电介质组合物以及包括该组合物的陶瓷电子元件的制作方法

文档序号:7110191阅读:183来源:国知局
专利名称:电介质组合物以及包括该组合物的陶瓷电子元件的制作方法
技术领域
本发明涉及一种电 介质组合物以及包括该组合物的陶瓷电子元件。
背景技术
使用陶瓷材料的电子元件包括电容器、感应器、压电元件、变阻器、热敏电阻等等。在陶瓷电子元件中,多层陶瓷电容器(MLCC)通常具有高容量、体积小巧以及易于安装的优良特性。多层陶瓷电容器是通常安装在用于包括显示装置诸如液晶显示器(IXDs)、等离子显示板(PDPs)以及计算机、掌上电脑(PDAs)、移动电话等等多种电子设备上的印刷线路板上的片式(chip type)电容器,并且多层陶瓷电容器在充电,以及释放电流上起着重要的作用。最近,由于显示装置诸如!XDs、rops等等的扩大以及计算机CPU速度(‘钟速’)的提高,电子设备可能会产生巨大的热量。因此,为了使集成电路(ICS)能够稳定操作,甚至在高温下也有必要确保稳定的电容和可靠性。另外,多层陶瓷电容器具有的尺寸范围较大以及根据其应用和电容具有多种层压形式。具体地,为了响应目前紧凑、重量轻以及多功能电子设备的制备趋势,用于这种电子设备的MLCCs也需要具有非常紧凑的尺寸、超高电容以及升高的电压。因此,为了制备非常紧凑的产品,目前制备的MLCC中的每个介电层以及内电极的厚度降低,而层压的内电极层的数量增加以给予超高电容。然而,如果在MLCCs的制备过程中,电压随着介电层厚度的降低而提高,由于应用在介电层上的电子领域强度提高且微细结构损坏,内部电压和/或直流偏置(DC-bias)特性诸如BDV、高温IR等等可能会恶化,因而产生问题。为了阻止上述问题,有必要制备微粒形式的基础粉末(base powder)。然而,当基础粉末的平均颗粒尺寸降低时,在介电效应(通常简称为’介电常数’)减少的同时实现或体现适合于使用者需要的电容和温度特性是困难的。

发明内容
在本发明所附属的现有技术的技术领域中,需要一种新颖的观点:研发的介电层与现有技术公知的具有相同的电容而却没有降低该介电层的厚度从而确保了该介电层的
可靠性。根据本发明的一方面提 供了一种电介质组合物,该电介质组合物包括:含有BamTiO3 (0.995 ^ m ^ 1.010)的基础粉末;以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分(first sub-component);以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分;以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分;以100摩尔的基础粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。所述电介质组合物 可以具有的平均颗粒尺寸为0.75 μ m或更小。以100摩尔的基础粉末为基准,所述电介质组合物可以进一步包括0.01-2.50摩尔的Mg氧化物或碳酸盐。以100摩尔的基础粉末为基准,所述电介质组合物可以进一步包括0.01-1.00摩尔的Zr氧化物。所述第一副组分中的稀土元素可以选自由Y、Dy、Ho、Er和Gd组成的组中的至少一种。所述第二副组分中的过渡金属可以选自由Mo、W、Mn、Fe、Co、N1、V、Cr、Cu和Zn组成的组中的至少一种。根据本发明的另一方面提供了一种陶瓷电子元件,该陶瓷电子元件包括:陶瓷主体,该陶瓷主体具有多个层压于其中的介电层;内电极,该内电极配置在所述陶瓷主体的内部且包括基底金属;以及外电极,该外电极配置在所述陶瓷主体的外表面且电连接到所述内电极上,其中,所述介电层可以包括电介质组合物,该电介质组合物可以包括:含有BamTiO3 (0.995 ^ m ^ 1.010)的基础粉末;以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分;以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分;以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分;以100摩尔的基础粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。每个所述介电层可以具有的厚度在0.2-10 μ m之间。所述内电极可以包括Ni或Ni合金。所述内电极可以交替地与所述介电层层压在一起。
