基于压电效应和声光移频的双纵模激光器互锁方法和装置制造方法
【专利摘要】基于压电效应和声光移频的双纵模激光器互锁方法和装置属于激光应用【技术领域】,本发明采用声光移频技术将多台基于腔长压电调节的双纵模激光器的输出激光频率锁定于同一台参考双纵模稳频激光器的输出激光频率上,从而使所有激光器输出激光具有统一的频率值,目的是解决传统稳频激光器相互之间的频率一致性较低的不足,为超精密激光干涉测量提供一种新型的激光光源。
【专利说明】基于压电效应和声光移频的双纵模激光器互锁方法和装置
【技术领域】
[0001] 本发明属于激光应用【技术领域】,特别是一种基于压电效应和声光移频的双纵模激 光器互锁方法及其装置。
【背景技术】
[0002] 近年来,以光刻机和数控机床为代表的超精密测量与加工技术朝着大尺度、高精 度、多空间自由度同步测量方向发展,对激光干涉测量系统的总激光功率消耗急剧增加,远 超过单台稳频激光器的输出激光功率,因此需要同时采用多台稳频激光器进行组合测量。 然而,不同稳频激光器在相对频率稳定度、激光波长值、波长漂移方向等方面存在差异,这 将带来激光干涉测量系统不同空间自由度的测量精度、波长基准和空间坐标不一致的问 题,从而影响整个多维激光干涉测量系统的综合测量精度。为了保证激光干涉测量系统的 综合测量精度,要求组合使用的多台稳频激光器的频率一致性要达到1〇_ 8,因此稳频激光器 之间的频率一致性已经成为超精密测量与加工技术发展亟需解决的关键问题之一。
[0003] 目前应用于激光干涉测量系统的稳频激光光源主要有双纵模稳频激光器、横向塞 曼稳频激光器和纵向塞曼激光器等,这类激光器在稳频基准上以激光增益曲线的中心频率 作为稳频控制的参考频率,而激光增益曲线的中心频率随工作气体气压和放电条件而改 变,且多台稳频激光器在物理参数上无法做到高度一致,故其稳频控制的参考频率存在差 异,从而导致多台稳频激光器输出激光的频率一致性较低,只能到达1〇_ 6?1〇_7。
[0004] 为了解决稳频激光器之间的频率一致性较差的问题,哈尔滨工业大学提出一 种双纵模激光器偏频锁定方法(中国专利申请号CN200910072517、CN200910072518、 CN200910072519和CN200910072523),该方法以一台碘稳频激光器或双纵模激光器输出激 光的频率作为基准,其余多台双纵模激光器相对于基准频率偏移一定的数值进行锁定,从 而使多台双纵模激光器的输出激光具有相同的波长(频率),但是该方法在激光频率的锁定 过程中,需要调整激光器的内部工作参数,一方面由于调整的方式属于间接调整,系统的响 应速度相对比较迟缓,另一方面由于每个激光器的特性参数存在一定差异,激光器内部工 作参数的改变可能会对激光的频率稳定度产生不良影响,严重的情况甚至会导致激光器失 锁。
【发明内容】
[0005] 针对现有技术存在的不足,本发明提出一种基于压电效应和声光移频的双纵模激 光器互锁方法,其目的是结合声光移频器的移频特性和压电陶瓷稳频的双纵模稳频激光器 的优点,为超精密加工与测量技术提供一种波长一致性优良的激光光源。本发明还提供了 一种基于压电效应和声光移频的双纵模激光器互锁装置。
[0006] 本发明的目的通过以下技术方案实现: 一种基于压电效应和声光移频的双纵模激光器互锁方法,该方法包括以下步骤: (1)开启参考双纵模稳频激光器的电源,经过预热和稳频过程后,激光器输出正交偏 振的两个纵模光,利用偏振分光镜分离出其中一个纵模光作为参考双纵模稳频激光器的输 出光,其光波频率记为Vp此输出光由光纤分束器分离成η彡1路,记为光束Xi(i=l,2,… ,η),分别作为双纵模激光器Q (i=l,2,…,η)频率锁定的参考光束; (2) 开启双纵模激光器Li(i=l,2, ···,!