用于uv处理、化学处理及沉积的设备与方法
【专利摘要】本发明的实施例提供用于在相同腔室中执行UV处理与化学处理和/或沉积的设备与方法。本发明的一个实施例提供一种处理腔室,所述处理腔室包括:可透过UV光的气体分配喷头,所述可透过UV光的气体分配喷头设置在基板支撑件上方,所述基板支撑件位于所述处理腔室的内部空间中;可透过UV光的窗口,所述可透过UV光的窗口设置在所述可透过UV光的气体分配喷头上方;及UV单元,所述UV单元设置在所述内部空间外面。所述UV单元配置为将UV光朝向所述基板支撑件而引导通过所述可透过UV光的窗口与所述可透过UV光的气体分配喷头。
【专利说明】用于UV处理、化学处理及沉积的设备与方法
【技术领域】
[0001]本发明的实施例大体上关于用于在半导体基板上制造器件的方法与设备。更具体地,本发明的实施例提供用于在相同腔室中执行UV处理与化学处理和/或沉积的设备与方法。
【背景技术】
[0002]随着电子器件尺寸的缩小,具有低介电常数(k)的新材料(诸如具有低达2.2的介电数值的材料)被用来形成电子器件。
[0003]经等离子体沉积的多孔低k膜是能够满足此需求的一类材料。对低介电数值具有贡献的孔隙与碳的存在形成了巨大的工艺集成挑战,这是因为孔隙容易遭受蚀刻、灰化和等离子体损坏。所以,在形成之后和/或在集成之后,通常需要k修复工艺(k-restorationprocess)以修复多孔低k膜。
[0004]传统上,需要两个不同的腔室以用于k修复。一个腔室用于低k膜的化学处理(诸如硅烷化),或用于低k膜的表面处理的薄膜的沉积。不同的腔室被用于使用uv(紫外线)固化的孔隙密封。传统的k修复在分开的腔室中执行,这是因为化学表面处理使用喷头来供应包括有卤素或臭氧的处理气体,而UV腔室使用通常与卤素和臭氧不相容的石英窗口。然而,所述两个腔室k修复工艺会因为需要两个腔室与额外的用于基板传送的时间而增加所有权成本(cost of ownership)。
[0005]所以,需要一种改进的用于k修复工艺的设备与方法。
【发明内容】
[0006]本发明的实施例大体上提供用于处理基板的设备与方法。特别地,本发明的实施例提供能够执行UV处理以及化学或表面处理的处理腔室。
[0007]本发明的一个实施例提供一种处理腔室。所述处理腔室包含:腔室主体,所述腔室主体界定内部空间;基板支撑件,所述基板支撑件设置在所述内部空间中;及可透过UV光的(UV transparent)气体分配喷头,所述可透过UV光的气体分配喷头设置在所述基板支撑件上方。所述处理腔室还包含:可透过UV光的窗口,所述可透过UV光的窗口设置在所述可透过UV光的气体分配喷头上方。气体空间被形成在所述可透过UV光的气体分配喷头与所述可透过UV光的窗口之间。所述气体空间与所述内部空间透过被形成通过所述可透过UV光的气体分配喷头的多个通孔而流体连通。所述处理腔室还包含:UV单元,所述UV单元设置在所述内部空间外面。所述UV单元配置为将UV光朝向所述基板支撑件引导而通过所述可透过UV光的窗口与所述可透过UV光的气体分配喷头。
[0008]本发明的另一个实施例提供一种处理系统。所述处理系统包含:传送腔室,所述传送腔室界定传送空间;基板传送机械手,所述基板传送机械手设置在所述传送空间中;及处理腔室,所述处理腔室耦接到所述传送腔室。所述处理腔室包含:腔室主体,所述腔室主体界定内部空间;基板支撑件,所述基板支撑件设置在所述内部空间中;及可透过UV光的气体分配喷头,所述可透过UV光的气体分配喷头设置在所述基板支撑件上方。所述处理腔室还包含:可透过UV光的窗口,所述可透过UV光的窗口设置在所述可透过UV光的气体分配喷头上方。在所述可透过UV光的气体分配喷头与所述可透过UV光的窗口之间形成有气体空间。所述气体空间与所述内部空间透过被形成通过所述可透过UV光的气体分配喷头的多个通孔而流体连通。所述处理腔室还包含:uv单元,所述UV单元设置在所述可透过UV光的窗口外面。所述UV单元配置为将UV光朝向所述基板支撑件弓I导而通过所述可透过UV光的窗口与所述可透过UV光的气体分配喷头。
