为非平面型半导体器件形成顶部接触的制作方法

文档序号:6799088阅读:187来源:国知局
专利名称:为非平面型半导体器件形成顶部接触的制作方法
技术领域
本发明一般涉及电子器件,更具体地说涉及为半导体或者其它电子芯片提供引线的装置和方法的改进。这里所说的器件一词是指所有采用这里所述的连接装置和引线的各种电子器件和集成电路,而不局限于以半导体为基底的器件。
在电子领域,特别是在半导体器件和电路领域,通常为主要进行信号处理的器件提供重量轻的引线,而为传输大电流的器件提供重引线。细引线的线焊接和金属箔片的接头片焊接为信号处理器件通常采用的典型技术。这种引线或箔片一般只传输微安或毫安级电流,其典型厚度只有一个密耳或几个密耳,它们经常直接焊接到器件的焊接区上。
对于传输较大电流的器件,例如,功率二极管和晶体管或集成电路,需要传输几安培到十几安培或几百安培的电流,所以焊到这种器件上的引线必须更坚固,通常采用厚度为几十到几百密耳粗的金属引线。经常借助于低温焊接(soledring)将这些引线焊到器件的焊接区域上。
当待连接的器件具有不规则的表面时,焊接这样的粗引线时要避免产生使成品率和可靠性下降的失效状态就变得更加困难了。例如,当采用掩膜和/或钝化介质制造功率半导体管芯时,其焊接区可能被外表面高于焊接区表面的凸起的介质部分地围绕。当将现有技术中通常采用的扁平引线焊到这样的焊接区上时,焊料的体积和扩展程度都很难控制,焊料变得更容易流到介质表面,焊料在芯片边缘形成的连通物会引起短路,使得器件不能工作或者丧失可靠性。因此,在对功率器件焊接粗引线时,仍然存在一个问题,这是因为在功率器件中,焊接区或其它连接点比相邻的表面低,例如,焊接区至少部分地被介质或不用来与引线接触的,相对于衬底表面比焊接区高的凸起的其它材料所包围。
因此,本发明的一个目的是提供一种改进的装置及方法,为焊接区或接触区相对于器件周围区域的至少部分外表面凹陷的器件焊接引线。
本发明的另一个目的是提供一种改进的装置及方法,为如上所述能够传输一安培或更大恒电流的半导体器件焊接引线。
本发明的再一个目的是提供一种改进的装置及方法,为如上所述需使用焊料进行焊接的器件焊接引线。
本发明的进一步目的是提供一种改进的装置及方法,为如上所述器件焊接引线,这种器件中管芯引线的间隙很紧凑,焊接区和引线焊接区的间隙充满焊料,以增强器件的冲击能力。
这里所用的焊料一词是指任何导电的焊接材料,这种材料在引线连接过程中的某一时间为半固态或者至少部分为液态。例如,常规的金属、金属合金、含环氧树脂的金属或其它导电塑料、玻璃及类似物。
通过本发明能够达到上述的和其它的目的及优点。本发明包括具有相对的第一和第二表面的管芯,其中第二表面上有一个至少部分地比管芯上相邻的上表面凹陷的焊接区;具有安置管芯用的第一部分和连接焊接区用的第二部分的电极装置,其中,第二部分至少部分地向着焊接区凹陷或弯曲;和为将至少部分地凹陷或弯曲的第二部分焊到焊接区上而不扩展到焊接区之外的上表面上所使用的导电附着材料。
上述的改进型电子器件可望通过下述步骤制成提供一个在其一个表面上具有凹陷焊接区的半导体管芯,提供一个具有管芯安置部分和凹陷或弯曲的焊接部分的引线装置,将管芯粘着到安置部分上,借助于导电材料将凹陷或弯曲的引线装置粘着到焊接区上,导电材料没有在水平方向上扩展到焊接区之外的器件表面上。两个粘着步骤需要同时进行。而且,这两个粘着步骤要求通过焊接来实现。在需要使管芯与安置部分绝缘的地方,将绝缘材料安放到中间。
以上所概述的发明和目的及优点通过考察下列附图及说明书将会得到更充分的理解。


图1A示出现有技术中的电子器件的一部分的局部剖面俯视图,图1B-C示出它的截面图;
图2A示出本发明第一实施例中电子器件的一部分的局部剖面俯视图,图2B为它的截面图;
图3A示出本发明另一实施例中电子器件的一部分的俯视图,图3B为它的截面图;
图4示出本发明再一实施例中电子器件的一部分的俯视图,图4B-D示出它的几个实施例的截面图。