〇的电源,稳频控制模块根据稳频控制算法输出 一预设电压值,该电压施加在激光器内部激光管副输出端的环形压电陶瓷上,使环形压电 陶瓷的长度在激光管轴向上发生微小变化,以调整安装在环形压电陶瓷上的腔镜在激光管 轴向的位置,进而调整激光管的腔长,使激光管主输出端和副输出端的激光包括正交偏振 的两个纵模光; (3) 利用渥拉斯顿棱镜将双纵模激光器Q (i=l,2,…,η)内部激光管副输出端的正交 偏振的两个纵模光分离,其光功率P/(i=l,2,…,η)和Ρ/(i=l,2,…,η)由二象限光电探 测器测量得出,稳频控制模块计算出两个纵模光的功率之差APeP^-P^ailj,…,η), 并根据APiaij,···,!!)的正负和大小调整施加在环形压电陶瓷上的电压值大小,使 Λ Pi (i=l,2,…,η)趋于零,进而使激光的频率趋于稳定数值; (4) 利用偏振分光镜分离出激光管主输出端激光中的一个纵模光,记为光束 ?\ (i=l,2,…,η),其频率记为ν i (i=l,2,…,η),光束凡(i=l,2,…,η)分别进入驱动频率为 (i=l,2,…,η)的声光移频器Si (i=l,2,…,η)进行移频,其对应的输出激光的频率记为 ν i+ (i=l,2,…,η),此激光再由分光镜分为强度比为9:1的两部分光,其中强度相对较大 的部分光记为光束Zi (i=l,2,…,η),分别作为双纵模激光器Q (i=l,2,…,η)的输出激光, 强度相对较小的部分光记为光束Yi (i=l,2,…,η); (5) 将光束Xi(i=l,2, ···,!〇分别与光束Yi(i=l,2, ···,!〇进行光学混频形成光学 拍频信号,利用光电探测器将光学拍频信号转换为电信号,其频率值4^=^+/;-v Ji=l,2,…,η)由频率测量模块测得,频率调整模块根据测量得到的光学拍频信号的频 率值Λ Vi(i=l,2,…,η),计算得出光束Xi(i=l,2, "·,η)和Yi(i=l,2, "·,η)的频率差值\ -ν - Λ ν i (i=l,2,…,η),并将声光移频器Si (i=l,2,…,η)的驱动频率(i=l,2,… ,n)调整为\ - Vi(i=l,2,…,n),从而使光束2^1=1,2,···,!!)的频率等于参考光束 Xi (i=l,2,…,η)的频率,即 v,/;= v r (i=l,2,…,η); (6) 循环重复步骤(4)到(5),通过调整声光移频器Siaij,···,!!)的工作频率 /;(1=1,2, ···,!!),使双纵模激光器Q (i=l,2, ···,!!)的输出激光Zi(i=l,2, ···,!!)的频率始终 锁定于同一频率值V!·。
[0007] -种基于压电效应和声光移频的双纵模激光器互锁装置,包括激光器电源A、稳 频状态指示灯、参考双纵模稳频激光器、偏振分光镜A、光纤分束器,该装置中还包括η > 1 个结构相同、呈并联关系的双纵模激光器(U, L2,···,Ln),其中每一个双纵模激光器(Lp L2,…,L n)的装配结构是:激光器电源B与激光管连接,环形压电陶瓷安装在激光管的副输 出端,其输入端接稳频控制模块,腔镜安装在环形压电陶瓷上,激光管温度传感器贴在激光 管外壁上,其输出端接稳频控制模块,环境温度传感器与稳频控制模块连接,渥拉斯顿棱镜 放置在激光管副输出端后,其后放置二象限光电探测器,二象限光电探测器的输出端与稳 频控制模块连接,偏振分光镜B放置在激光管主输出端前,其后放置声光移频器,分光镜放 置在声光移频器与光纤合束器的一个输入端之间,光纤合束器的另一个输入端与光纤分束 器的输出端之一连接,检偏器放置在光纤合束器的输出端与高速光电探测器之间,高速光 电探测器、频率测量模块、频率调整模块、声光移频器依次连接,锁频状态指示灯与频率调 整模块连接。