[0009]本发明的又一个实施例提供一种用于处理基板的方法。所述方法包含:在基板支撑件上接收基板,所述基板支撑件设置在处理腔室中。所述处理腔室包含:可透过UV光的气体分配喷头,所述可透过UV光的气体分配喷头设置在所述基板支撑件上方;可透过UV光的窗口,所述可透过UV光的窗口设置在所述可透过UV光的气体分配喷头上方;及UV单元,所述UV单元设置在所述可透过UV光的窗口外面。所述UV单元配置为将UV光朝向所述基板支撑件引导而通过所述可透过UV光的窗口与所述可透过UV光的气体分配喷头。所述方法还包含:通过使一种或更多种处理气体从气体空间流动通过所述可透过UV光的气体分配喷头,从而化学地处理所述基板,所述气体空间被界定在所述可透过UV光的窗口与所述可透过UV光的气体分配喷头之间;及通过将UV能量从所述UV单元朝向所述基板弓I导而通过所述可透过UV光的气体分配喷头与所述可透过UV光的窗口,从而固化所述基板。
【专利附图】
【附图说明】
[0010]可通过参考本发明的实施例来对本发明作更具体的描述,从而详细了解本发明的上述特征,本发明的上述特征在前面简短地概述过,其中一些实施例在附图中示出。但是应注意的是,附图仅示出本发明的典型实施例,并且因此附图不应被视为会对本发明的范围构成限制,这是因为本发明可允许其它等效实施例。
[0011]图1是根据本发明的一个实施例的处理腔室的示意剖视图。
[0012]图2是图1的处理腔室的示意俯视图,其中UV单元与窗口被移除。
[0013]图3A是根据本发明的一个实施例的夹持构件的示意性部分透视图,此图示出气体通道。
[0014]图3B是图3A的夹持构件的示意性部分剖视图。
[0015]图4是喷头夹持组件的部分剖视图,所述喷头夹持组件包括用于气体流动的充气
增压室。
[0016]图5A是根据本发明的一个实施例的可透过UV光的喷头的部分剖视图。
[0017]图5B是根据本发明的一个实施例的可透过UV光的窗口的部分剖视图。
[0018]图6是根据本发明的一个实施例的双空间处理腔室的剖视图。
[0019]图7是图6的双空间处理腔室的俯视图。
[0020]图8是根据本发明的一个实施例的处理系统的示意平面图。
[0021]图9是示出用于根据本发明的一个实施例处理基板的方法的图。
[0022]为便于理解,已尽可能地使用相同的附图标记来表示所述这些附图所共有的相同元件。可预期,一个实施例中公开的元件可有利地被应用到其它实施例而不需详述。【具体实施方式】
[0023]本发明的实施例大体上关于用于处理基板的设备。更具体地,本发明的实施例提供用以于在相同腔室中执行UV处理与化学处理和/或沉积的设备与方法。
[0024]图1是根据本发明的一个实施例的处理腔室100的示意剖视图。处理腔室100配置为使用UV能量、一种或更多种处理气体以及远程产生的等离子体来处理基板。
[0025]处理腔室100包括腔室主体102与设置在腔室主体上方的腔室盖104。腔室主体102与腔室盖104形成内部空间106。基板支撑组件108设置在内部空间106中。基板支撑组件108接收并支撑在基板支撑组件108上的基板110,以用于处理。
[0026]可透过UV光的气体分配喷头116通过上夹持构件118与下夹持构件120透过腔室盖104的中央开口 112而被悬置在内部空间106中。可透过UV光的气体分配喷头116定位成面对基板支撑组件108,以在整个处理空间122分配一种或更多种处理气体,其中处理空间122位于可透过UV光的气体分配喷头116下方且位于基板支撑组件108上方。
[0027]可透过UV光的窗口 114设置在可透过UV光的气体分配喷头116上方。在一个实施例中,可透过UV光的窗口 114由上夹持构件118支撑且由窗口夹持构件124固定。可透过UV光的窗口 114定位于可透过UV光的气体分配喷头116上方的一段距离126处,而在可透过UV光的窗口 114与可透过UV光的气体分配喷头116之间形成气体空间128。