以下结合附图的详细描述将使本发明的上述以及其它方面、特征和其他优点被更加清楚地理解,其中:

图1是说明根据本发明的一种实施方式的多层陶瓷电容器(‘MLCC’)的示意透视图;图2是沿着图1中的A-A’线的剖视图。
具体实施例方式现在,将参考附图详细描述本发明的实施方式。
本发明的实施方式可以以多种不同形式实施,且本发明的范围不应该受本发明所列举的实施方式的限制。更确切地说,提供这些实施方式以便全面和完整地公开本发明,并将本发明的范围充分传达给本领域的技术人员。在附图中,为了清楚可能夸大了元件的形状和尺寸,并且使用相同的参考数字表示相同或类似的元件。另外,除非有明确地相反的描述,否则词语“含有”以及“包括”将理解为包括所表明的元件但不排除其他的元件。本发明涉及一种电介质组合物,以及一种包括该电介质组合物的陶瓷电子元件,根据本发明的实施方式,该陶瓷电子元件可以包括例如多层陶瓷电容器、感应器、压电元件、变阻器、片式电阻、热敏电阻等等。下面,将描述作为陶瓷电子元件实例的多层陶瓷电容器(也称为‘MLCC’)。参考图1和图2,根据本发明的实施方式,多层陶瓷电容器100具有包括介电层111的陶瓷主体110,交替地与内置于其中的所述介电层111层压的第一内电极130a以及第二内电极130b。第一外电极120a以及第二外电极120b配置在所述陶瓷主体110的两端且分别电连接到交替层压的第一内电极130a以及第二内电极130b上。所述陶瓷主体110可以为长方形形状,但并没有具体限定于此。另外,所述陶瓷主体110的尺寸没有具体限定。例如,所述陶瓷主体可以具有的尺寸为(0.6-5.6mm) X (0.3-5.0mm) X (0.3-1.9mm)。所述介电层111的厚度可以根据所期望的电容器的电容而改变。例如,当非常薄的介电层111作为单一层的时候,其中的结晶颗粒的数量可能会非常低,由此影响了可靠性。因此,在焙烧后,每个介电层111的厚度可能会设定在0.2μπι或更大,优选地,达到0.2-10.0 μ m。然而,本发明没有限定于此。第一内电极130a以及第二内电极130b可以交替地层压以至于其各端交替地暴露在所述陶瓷主体110的两端上。包含在所述第一内电极130a以及第二内电极130b上的导电材料没有具体限定,然而,因为所述介电层111的材料应该是非还原性的,所以该导电材料可以包括基底金属(base metal)。所述基底金属可以包括Ni或Ni合金。所述Ni合金可以包括Ni以及选自Mn、Cr、Co和Al中的至少一种。可以形成电容器电路使得所述第一外电极120a以及第二外电极120b可以在所述陶瓷主体110的两端上形成且电连接到交替层压的第一内电极130a以及第二内电极130b
的暴露端上。包含在第一外电极120a以及第二外电极120b上的导电材料没有具体限定,然而,该导电材料可以包括N1、Cu或其合金。形成所述陶瓷主体110的介电层111可以含有非还原性的电介质组合物。根据本发明的实施方式,所述非还原性的电介质组合物可以包括含有BaJiO3(0.995 ^ 1.010)的基础粉末;以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分;以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分;以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分;以100摩尔的基础粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。下面,每个副组分的含量可以基于下面阐述的副组分的原子摩尔数(atomi cmole)。所述原子摩尔数可 以指每个元素甚至在该元素以任何氧化状态或离子状态存在下的摩尔百分数。例如,如果Y氧化物是Y2O3,它的含量可以以Y+3的摩尔含量为基准来计