图1A示出按照现有技术的电子器件10的一部分的局部剖面俯视图,图1B-C为它的截面图,第一电极12具有电子管芯(例如硅整流器芯片)16,管芯16是借助于固定装置20安置到电极上的。管芯16的另一面上具有接触区22,接触区22至少部分地与具有外表面23的凸起介质18相交界。管芯16的主体17可以是P型半导体区域,接触或焊接区22可以是N型半导体区域,于是在管芯16中就形成了PN结19。本领域普通技术人员应了解,用二极管作为管芯16仅仅是为了说明,本发明所涉及的并不是元件16的内部结构,元件16可以是一个二极管、电阻器、晶体管或者其它电子结构,不管它是半导体的或是其它材料的。为清楚起见,在截面图1B-4D中省略了管芯16中各区域的窗口,并且将焊料区域用点画方式表示。
接触区22可以是管芯16主体中在表面上暴露出的一个区域的一部分,或者是表面金属化区,或者可以是在器件主体之上或在器件介质层之上的传导引线的一个暴露部分。接触区22可以是掺杂半导体、金属、半金属、合金或它们的组合。该主体可以为半导体或绝缘体。至于本发明的重点,则涉及到的仅是接触区22相对于管芯16外表面的一个相邻部分为凹陷的情况,例如图1B中所示,与接触区22相邻的介质18的表面23比接触区22要高一些。
接触区22是借助例如焊料24等固定到引线装置14上的。由于在现有技术中引线14基本上是平的,除非精确控制焊料24的量和引线14的间隙,否则,焊料24将扩展到介质18的上表面层23上。由于为此目的所采用的焊料是变化的,并且由于引线14与接触区22之间的间隙也是变化的,所以,多余的焊料经常从接触区22和引线14之间被挤出,溢到介质层18的上表面23上,并覆盖管芯16的边缘,如图1C中的26所示。由于PN结19的短路等原因,能造成器件无法工作。既使焊料24没有扩展到使PN结19短路的程度,而仅仅流到介质18上表面23之上,这就会由于在沿着器件边缘从区域17到焊料24之间所产生的飞弧而降低击穿电压,进而给器件的可靠性带来不良影响。当焊料24沾润了引线14并渗入介质18和引线14之间小间隙时,这种短路和击穿电压降低的倾向变得更严重。于是,在现有技术的引线布局中,会出现成品率和可靠性降低的情况。
图2A示出按照本发明第一实施例的改进型器件的局部剖面俯视图,图2B示出它的截面图。这一改进了的器件避免了现有技术中器件的许多局限性。第一电极12和管芯16都与图1A-C所示的现有技术中的器件相同,管芯在凹陷的接触区22与主体17之间具有PN结19,并且带有具有表面23的相邻的凸起介质18,它们仅仅代表多种不同类型的电子器件(具有或不具有PN结),这些电子器件在焊接区22上都具有凹陷的接触区域。
在上引线30上具有凹陷区32,其底部34向着接触区22的方向凹陷,并用焊料区36将上引线30固定。焊料区36(在图3B和4B中分别等效为区域46和56)可以是金属焊料、导电塑料、导电玻璃或其它导电体,它们在这里统称为焊料。
重要的是凹陷区32的底部34的横向尺寸要小于接触区22的横向尺寸,如图2A-B中所示,凹陷区32的底部34比引线30的下表面33下降的深度大于接触区22比凸起介质18的上表面23凹陷的深度,这有利于为焊料36提供适当的形状,并且有利于控制焊料的横向扩展。
当焊料36处于半液体或液体状态时,它可浸润接触区22和引线30的下表面33,由于浸润得很好,使得焊料36与接触区22和引线30的下表面33之间的接触角很小,并且有很强的趋势使得焊料从接触区22的中心向外横向蔓延。即使焊料的有效体积有限时,情况也是如此。在图2A-B所示的器件中,焊料36边缘的横向迁移是与焊料的表面张力相反的。
在图2A-B所示的本发明的方案中,由于凹陷区32的存在,使引线30的下表面33与接触区22之间的间距增加,这就提供了一个相当大的具有横向向外凹入的空气-焊料界面。在这种情况下,空气-焊料界面上的表面张力的一个分力与沿着引线30和焊料界面处的表面迁移力相反。在现有技术的器件中,焊料与介质表面23之间的接触角很大,则引线14与介质18之间的空气-焊料界面可以是横向向外凸起的,这时,表面张力将有利于横向向外的迁移力,而不是与之相反。