[0028]可透过UV光的窗口 114与可透过UV光的气体分配喷头116对于UV波长内的热能至少部分是可透过的。
[0029]UV源130设置在可透过UV光的窗口 114上方。UV源130配置为产生UV能量且透过可透过UV光的窗口 114与可透过UV光的气体分配喷头116而朝向处理空间122投射UV能量。覆盖件132可设置在UV源130上方。在一个实施例中,覆盖件132的内表面134可成形为有助于UV能量从UV源130朝向处理空间122的投射。
[0030]在一个实施例中,UV源130包括一个或更多个UV灯136,以产生UV辐射。可在美国专利案第7,777,198号与美国专利公开案第2006/0249175号中找到适当的UV源的更详细描述。
[0031]处理腔室100包括多个流动通道,所述这些通道配置为在设置于基板支撑组件108上方的整个基板110供应一种或更多种处理气体。
[0032]在一个实施例中,一种或更多种处理气体透过被形成在上夹持构件118与可透过UV光的气体分配喷头116中的流动通道而被输送到处理空间122。
[0033]处理腔室100包括气体板140,气体板140配置为产生和/或混合来自一个或更多个液体源138a、138b、138c的处理气体。气体板140经由一个或更多个气体管线142a、142b、142c耦接到输入岐管144。在一个实施例中,所述一个或更多个气体管线142a、142b、142c被加热,以防止在传送期间所述这些管线中的处理气体的任何凝结。在一个实施例中,气体板140配置为提供一种或更多种处理气体,用于设置在处理空间122中的基板110的化学处理。
[0034]处理腔室100也包括远程等离子体源154,远程等离子体源154经由等离子体通道156连接到输入岐管144。在一个实施例中,远程等离子体源154可用于供应等离子体,用以清洁处理腔室100的内表面。
[0035]输入岐管144具有多个内部通道146,所述这些内部通道146将一个或更多个馈送通路(feedthrough) 148连接到出口 150。在一个实施例中,各个气体管线142a、142b、142c与等离子体通道156耦接到所述这些馈送通路148的其中一个馈送通路。输入岐管144可设置在腔室盖104上方且耦接到上夹持构件118,以使出口 150连接到被形成在上夹持构件118中的馈送槽152。可从合适的材料(诸如金属)来加工制成输入岐管144。在一个实施例中,从铝加工制成输入岐管144。
[0036]在一个实施例中,在上夹持构件118中形成多个流动通道,以使来自输入岐管144的处理气体以基本上均匀的方式进入可透过UV光的气体分配喷头116上方的气体空间128。接着,处理气体可流动通过可透过UV光的气体分配喷头116到处理空间122。
[0037]在一个实施例中,上夹持构件118中的流动通道包括进口充气增压室160、垂直槽158和多个辐状孔162,所述垂直槽158将进口充气增压室160连接到馈送槽152,所述这些辐状孔162将进口充气增压室160连接到气体空间128。在一个实施例中,所述多个辐状孔162沿着进口充气增压室160均匀地分布,以在气体空间128内实现均匀的气体分配。在一个实施例中,通过上夹持构件118的沟槽176与下夹持构件120的沟槽178来形成进口充气增压室160。通过结合沟槽176与178的空间,增加了进口充气增压室160的空间,而不会改变上夹持构件118与下夹持构件120的尺寸。通过增加进口充气增压室160的空间,本发明的实施例减少了进入的气体流的压降。
[0038]可透过UV光的气体分配喷头116包括多个通孔164,所述这些通孔164允许处理气体从气体空间128流动到处理空间122。在一个实施例中,所述多个通孔164被均匀地分布在整个可透过UV光的气体分配喷头116。