同时,当单一的副组分与主组分相混合时,每个副组分的比表面积可以为0.5m2/g或更高;然而,本发明没有限定于此。另外,具有上述组合物的材料焙烧后的微细结构可以具有的平均颗粒尺寸为
0.75 μ m或更小;然而,本发明没有限定于此。所述电介质组合物可以确保1600或更高的高介电常数同时保持抗高温电压性能(high temperature voltage resistance),也就是说,高温促进使用期限(hightemperature accelerated lifespan)实质上与现有的电介质组合物相当。另外,因为可以在1250°C或更低(就氧分压而言,10_12或更高)的还原气氛下焙烧所述电介质组合物,所以可以使用含有Ni或Ni合金的内电极。因此,可以有效地使用上述组合物以研发具有相对薄的介电层的超高电容MLCCs。下面,根据本发明的实施方式将详细描述电介质组合物的各个组分。(a)基础粉末基础粉末,电解质材料的主组分,可以为Ba111TiO3 (0.995彡m彡1.010)介电粉末。在这种情况下,当m小于0.995时,在还原气氛下焙烧过程中,所述基础粉末可能会易于脱氧(还原)为半导体物质。另一方面,当m超过1.010时,焙烧温度可能会过高。(b)第一副组分所述第一副组分可以含有至少含有一种稀土元素的氧化物或碳酸盐。所述稀土元素使材料的可靠性提高。所述稀土元素可以选自Y、Dy、Ho、Er和Gd中的至少一种。然而,本发明的实施方式中使用的稀土元素没有限定于此。含有所述稀土元素的氧化物或碳酸盐就其类型而言没有具体限定,由此可以使用Dy203> Y2O3^Ho2O3 等等。在这方面,以100摩尔的基础粉末为基准,为了具有适当的抗还原以及可靠性,所述第一副组分的含量可以为0.05-4.00摩尔。当所述第一副组分的含量低于0.05摩尔时,焙烧温度可能会升高且可靠性可能
会恶化ο相反,当所述第一副组分的含量超过4.00摩尔时,烧结温度可能会升高,因此难以达到所期望的介电常数。(C)第二副组分
所述第二副组分可以包括含有过渡金属的氧化物或碳酸盐。所述过渡金属氧化物或碳酸盐可以使所述电介质组合物具有抗还原性以及可靠性。这种过渡金属可以为变价受体(variable-valence acceptor)以及可以选自由Mo、W、Mn、Fe、Co、N1、V、Cr、Cu 和 Zn 组成的组。在这方面,所述过渡金属氧化物或碳酸盐就其类型而言没有具体限定且由此可以使用 MnO2、V2O5> MnCO3 等等。以100摩尔的基础粉末为基准,为了具有适当的抗还原以及可靠性,所述第二副组分的含量可以为0.05-0.70摩尔。当所述第二副组分的含量低于0.05摩尔时,高温促进使用期限可能会降低且电容(TCC)的温度系数可能会不稳定。另外,当所述第二副组分的含量超过0.70摩尔时,烧结温度降低,但介电常数也可能会降低,因而不能获得所期望的介电常数并且老化性能也可能会恶化。(d)第三副组分所述第三副组分用于使焙烧温度降低并促进烧结。所述第三副组分可以包括Si氧化物或含有Si元素的玻璃。在本发明中,以100摩尔的基础粉末为基准,所述第三副组分的含量可以为
0.20-2.00 摩尔。当所述第三副组分的含量低于0.20摩尔时,可以获得高介电常数,但焙烧温度升高,因而烧结性能恶化。当所述第三副组分的含量超过2.00摩尔时,难以控制颗粒生长。另外,可能会使烧结性能恶化且不能获得所期望的介电常数。(e)第四副组分所述第四副组分可以促使焙烧温度降低并促进烧结。所述第四副组分可以包括Al氧化物。在本发明中,以100摩尔的基础粉末为基准,所述第四副组分的含量可以为
0.20-1.00 摩尔。当所述第四副组分的含量低于0.02摩尔时,难以在所期望的低焙烧温度下进行焙烧,由此存在的问题是在相对高的温度下进行焙烧。另外,当所述第四副组分的含量超过1.00摩尔时,难以控制颗粒生长。还有,可能会使烧结性能恶化,以及不能获得所期望的介电常数。(f)第五副组分所述第五副组分用于使焙烧温度降低同时促进烧结。所述第五副组分可以包括含有Ba和Ca中至少一种的氧化物。在本发明中,以所述第三副组分的含量为基准,所述第五副组分的含量可以为20-140%ο当所述第五副组分的含量低于所述第三副组分的含量的20%时,介电常数提高。然而,可靠性降低,焙烧范围(firing window)(可以给予优良特性的焙烧温度范围)窄, 以及TCC性能可能会不稳定。