这样,按本发明的方案在制造中进行控制要容易得多,对焊料体积上的变化和引线与接触区之间间距的不同也能够容易得多。其原因是由于本发明的结构中能够得到焊料可流入的大的间隙,不会使焊料蔓延到介质18的上表面23上。
将要注意的是,焊料36可能接触到介质18的侧壁37(从介质18的上表面23伸出到接触区22的部分),这并无害。因为焊料36的空气-表面界面横向向内指向这一点,即指向接触区22的中心,所以,即使由于空气-焊料界面的表面张力与这种迁移相反,焊料36浸润了介质18,焊料36也几乎没有蔓延到介质上表面23之上的倾向。
本发明的另一个优点是,表面迁移力和表面张力都使得焊料36沿接触区22向外蔓延,然后沿侧壁37向上蔓延,使得焊料能够填满接触区22之上的凹处。这就为接触区22提供了最大的接触面积,这对于减少接触区22和引线30之间的串联电阻、热阻是很需要的。焊料填充的行为在它填到介质侧壁37的上边缘时,即接触凹陷处被填满时,趋于结束。因为,这时空气-焊料界面的表面张力分量从有助于焊料沿侧壁37向上迁移的力转变成与沿表面23向外迁移相反的力。
图2A-B示出的实施例,其凹陷处32的底部34基本上是平的。这种设计为引线30提供了大的紧靠着接触区22的表面面积,这是改善冲击性能所希望的,但在装配过程中,为了确保底部34与接触区22平行,就需要较精确地放置引线。图3A-B中所示的结构具有更大的容忍度。图3A-B的结构与图2A-B的结构基本相同,只是上引线40的凹陷区42的底部44是弯曲的。这使得从凹陷区42的中心到临近的介质18处,底部44与接触区22之间的间距单调增加。这个实施例几乎具有图2A-B所示实施例的全部优点,并且还有一个附加优点,即对引线30、40和接触区22之间平行度的对正误差具有较低的灵敏度。按照图3A-B所示的安排,引线40的底部44与接触区22之间的关系基本上是等同的,即使在引线40略微不平行于平面22的情况下也是等同的,而引线30的底部34的情况就不是这样的。
在图2A-B所示的安排中,当从顶部观察时,凹陷区32基本上是方形的或者是长方形的,在图3A-B所示的安排中,当从顶部观察时,凹陷区42基本上是圆形或椭圆形,其截面的情况基本上是半球形的或半椭圆形的。这里所用的半椭圆形一词包括半球形。
凹陷区32和42的形状并不是关键,所要求的只是,避免尖锐的边缘或者弯曲处或避免厚度减薄的区域。凹陷区需要大体上与接触区22的水平面形状相一致,以利于焊料36、46充分地覆盖接触区22,并且正如图3B、4B和/或4D的截面图所示,凹陷处具有稍微弯曲的底部外形。
图4A-B示出了本发明的再一个实施例,其中把上引线50做得比接触区22要窄。引线50具有一弯曲部分52,弯曲部分52的下表面54靠焊料56焊到接触区域22上。由于将弯曲部分52做得比接触区22小,即使接触部分52在对准上有些误差,焊料也会容易地被迫留在接触区中。
图4C-D为按照本发明其它的实施例、以与图4B成直角的方向示出的图4A-B所示安排的截面图。在图4C中引线50的弯曲部分52实际上只在一个方向上弯曲,即在图4B所示的平面内弯曲,而在图4C所示的平面中不弯曲。于是,在这个实施例中,弯曲部分52具有基本上为圆柱形或其它的两维弯曲面。这种设计的优点是特别容易在对引线50的材料冲压最少的情况下形成该弯曲部分。
图4D中引线50的弯曲部分52在两个方向上弯曲,即在图4B和图4D所示的平面上都弯曲,一般来说,两个弯曲面互相垂直,但这不是必需的。在这个实施例中,弯曲部分基本上是半球形或半椭球形或其它三维弯曲形状。这种设计的优点是对管芯接触区和引线接触部分之间的对准问题有最大的容忍度。