[0039]处理腔室100还包括设置在内部空间106中且环绕基板支撑组件108的内衬里166与外衬里168。内衬里166与外衬里168遮蔽腔室主体102,而使腔室主体102免于处理内部空间106中的化学处理。内衬里166与外衬里168还形成处理腔室100的排气路径。在一个实施例中,在内衬里166与外衬里168之间形成排气充气增压室170。排气充气增压室170径向地环绕处理空间122。多个孔172被形成通过内衬里166,而连接排气充气增压室170与处理空间122。真空泵174和排气充气增压室170流体连通,以使处理空间122可透过所述多个孔172与所述排气充气增压室170被往外泵送。
[0040]图2是处理腔室100的示意俯视图,其中UV源130与可透过UV光的窗口 114被移除。箭头示出从输入岐管144到气体空间128的流动路径。
[0041]图3A是上夹持构件Il8的示意性部分透视图,此图以虚线示出气体通道。图3B是从不同角度观察的上夹持构件118的示意性部分透视图。上夹持构件118包括环形主体304、凸缘302和下台阶306,凸缘302从环形主体304的上部304u径向向外延伸,下台阶306从环形主体304的下部304L径向向内延伸。凸缘302允许上夹持构件118安装在具有圆形顶部开口的腔室主体上。台阶306具有顶表面308,用以支撑在所述顶表面308中的开□。
[0042]馈送槽152被形成在凸缘302中且向凸缘302的外表面312开放。沟槽176从台阶306的底表面310被形成。垂直槽158将馈送槽152连接到沟槽176。多个辐状孔162被形成在台阶306中,介于台阶306的内表面314与沟槽176的内壁316之间。在处理期间,处理气体进入馈送槽152,通过垂直槽158,在沟槽176中扩张,并接着流动通过所述多个辐状孔162。在一个实施例中,馈送槽152与垂直槽158在垂直于流动的方向上被伸长,以增加上夹持构件118内的流动通道的大小。通过增加馈送槽152与垂直槽158的大小,可减少气体流中的压降。
[0043]在一个实施例中,可在沟槽176中形成两个或多个柱318。所述这些柱318用于接附下夹持构件120。
[0044]图4是图示下夹持构件120在柱318处通过一个或更多个螺钉402被接附到上夹持构件118的示意性部分剖视图。图4还图示出进口充气增压室160通过使上夹持构件118与下夹持构件120的沟槽176、178匹配来形成。通过包括上夹持构件118与下夹持构件120的空间,增加了进口充气增压室160的空间,而不会改变腔室部件的其它尺寸。所增加的进口充气增压室160的空间在处理期间进一步减少流动路径中的压降。
[0045]如上所讨论地,处理腔室100能够执行化学或表面处理以及UV处理。例如,在图1所示的实施例中,可通过将来自UV源130的UV能量输送通过可透过UV光的窗口 114与可透过UV光的气体分配喷头116来对设置在处理空间122上的基板110执行UV处理。
[0046]可通过从气体板140供应一种或更多种处理气体通过包括可透过UV光的气体分配喷头116的流动路径到处理空间122,来对设置在处理空间122中的基板110执行化学处理。在图1所示的实施例中,流动路径包括等离子体通道156、输入岐管144中的内部通道146、馈送槽152、垂直槽158、进口充气增压室160、多个辐状孔162、气体空间128以及可透过UV光的气体分配喷头116中的多个通孔164。可透过UV光的气体分配喷头116与可透过UV光的窗口 114不仅对于UV波长内的光是基本上可透过的,而且对于处理气体中的化学作用(chemistry)也具有抵抗性。
[0047]图5A是根据本发明的一个实施例的可透过UV光的气体分配喷头500的部分剖视图。可透过UV光的气体分配喷头500对于UV波长内的光是基本上可透过的,并且可抵抗对包括卤素(诸如氟)或臭氧的化学组成的处理。可透过UV光的气体分配喷头500可被用来取代处理腔室100中的可透过UV光的气体分配喷头116。