另一方面,当所述第五副组分的含量超过所述第三副组分的含量的140%时,扩大了焙烧范围。然而,可能会使焙烧密度降低以及使焙烧温度升高。(g)第六副组分根据本发明的实施方式,所述电介质组合物不是必须需要所述第六副组分,但如果需要可以任意地包括在该电介质组合物中。所述第六副组分可以包括Mg氧化物或碳酸盐。在本发明中,所述Mg氧化物或碳酸盐的类型没有具体限定,由此可以使用MgO、MgCO3等等。 所述Mg氧化物或碳酸盐可以使焙烧范围扩大以及使焙烧温度降低。以100摩尔的基础粉末为基准,具有上述所述作用的所述Mg氧化物或碳酸盐的含量可以为0.01-2.50摩尔。如果偏离了上述所述的范围,可能会使介电常数降低。优选地,除了所述Mg氧化物或碳酸盐之外,所述第六副组分可以进一步包括Zr氧化物。当所述Zr氧化物在适当的范围内添加时,可以进一步提高介电常数。以100摩尔的基础粉末为基准,所述Zr氧化物的含量可以为0.01-1.00摩尔。在下文中,将参考下面的实施例和对比例对本发明的实施方式进行描述。然而,提供的这些实施方式用于将本发明的范围传达给本领域技术人员而并不只限于这里所阐述的实施方式。实施例根据表I中列举的成分和含量,按照包括基础粉末、第一至第五副组分以及任意地包括第六副组分来制备原材料粉末。该原材料粉末同乙醇、甲苯、分散剂以及粘合剂相混合并且将该混合物球磨20小时以制备浆液。在本发明中,氧化锆球用作混合/分散的媒介。通过小型刮刀涂布器使该浆液形成厚度为2.0 μ m以及厚度为10_13 μ m的陶瓷片层。然后,在该陶瓷片层上印刷Ni内电极。在本发明中,通过层压25个每个厚度为10-13 μ m的覆盖层来制备顶覆盖层以及底復盖层,以及将20个N1-印刷活性层层压并压缩,因此形成了压缩棚(compressed bar )。使用切割机将所述压缩栅切割成小片,且每个小片具有的尺寸为3.2mmX 1.6mm。将切割后的小片经过塑化以除去粘合剂部分并在还原气氛下在1100-1300°C下焙烧约2小时,随后为了脱氧在KKKTC下热处理约3小时。此后,焙烧后的小片经过最后处理过程,并放置约24小时,因而制备了
3.2mmX1.6mm的MLCC小片,该MLCC小片包括20个介电层且每个介电层的厚度约为
4.0 μ m。评价在IkHz和IV的条件下使用LCR测试仪使所制备的MLCC小片经受室温电容以及介电损失测试。更具体地,选择10个样品并在室温下在绝缘状态下对所选择的样品施加50V的直流电60秒,然后实施上述测量。在本发明中,所述介电常数显示的数值四舍五入至最接近的百位。取决于温度的电容温度系数(TCC)分别在85°C以及125°C下进行测量。
同时,进行高温红外增压试验(high temperature IR booster pressure test)以确定在150°C温度以及IVr=IOV/μ m并同时以IOV/μ m的直流电逐步提高电压的条件下的抗热降解行为,其中,电压的每一步实施需要10分钟以及每隔5秒对抗热降解行为进行测量。从上述描述的高 温红外增压试验的结果上,已经导致了高温耐压性,例如高温促进使用期限。高温促进使用期限指的是耐压测试,具体地,将直流电压施加给焙烧后的具有20个介电层的MLCC小片,每个介电层具有的厚度约为4.0μπι,在150°C同时以lOV/μπ!的直流电逐步增加电压10分钟后,耐红外(IR withstands)为IO5 Ω或更高。下面表I表明具有不同成分的介电材料特性以及由这些介电材料形成的X5R或X7R原型小片的特性。表I
权利要求
1.一种电介质组合物,该电介质组合物包括: 含有BamTiO3的基础粉末,0.995彡m彡1.010 ; 以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分; 以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分; 以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分; 以100摩尔的基础 粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。