[0008] 本发明具有以下特点及良好效果: (1)本发明采用声光移频器对多个双纵模激光器进行并联频率锁定,所有双纵模稳频 激光器输出激光具有统一的频率值,由于声光移频器极高的频率调节分辨力,多个激光器 的频率一致性可高达到1〇_9,比现有方法提高一到两个数量级,这是区别于现有技术的创新 点之一。
[0009] (2)本发明采用声光移频器对多个双纵模激光器进行并联频率锁定,由于声光移 频器较高的频率调整响应速度,可有效抑制外界干扰因素引起的激光波长漂移和跃变,从 而提高了光源的稳定性和环境适用性,这是区别于现有技术的创新点之二。
[0010] (3)本发明采用声光移频器对多个双纵模激光器进行并联频率锁定,由于激光器 最终输出激光的频率调整方式对于激光器内部激光管而言,属于一种外部调整方法,因此 不会对激光管的稳频控制机制产生不良影响,有利于提高系统的稳定性和频率稳定精度, 这是区别于现有技术的创新点之三。
[0011] (4)本发明采用环形压电陶瓷对激光管腔长进行调节,与热稳频等其它间接调节 方法相比,本发明方法属于直接调节方法,因而稳频系统具有非常迅速的响应速度,另外由 于压电陶瓷器件优异的机械稳定性,有助于提高激光稳频的精度,这是区别于现有技术的 创新点之四。
【专利附图】
【附图说明】
[0012] 图1为本发明装置的原理示意图 图2为本发明装置中双纵模激光器稳频结构的示意图 图3为本发明装置中双纵模激光器稳频过程的闭环控制功能框图 图4为本发明装置中双纵模激光器频率锁定过程的闭环控制功能框图 图中,1激光器电源A、2稳频状态指Tjv灯、3参考双纵模稳频激光器、4偏振分光镜A、5 光纤分束器,6激光管、7渥拉斯顿棱镜、8二象限光电探测器、9稳频控制模块、10激光管温 度传感器、11压电陶瓷、12腔镜、13环境温度传感器、14激光器电源B、15偏振分光镜B、16 声光移频器、17分光镜、18光纤合束器、19检偏器、20高速光电探测器、21频率测量模块、22 频率调整模块、23锁频状态指示灯。
【具体实施方式】
[0013] 以下结合附图对本发明的实施实例进行详细的描述。
[0014] 如图1和图2所示,本发明装置中基于压电效应和声光移频的双纵模激光器互锁 装置,包括激光器电源A1、稳频状态指7JV灯2、参考双纵模稳频激光器3、偏振分光镜A4、光 纤分束器5,其特征在于装置中还包括η > 1个结构相同、呈并联关系的双纵模激光器(U, L2,…,Ln),其中每一个双纵模激光器(Lp L2,…,Ln)的装配结构是:激光器电源B14与激 光管6连接,环形压电陶瓷11安装在激光管6的副输出端,其输入端接稳频控制模块9,腔 镜12安装在环形压电陶瓷11上,激光管温度传感器10贴在激光管6外壁上,其输出端接 稳频控制模块9,环境温度传感器13与稳频控制模块9连接,渥拉斯顿棱镜7放置在激光管 6副输出端后,其后放置二象限光电探测器8,二象限光电探测器8的输出端与稳频控制模 块9连接,偏振分光镜B15放置在激光管6主输出端前,其后放置声光移频器16,分光镜17 放置在声光移频器16与光纤合束器18的一个输入端之间,光纤合束器18的另一个输入端 与光纤分束器5的输出端之一连接,检偏器19放置在光纤合束器18的输出端与高速光电 探测器20之间,高速光电探测器20、频率测量模块21、频率调整模块22、声光移频器16依 次连接,锁频状态指示灯23与频率调整模块22连接。
[0015] 由于装置中包括多个结构相同的双纵模稳频激光器1^,L2,…,Ln,这些双纵模稳 频激光器的工作过程完全一致,以下仅对其中一个双纵模稳频激光器U进行工作过程描 述,这些描述文字同样适用于装置中的其它同类双纵模稳频激光器。
[0016] 开始工作时,开启激光器电源A1,参考双纵模稳频激光器3进入预热和稳频过程, 当上述过程完成时,使能稳频状态指示灯2,表示参考双纵模稳频激光器3进入稳定工作 状态,其输出激光包括偏振方向互相正交的两个纵模光,利用偏振分光镜A4取出其中一个 纵模光作为输出光,并耦合进入光纤分束器5,被分离成η路频率基准光束,记为光束Χρ Χ2,…,Χη,其频率记为作为双纵模激光器Lp L2,…,、频率锁定的参考频率。