[0048]可透过UV光的气体分配喷头500包括主体502。主体502可成形为基本上类似圆盘,所述圆盘具有基本上彼此平行的上表面508与下表面510。多个通孔506被形成通过主体502。通孔506向上表面508与下表面510开放,并且配置为允许处理气体均匀地被分配通过主体502。主体502由从对于UV波长内的光为基本上可透过的材料来形成。在一个实施例中,主体502由石英形成。
[0049]可透过UV光的气体分配喷头500还包括涂层504,涂层504覆盖上表面508、下表面510以及形成多个通孔506的内表面512。涂层504保护主体502,而使主体502免于被通过通孔506的处理气体损坏,而不会阻挡UV波长。在一个实施例中,涂层504可抵抗对包括卤素(诸如氟)或臭氧的化学组成的处理。涂层504可包含氧氮化铝、蓝宝石(sapphire)或其它合适的材料。可使用普通的沉积技术(诸如化学气相沉积、物理气相沉积、喷涂)将涂层504沉积在主体502上。可选择涂层504的厚度,以使涂层504的厚度厚到足以提供对主体502的保护,而不会影响主体502的UV透光性。在一个实施例中,涂层504是通过化学气相沉积或物理气相沉积形成的厚度达到约500微米的氧氮化铝膜。
[0050]图5B是根据本发明的一个实施例的可透过UV光的窗口 520的部分剖视图。类似于可透过UV光的气体分配喷头500,可透过UV光的窗口 520对于UV波长内的光也基本上是可透过的,并且可抵抗对包括卤素(诸如氟)或臭氧的化学组成的处理。可透过UV光的气体分配喷头500可被用来取代处理腔室100中的可透过UV光的气体分配喷头116。
[0051]可透过UV光的窗口 520包括由可透过UV光的材料形成的主体522以及被形成在至少主体522的下表面526上的涂层524。主体522可由任何可透过UV光的材料形成。在一个实施例中,主体522由石英形成。当暴露于处理气体时,涂层524保护主体522免于损坏。在一个实施例中,涂层524可抵抗对包括卤素(诸如氟)或臭氧的化学组成的处理。涂层524包括氧氮化铝、蓝宝石或其它合适的材料。可使用普通的沉积技术(诸如化学气相沉积、物理气相沉积、喷涂)将涂层524沉积在主体522上。可选择涂层524的厚度,以使涂层524的厚度厚到足以提供对主体522的保护,而不会影响主体522的UV透光性。在一个实施例中,涂层524是通过化学气相沉积或物理气相沉积形成的厚度达到约500微米的氧氮化铝膜。
[0052]图6是根据本发明的一个实施例的双空间处理腔室600的剖视图。图7是双空间处理腔室600的俯视图。双空间处理腔室600包括两个处理腔室600a、600b,所述两个处理腔室600a、600b基本上类似于图1的处理腔室100。
[0053]处理腔室600a、600b共享腔室主体602和腔室盖604。处理腔室600a、600b是彼
此绕着中央平面628的镜像。
[0054]处理腔室600a界定用于处理单一基板的处理空间624。处理腔室600a包括可透过UV光的窗口 616和设置在处理空间624上方的可透过UV光的气体分配喷头620。处理腔室600b界定用于处理单一基板的处理空间626。处理腔室600b包括可透过UV光的窗口618和设置在处理空间626上方的可透过UV光的气体分配喷头622。
[0055]处理腔室600a、600b共享远程等离子体源606、气体板608和真空泵610。处理腔室600a经由输入岐管612耦接到远程等离子体源606和气体板608,并且处理腔室600b经由输入岐管614稱接到远程等离子体源606和气体板608。输入岐管612、614可定位成使得输入岐管612、614到远程等离子体源606之间的距离能被最小化,从而在等离子体中的自由基流动到处理空间624、626的同时减少了等离子体中自由基被再结合。在一个实施例中,输入岐管612、614定位在与水平线630呈角度α的位置处。在一个实施例中,角度α约为45度。
