+、K+、Cu2+、Pb2+ 任一种的含量不高于0.01%。表1不同锂源生产1吨碳包覆的磷酸亚铁锂所需要的锂原料成本
权利要求
1.以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于经过以下步骤(1)锂矿处理得到锂源溶液将锂矿煅烧、酸化、加入水浸出,调节PH值到5. 7-6. 2,静置,过滤,得母液1 ;调节母液1的PH为8. 5-9. 7,静置,过滤,得母液2 ;调节母液2的pH为10-10. 8,静置,过滤,得母液3 ;检测母液3中Ca2+浓度,加入等摩尔的Na2CO3,搅拌,静置,过滤,得母液4 ;蒸发浓缩母液4,至其Li+浓度为65-75g/L,过滤,得母液5 ;检测母液5中的SO/—浓度,加入钠盐,将母液5中的SO/—全部转化成Na2SO4,搅拌,冷却结晶,过滤,得母液6 ;蒸发浓缩后作为锂源溶液反应;(2)液相合成亚铁盐溶液、磷源溶液与步骤(1)制备得到的锂源溶液在搅拌状态下加入反应釜,继续搅拌并加热升温至150-220°C,保温220-720分钟,冷却后过滤收集滤饼;(3)固相包覆反应滤饼洗涤后加水成泥浆,再加入糖原料,混合均勻后干燥,然后在惰性气体保护下煅烧即得碳包覆的磷酸亚铁锂。
2.根据权利要求1所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于所述锂矿选自锂辉石、锂磷铝石、磷锂铝石、锂云母、透锂长石的任一种或其组合。
3.根据权利要求1或2所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(1)调节PH值采用氢氧化钠、氢氧化钾、碳酸钠、碳酸钾的任一种或其组合,优选为氢氧化钠、碳酸钠的任一种或其组合。
4.根据权利要求1-3任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(1)所述钠盐选自碳酸钠、氯化钠、磷酸二氢钠、磷酸钠、氢氧化钠、草酸钠、硝酸钠中的任一种或其组合,优选为氯化钠、氢氧化钠中的任一种或其组合。
5.根据权利要求1-4任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(1)所述冷却结晶温度为_15°C -0°C。
6.根据权利要求1-5任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(1)在1100-1380°C下煅烧锂矿50-300分钟,冷却,磨细,以煅烧后的锂矿计,按酸料w/w比1 4-7在煅烧后的锂矿中加入硫酸进行酸化处理50-200分钟;以煅烧后的锂矿计,按液固w/V比为2-3 1加水,调节pH值到5. 7-6. 2,搅拌35-50分钟,静置,过滤,收集滤液,即得母液1。
7.根据权利要求1-6任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤( 配制所述亚铁盐溶液的亚铁盐原料选自溴化亚铁、氯化亚铁、硫酸亚铁、高氯酸亚铁、硝酸亚铁的任一种或其组合。
8.根据权利要求1-7任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤( 配制所述磷源溶液的磷源原料可以选自磷酸铵、磷酸、磷酸锂、磷酸二氢铵的任一种或其组合。
9.根据权利要求1-8任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(2)所述的反应用锂源溶液中的&2+、1%2+、(1_、1(+、012+、?132+任一种的含量控制在质量百分比不高于0.01%。
10.根据权利要求1-9任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤( 所述的反应用锂源溶液由母液6蒸发浓缩至锂含量25-27g/L,亚铁盐溶液中 Fe2+浓度为M-59g/L,磷源溶液中PO43-浓度为680_800g/L ;优选的锂源溶液26. 2g/L,亚铁盐溶液中狗2+浓度为55. 8g/L,磷源溶液中P043_浓度为719. 2g/L。
11.根据权利要求1-10任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤⑵参与液相反应的锂溶液、亚铁盐溶液、磷源溶液之间的体积比为 2.5-3.5 3-4 0.3-0. 7;优选的是锂溶液、亚铁盐溶液、磷源溶液之间的体积比为 3 · 3· 5 · 0· 5 ο
12.根据权利要求11所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤 (2)添加用于掺杂的金属盐溶液,使其与锂溶液、亚铁盐溶液和磷源溶液一起进行所述液相合成反应;所述用于掺杂的金属盐溶液Co、Ni、Al、&中的至少一种的金属盐溶液。
13.根据权利要求12所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(2)所述液相合成反应在密闭条件下进行。
14.根据权利要求1-12任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤C3)所述惰性气体选自氩气、氮气、氢气的任一种或其组合。
15.根据权利要求1-14任一项所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤C3)所述糖原料选自蔗糖、葡萄糖、乳糖的任一种或其组合。
16.根据权利要求15所述的以锂矿为锂源生产磷酸亚铁锂的方法,其特征在于步骤(3)糖原料的量为洗净滤饼固含量的5-20wt%,优选为10wt%。
全文摘要
本发明涉及一种以锂矿为锂源生产磷酸亚铁锂的方法,属于锂离子电池材料领域,具体涉及一种以锂矿为锂源生产磷酸亚铁锂的方法。本发明的技术方案(1)锂矿处理得到锂源溶液(2)亚铁盐溶液、磷源溶液与步骤(1)制备得到的锂源溶液液相反应,冷却后过滤收集滤饼;(3)滤饼洗涤后加水成泥浆,再加入糖原料,混合均匀后干燥,然后在惰性气体保护下煅烧,即得碳包覆的磷酸亚铁锂。本发明以锂矿为锂源用于生产磷酸亚铁锂,很好地去除和控制了磷酸亚铁锂中的Ca2+、Mg2+等杂质含量,制备所得的磷酸亚铁锂具有纯度高、电化学性能优、稳定性、一致性好等优点,1C放电容量可达140mAh/g以上,且磷酸亚铁锂综合成本可节约12,000元/吨以上。
文档编号H01M4/58GK102332581SQ20111032050
公开日2012年1月25日 申请日期2011年10月20日 优先权日2011年10月20日
发明者王平, 金鹏, 陈欣, 黄春莲 申请人:四川天齐锂业股份有限公司