[0017] 稳频状态指示灯2使能的同时,开启激光管电源B14,稳频控制模块9根据稳频控 制算法输出一预设电压值,该电压施加在双纵模稳频激光器U内部激光管6副输出端的环 形压电陶瓷11上,使环形压电陶瓷的长度在激光管6轴向上发生微小变化,以调整安装在 环形压电陶瓷上的腔镜12在激光管6轴向的位置,进而调整激光管6的腔长,使激光管6 主输出端和副输出端的激光均包括正交偏振的两个纵模光。利用渥拉斯顿棱镜7将激光管 6副输出端输出的两个纵模光分离,其光功率P/和P/由二象限光电探测器8测得,将两个 纵模的功率之差Λ P= P/ - P/作为如图3所示的稳频闭环控制系统的反馈输入量,参考输 入量设置为零,稳频控制模块9计算出参考输入量与反馈输入量的差值,并根据稳频控制 算法调整施加在环形压电陶瓷上的电压值的大小,进而调整激光管6的谐振腔长,使两个 纵模光的功率Ρ/= ΡΛ此时两个纵模光的频率也趋于稳定数值。
[0018] 稳频过程结束后,激光器Li进入频率锁定过程,激光管6主输出端输出的双模激 光由偏振分光镜B15分离出其中一个纵模光,作为声光移频器16的输入光,其频率记为 ^,声光移频器16的工作频率记为/;,由于声光相互作用,声光移频器16输出激光的频率 为v ,该光束再通过分光镜17分离为强度为9:1两部分光,其中强度相对较大的部分光 记为光束Zi,作为双纵模激光器Q的输出激光,强度相对较小的部分光记为光束Yi,该光束 与光束\由光纤合束器18 f禹合进入光纤合成为一束同轴光束,该同轴光束通过检偏器19 后形成光学拍频信号,经高速光电探测器20进行光电转换后,其频率值Λ Vl=Vl+/;- \ 由频率测量模块21测量得到,并作为如图4所示的频率锁定闭环控制系统的反馈输入量, 参考输入量设置为零,频率调整模块22根据二者的差值Λ Vl,计算得出光束Xi与光束Yi 的频率差值为\ Λ Vl,并将声光移频器16的驱动频率调整为\ - Vl,从 而使激光器U输出光束Zi的频率(光束Zi与光束Yi同频率)等于参考光束Xi的频率v p 当上述频率锁定过程完成后,频率调整模块22使能锁频状态指示灯23。
[0019] 当外界环境变化或其它因素导致参考双纵模稳频激光器3或者双纵模激光器U 输出激光的频率发生变化时,自动循环上述稳频锁定过程,通过调整声光移频器16的工作 频率/;,使双纵模激光器U输出激光的频率v i始终锁定于参考频率v p同理,双纵模激 光器L2,L3,…,Ln输出激光的频率〃2,v 3,…,\也始终锁定在参考频率\上。
【权利要求】
1. 一种基于压电效应和声光移频的双纵模激光器互锁方法,其特征在于该方法包括以 下步骤: (1) 开启参考双纵模稳频激光器的电源,经过预热和稳频过程后,激光器输出正交偏 振的两个纵模光,利用偏振分光镜分离出其中一个纵模光作为参考双纵模稳频激光器的输 出光,其光波频率记为Vp此输出光由光纤分束器分离成η彡1路,记为光束Xi(i=l,2,… ,η),分别作为双纵模激光器Q (i=l,2,…,η)频率锁定的参考光束; (2) 开启双纵模激光器Li(i=l,2, ···,!〇的电源,稳频控制模块根据稳频控制算法输出 一预设电压值,该电压施加在激光器内部激光管副输出端的环形压电陶瓷上,使环形压电 陶瓷的长度在激光管轴向上发生微小变化,以调整安装在环形压电陶瓷上的腔镜在激光管 轴向的位置,进而调整激光管的腔长,使激光管主输出端和副输出端的激光包括正交偏振 的两个纵模光; (3) 利用渥拉斯顿棱镜将双纵模激光器Q (i=l,2,…,η)内部激光管副输出端的正交 偏振的两个纵模光分离,其光功率P/(i=l,2,…,η)和Ρ/(i=l,2,…,η)由二象限光电探 测器测量得出,稳频控制模块计算出两个纵模光的功率之差APeP^-P^ailj,…,η), 并根据APiaij,···,!!)