[0056]图8是根据本发明的一个实施例的处理系统800的示意平面图。处理系统800包括一个或更多个双空间处理腔室600。
[0057]处理系统800包括真空密封的处理平台804、工厂界面812以及系统控制器810。平台804包括多个双空间处理腔室822、824、826以及负载闭锁腔室816,双空间处理腔室822、824、826以及负载闭锁腔室816耦接至传送腔室802。在一个实施例中,传送腔室802可具有四个边806。各个边806配置为与双空间处理腔室600或负载闭锁腔室816连接。三个双空间处理腔室822、824、826耦接到传送腔室802的三个边806,如图8所示。
[0058]工厂界面812透过双负载闭锁腔室816耦接至传送腔室802。在一个实施例中,工厂界面812包括至少一个对接站(docking station) 814与至少一个工厂界面机械手820,以便于基板的传送。对接站814配置为接受一个或更多个前开式整合舱(F0UP)818。
[0059]双空间处理腔室822、824、826中的每一个分别包括并排(side by side)定位的两个处理空间822a、822b、824a、824b、826a、826b。双空间处理腔室822、824、826中的每一个配置为同时地处理两个基板。基板传送机械手808包括并排排列的两个机械手叶片808a、808b,以用于在双空间处理腔室822、824、826和负载闭锁腔室816之间传送两个基板。此双空间配置提高了生产率,而不会增加每个处理腔室的资源(诸如基板传送机械手)和气体板。
[0060]在一个实施例中,双空间处理腔室822、824、826可具有不同配置,以执行处理方法(processing recipe)中的不同处理步骤。或者,双空间处理腔室822、824、826可具有相同配置,以执行对基板的相同处理。
[0061]在一个实施例中,双空间处理腔室822、824、826中的至少一个基本上类似于双空间处理腔室600,并且配置为通过接续地、替代地或同时地执行对基板的UV处理和化学处理来同时地在两个处理空间中处理两个基板。
[0062]图9是不出用于根据本发明的一个实施例处理基板的方法900的图。方法900可在独立的处理腔室(诸如图1的处理腔室100、图6的双空间处理腔室600)中执行或在耦接到处理系统(诸如图8的处理系统800或包括有图1的单一空间处理腔室100的处理系统)的处理腔室中执行。
[0063]方法900配置为在相同的处理腔室内使用UV处理与化学处理来修复低k介电材料。
[0064]例如,方法900可用于执行通过等离子体增强化学气相沉积来形成的基于SiCOH材料的低k介电膜的一次修复(one stop recovery)。具体地,气相娃烧化与固化被结合来修复低k膜性质与修补侧壁损坏。在气相硅烷化中,含甲基或苯基的硅烷化化合物会与低k膜中的S1-OH基团反应,而将亲水性S1-OH基团转变成疏水性S1-O-Si (CH3)3基团抵抗湿气上升,因此降低了介电常数。在UV固化中,通过固化将低k膜中的孔隙予以密封。
[0065]在方法900的方块910中,基板在基板支撑件上被接收,其中所述基板支撑件设置在处理腔室的处理空间中。在一个实施例中,处理空间设置在可透过UV光的气体分配喷头下方,可透过UV光的气体分配喷头对于UV波长内的光基本可透过。可透过UV光的气体分配喷头允许用于化学处理的处理气体以基本上均匀的方式被分配在整个基板。可透过UV光的气体分配喷头还允许UV光的通过,以使得处理空间中的基板的UV固化成为可能。
[0066]在方法900的方块920中,通过使来自基板上方的可透过UV光的气体分配喷头的一种或更多种处理气体流动,以执行化学处理。在一个实施例中,从可透过UV光的窗口与可透过UV光的气体分配喷头之间的区域透过可透过UV光的气体分配喷头朝向基板输送所述一种或更多种处理气体。