2.根据权利要求1所述的电介质组合物,其中,所述电介质组合物具有的平均颗粒尺寸为0.75 μ m或更小。
3.根据权利要求1所述的电介质组合物,其中,以100摩尔的基础粉末为基准,所述电介质组合物进一步包括0.01-2.50摩尔的Mg氧化物或碳酸盐。
4.根据权利要求1所述的电介质组合物,其中,以100摩尔的基础粉末为基准,所述电介质组合物进一步包括0.01-1.00摩尔的Zr氧化物。
5.根据权利要求1所述的电介质组合物,其中,所述第一副组分中的稀土元素选自由Y、Dy、Ho、Er和Gd组成的组中的至少一种。
6.根据权利要求1所述的电介质组合物,其中,所述第二副组分中的过渡金属选自由Mo、W、Mn、Fe、Co、N1、V、Cr、Cu和Zn组成的组中的至少一种。
7.一种陶瓷电子元件,该陶瓷电子元件包括: 陶瓷主体,该陶瓷主体具有多个层压于其中的介电层; 内电极,该内电极配置在所述陶瓷主体的内部且包括基底金属;以及 外电极,该外电极配置在所述陶瓷主体的外表面且电连接到所述内电极上, 其中,所述介电层包括电介质组合物,该电介质组合物包括:含有BamTiO3的基础粉末,0.995≤ m≤ 1.010 ;以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分;以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分;以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分;以100摩尔的基础粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。
8.根据权利要求7所述的陶瓷电子元件,其中,所述电介质组合物具有的平均颗粒尺寸为0.75 μ m或更小。
9.根据权利要求7所述的陶瓷电子元件,其中,以100摩尔的基础粉末为基准,所述电介质组合物进一步包括0.01-2.50摩尔的Mg氧化物或碳酸盐。
10.根据权利要求7所述的陶瓷电子元件,其中,以100摩尔的基础粉末为基准,所述电介质组合物进一步包括0.01-1.00摩尔的Zr氧化物。
11.根据权利要求7所述的陶瓷电子元件,其中,所述第一副组分中的稀土元素选自由Y、Dy、Ho、Er和Gd组成的组中的至少一种。
12.根据权利要求7所述的陶瓷电子元件,其中,所述第二副组分中的过渡金属选自由Mo、W、Mn、Fe、Co、N1、V、Cr、Cu和Zn组成的组中的至少一种。
13.根据权利要求7所述的陶瓷电子元件,其中,每个所述介电层具有的厚度在0.2-10μ m 之间。
14.根据权利要求7所述的陶瓷电子元件,其中,所述内电极包括Ni或Ni合金。
15.根据权利要求7所述的陶瓷电子元件,其中,所述内电极交替地与所述介电层层压在一起。
全文摘要
本发明提供了一种电介质组合物,该电介质组合物包括含有BamTiO3(0.995≤m≤1.010)的基础粉末;以100摩尔的基础粉末为基准,含有0.05-4.00摩尔的至少含有一种稀土元素的氧化物或碳酸盐的第一副组分;以100摩尔的基础粉末为基准,含有0.05-0.70摩尔的至少含有一种过渡金属的氧化物或碳酸盐的第二副组分;以100摩尔的基础粉末为基准,含有0.20-2.00摩尔的Si氧化物的第三副组分;以100摩尔的基础粉末为基准,含有0.20-1.00摩尔的Al氧化物的第四副组分;以及以第三副组分为基准,含有20-140%的至少含有Ba和Ca中的一种的氧化物的第五副组分。含有本发明电介质组合物的介电层与现有技术公知的介电层具有相同的电容,却没有降低该介电层的厚度,从而确保了该介电层的可靠性。
文档编号H01G4/12GK103102153SQ201210399269
公开日2013年5月15日 申请日期2012年10月19日 优先权日2011年11月11日
发明者姜晟馨, 崔斗源, 宋旻星, 权祥勋, 金昶勋, 李炳华 申请人:三星电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1