的正负和大小调整施加在环形压电陶瓷上的电压值大小,使 Λ Pi (i=l,2,…,η)趋于零,进而使激光的频率趋于稳定数值; (4) 利用偏振分光镜分离出激光管主输出端激光中的一个纵模光,记为光束 ?\ (i=l,2,…,η),其频率记为ν i (i=l,2,…,η),光束凡(i=l,2,…,η)分别进入驱动频率为 (i=l,2,…,η)的声光移频器Si (i=l,2,…,η)进行移频,其对应的输出激光的频率记为 ν i+ (i=l,2,…,η),此激光再由分光镜分为强度比为9:1的两部分光,其中强度相对较大 的部分光记为光束Zi (i=l,2,…,η),分别作为双纵模激光器Q (i=l,2,…,η)的输出激光, 强度相对较小的部分光记为光束Yi (i=l,2,…,η); (5) 将光束Xi(i=l,2, ···,!〇分别与光束Yi(i=l,2, ···,!〇进行光学混频形成光学 拍频信号,利用光电探测器将光学拍频信号转换为电信号,其频率值4^=^+/;-vji=l,2, ···,!!)由频率测量模块测得,频率调整模块根据测量得到的光学拍频信号的 频率值Λ ^(^^,…,。,计算得出光束父^^^^^"和丫"^^^^"的频率 差值Λ Vi(i=l,2,…,η),并将声光移频器5力=1,2,···,!!)的驱动频率 /;(i=l,2,…,η)调整为- ν ^1=1,2,…,η),从而使光束Zi (i=l, 2,…,η)的频率等于参 考光束Xi(i=l,2,···,n)的频率,即vi+/ i=Vr(i=l,2,···,n); (6) 循环重复步骤(4)到(5),通过调整声光移频器Siaij,···,!!)的工作频率 /;(1=1,2, ···,!!),使双纵模激光器Q (i=l,2, ···,!!)的输出激光Zi(i=l,2, ···,!!)的频率始终 锁定于同一频率值V!·。
2. -种基于压电效应和声光移频的双纵模激光器互锁装置,包括激光器电源A (1)、稳 频状态指示灯(2 )、参考双纵模稳频激光器(3 )、偏振分光镜A (4)、光纤分束器(5 ),其特征 在于装置中还包括η彡1个结构相同、呈并联关系的双纵模激光器(U,L2,…,Ln),其中每 一个双纵模激光器(U,L 2,…,Ln)的装配结构是:激光器电源B (14)与激光管(6)连接, 环形压电陶瓷(11)安装在激光管(6)的副输出端,其输入端接稳频控制模块(9),腔镜(12) 安装在环形压电陶瓷(11)上,激光管温度传感器(10)贴在激光管(6)外壁上,其输出端接 稳频控制模块(9 ),环境温度传感器(13 )与稳频控制模块(9 )连接,渥拉斯顿棱镜(7 )放置 在激光管(6)副输出端后,其后放置二象限光电探测器(8),二象限光电探测器(8)的输出 端与稳频控制模块(9)连接,偏振分光镜B (15)放置在激光管(6)主输出端前,其后放置 声光移频器(16),分光镜(17)放置在声光移频器(16)与光纤合束器(18)的一个输入端之 间,光纤合束器(18)的另一个输入端与光纤分束器(5)的输出端之一连接,检偏器(19)放 置在光纤合束器(18)的输出端与高速光电探测器(20)之间,高速光电探测器(20)、频率测 量模块(21 )、频率调整模块(22 )、声光移频器(16 )依次连接,锁频状态指示灯(23 )与频率 调整模块(22)连接。
【文档编号】H01S3/13GK104051947SQ201410308273
【公开日】2014年9月17日 申请日期:2014年7月1日 优先权日:2014年7月1日
【发明者】谭久彬, 付海金, 胡鹏程 申请人:哈尔滨工业大学