[0067]在一个实施例中,化学处理是使用娃烧化试剂的气相娃烧化,其中所述娃烧化试剂选自包含六甲基二硅氮烷(HMDS)、四甲基二硅氮烷(TMDS)、三甲基氯硅烷(TMCS)、二甲基二氯硅烷(DMDCS)、甲基三氯硅烷(MTCS)、甲基三氯硅烷(MTCS)、三甲基甲氧基硅烷(TMMS)、苯基三甲氧基硅烷(PTMOS)、苯基二甲基氯硅烷(PDMCS)、二甲基氨基三甲基硅烷(DMATMS)、双(二甲基氨基)二甲基硅烷(BDMADMS)或上述化学物的组合的群组。在一个实施例中,气相硅烷化的时段可从约I分钟至约10分钟。硅烷化温度可从约100°C至约4000C。硅烷化试剂的流速可介于约0.5g/min (克/分钟)到约5g/min之间,并且腔室压力可介于约2mTorr与约500Torr之间。
[0068]在方法900的方块930中,使用来自设置在可透过UV光的气体分配喷头与可透过UV光的窗口上方的UV单元的UV能量将基板在相同的处理腔室中固化。在一个实施例中,UV固化温度可从室温至约400°C。UV固化时间可从约10秒至约180秒。可使UV固化气体透过可透过UV光的气体分配喷头流动到处理腔室。在一个实施例中,可以介于约Sslm到约24slm之间的流速使惰性固化气体(诸如He与Ar)流动到处理腔室。
[0069]在另一个实施例中,可同时地执行在方块920中的硅烷化和在方块930中的UV固化。UV单元在与硅烷化工艺相同的时间点开启/关闭。硅烷化试剂流速、UV功率、晶圆温度、硅烷化和UV固化工艺的腔室压力、硅烷化时间以及UV开启时间是可调整的。
[0070]在另一个实施例中,可在方块920中的硅烷化处理之前执行在方块930中的UV固化。
[0071]在另一个实施例中,可交替地执行在方块930中的UV固化和在方块920中的硅烷化。首先,执行UV固化,以从表面/侧壁移除一些水。执行硅烷化,以修复表面疏水性。接着,执行UV固化,以进一步修复低k膜损坏。硅烷化试剂流速、UV功率、晶圆温度、硅烷化和UV固化工艺的腔室压力、硅烷化时间以及UV开启时间是可调整的。
[0072]在又一个实施例中,以脉冲化原位方式(pulsed in_situ manner)来执行在方块920中的硅烷化以及在方块930中的UV固化。以约5-10秒的脉冲来执行硅烷化处理,接着进行约5-10秒的脉冲的UV固化。
[0073]本发明的实施例提供用于在单一腔室中执行化学处理和UV固化以进行低k膜修复的设备与方法。本发明的实施例还使得通过包括远程等离子体源的UV固化腔室的等离子体清洁成为可能。因此,通过减少所使用的腔室的数量而减少生产成本。通过去除基板传送和额外的腔室泵送,提高了生产效率。此外,本发明的实施例还使得在最小空间内并入各种处理特征与功能成为可能,从而实现了在制造环境中对k修复的符合成本效益的实施。
[0074]尽管上述说明针对的是本发明的实施例,但仍可在不背离本发明的基本范围的情况下设想出本发明的其它与进一步的实施例,并且本发明的范围由随附的权利要求书决定。
【权利要求】
1.一种处理腔室,包含: 腔室主体,所述腔室主体界定内部空间; 基板支撑件,所述基板支撑件设置在所述内部空间中; 可透过UV光的气体分配喷头,所述可透过UV光的气体分配喷头设置在所述基板支撑件上方; 可透过UV光的窗口,所述可透过UV光的窗口设置在所述可透过UV光的气体分配喷头上方,其中在所述可透过UV光的气体分配喷头与所述可透过UV光的窗口之间形成气体空间,并且所述气体空间与所述内部空间透过所述可透过UV光的气体分配喷头而流体连通;及 UV单元,所述UV单元设置在所述可透过UV光的窗口外面,其中所述UV单元配置为将UV光朝向所述基板支撑件而引导通过所述可透过UV光的窗口与所述可透过UV光的气体分配喷头。
2.如权利要求1所述的处理腔室,其特征在于,所述可透过UV光的气体分配喷头包含: 主体,所述主体由基本上可透过UV光的材料形成;及 涂层,所述涂层配置为保护所述主体,而使所述主体免于暴露于流动通过所述可透过UV光的气体分配喷头的处理气体。
3.如权利要求2所述的处理腔室,其特征在于,所述主体由石英形成。
4.如权利要求3所述的处 理腔室,其特征在于,所述涂层包含氧氮化铝膜或蓝宝石。
5.如权利要求1所述的处理腔室,其特征在于,所述可透过UV光的窗口包含: 主体,所述主体由石英形成 '及 涂层,所述涂层配置为保护所述主体,而使所述主体免于暴露于所述气体空间中的处理气体。
6.如权利要求1所述的处理腔室,其特征在于,所述处理腔室还包含: 夹持构件,所述夹持构件设置在所述腔室主体的上开口中,其中所述夹持构件设置在所述可透过UV光的气体分配喷头与所述可透过UV光的窗口之间,并且在所述夹持构件内形成气体流动路径。
7.如权利要求6所述的处理腔室,其特征在于,所述夹持构件具有: 环形主体; 凸缘,所述凸缘从所述环形主体的上部径向地向外延伸,其中所述凸缘耦接到所述腔室主体 '及 台阶,所述台阶从所述环形主体的下部径向地向内延伸,其中所述可透过UV光的气体分配喷头设置在所述台阶的顶表面上。
8.如权利要求7所述的处理腔室,其特征在于,所述气体流动路径包括: 水平槽,所述水平槽被形成在所述凸缘中,其中所述水平槽在所述凸缘的外表面处开放; 垂直槽,所述垂直槽被形成在所述环形主体中,其中所述垂直槽在上端处连接到所述水平槽; 充气增压室,所述充气增压室被形成在所述环形主体的所述下部中,其中所述垂直槽的下端向所述充气增压室开放;及 多个辐状孔,所述多个辐状孔被形成通过所述台阶,其中所述多个辐状孔中的每一个都具有向所述充气增压室开放的第一端和向所述台阶的内表面开放的第二端。
9.如权利要求7所述的处理腔室,其特征在于,所述处理腔室还包含: 输入岐管,所述输入岐管耦接到所述夹持构件,其中所述输入岐管的出口连接到形成在所述夹持构件中的所述气体流动路径; 远程等离子体源,所述远程等离子体源连接到所述输入岐管;及 气体板,所述气体板连接到所述输入岐管。
10.一种处理系统,包含: 传送腔室,所述传送腔室界定传送空间; 基板传送机械手,所述基板传送机械手设置在所述传送空间中;及双空间处理腔室,所述双空间处理腔室耦接到所述传送腔室,其中所述双空间处理腔室包含: 根据权利要求1 一 9中任一项所述的第一处理腔室;和 根据权利要求1 一 9中任一项所述的第二处理腔室。
11.如权利要求10所述的系统,其特征在于,所述第一处理腔室和第二处理腔室中的流动路径是彼此的镜像。
12.一种用于处理基板的方法,所述方法包含以下步骤: 在基板支撑件上接收基板,所述基板支撑件设置在根据权利要求1 一 9中任一项所述的处理腔室的内部空间中; 通过使一种或更多种处理气体从气体空间流动通过所述可透过UV光的气体分配喷头,来化学地处理所述基板,所述气体空间被界定在所述可透过UV光的窗口与所述可透过UV光的气体分配喷头之间;及 通过将UV能量从所述UV单元朝向所述基板而引导通过所述可透过UV光的气体分配喷头与所述可透过UV光的窗口,从而固化所述基板。
13.如权利要求12所述的方法,其特征在于,化学地处理所述基板的步骤包含以下步骤: 使包含硅烷化试剂的一种或更多种处理气体流动,用以化学地处理形成在所述基板上的低k膜。
14.如权利要求13所述的方法,其特征在于,同时地执行所述化学处理与所述固化。
15.如权利要求13所述的方法,其特征在于,在所述固化之前执行所述化学处理。
【文档编号】H01L21/31GK103493185SQ201280017230
【公开日】2014年1月1日 申请日期:2012年4月5日 优先权日:2011年4月8日
【发明者】A·班塞尔, D·R·杜鲍斯, J·C·罗查-阿尔瓦雷斯, S·巴录佳, S·A·亨德里克森, T·诺瓦克 申请人:应用材料公司