曲面60的半径(见图4B)需要根据接触区22的不同尺寸来调节,以使得底表面43、44和53、54与接触区22的上表面45、55之间的距离在介质18的侧壁37的上边缘处足够地大,从而避免焊料蔓延到介质18的上表面23之上。以下描述的实例为本领域普通技术人员提供足够的信息,以使他们在没有充分经验的情况下为接触区22的不同横向尺寸选择最好的弯曲面42、52。
在上述的实施例中,管芯16与引线12之间是直接电连接的,但是,这并不是必须的。固定装置20可以包括一个电绝缘体,以使得管芯16只与引线12热连接,而不是电连接,从而为其提供机械支撑。可以通过其它引线实现(图中未示出),与管芯16上区域17的电连接。
关于焊接材料的选择,金属合金焊料被认为是最适当的,但其它的焊料也可以被认为是可用的。在选择焊料时重要的是所选择的材料容易浸润导电引线,而不易浸润管芯上邻近焊接处不应与导线或焊料相接触的其它区域,由于导电引线通常是高电导率材料,而邻近的管芯区域经常覆盖着钝化介质,所以最好在焊接处使用能够优先浸润这样的金属,而不易有效地浸润钝化介质的焊料。在这一点上,金属合金焊料通常比我们知道的大多数导电塑料或玻璃要好。
实例用硅整流器管芯制成基本上具有图3A-B和图4A-B所示结构的器件,其横向尺寸的范围约为37到105平方密耳(0.94~2.7mm)。这些管芯具有图3B、4B所示的凸起的氧化物边缘,其上表面比接触区或焊接区高出大约0.5密耳(12μm)。相当于图3B和4B所示的接触区22的焊接区是由Ti-Ni-Ag覆盖的掺杂硅。安装管芯16用的下引线12为铜制的,其安装管芯区域的横向尺寸约为80×90至115×135密耳(2.0×2.3~2.9×3.4mm),下引线12的厚度范围约为5到15密耳(0.13~0.38mm)或更厚些,其典型值为6密耳(0.15mm)。上引线40,50也是由铜制成的,其管芯接触区的横向尺寸范围对图3A-B所示的结构来说约为40×40到100×100密耳(1×1~2.5×2.5mm),而对于图4A~B所示的结构来说约为20×20至80×80密耳(0.5×0.5~2×2mm),其厚度一般为6~15密耳(0.15~0.38mm)或更大,其典型值为几密耳(0.3mm),所采用的是图3B和4B示出的弯曲形状。
焊料的合金配比例如为88∶10∶2(Pb∶Sn∶Ag),依据管芯的尺寸将数量约为0.5~3.0毫克的焊料放在引线12的管芯安置区上,然后放上管芯16。也可以采用其它的焊料形式,其它的合金和其它的数量。
将相似的或更少数量成份相同的焊料放置在管芯上表面的接触区或焊接区22上,然后使引线40、50与其接触。接触面积越小,所使用的焊料也越少。
使装配好的部件通过由Milwaukee,WI的Lindberg公司制造的长20呎、宽2吋的四区氢气带式炉,沿着带子移动的部件在其峰值温度为340℃的温度下、氢气气氛中暴露约三分钟。这个时间和温度以熔化焊料、浸润管芯接触区22和引线40、50并浸润管芯16的另一面和引线12上的管芯粘接区。完成这步焊接操作后,冷却并检验器件。结果发现,没有出现焊料侵害到邻近的介质上表面,也没有产生边缘短路或现有技术中存在的其它问题,总之,对管芯接触区22得到了非常好的覆盖。
电极40、50的弯曲部分42、52与接触区22相接触,其弯曲面的半径约为12到200密耳(0.3~5.1mm)。这足以在引线与横向尺寸约为29×29到94×94密耳(0.73×0.73~2.4×2.4mm)的焊接区22相结合时,使得3~10密耳(0.076~0.25mm)的引线40、50的底表面在接触区22的边缘位于介质18的上方。在管芯、接触区和引线的尺寸发生变化时,需要把上引线40、50的底表面与介质18的表面23之间的距离至少保持在约为6密耳(0.15mm)。这可以通过调节弯曲半径和/或调节凹陷深度来实现。
本领域普通技术人员通过本发明的描述将会理解尽管说明书以解释焊接硅整流器管芯为目的,但本发明适用于对具有凹陷接触区或焊接区的任何半导体管芯或任何电子管芯焊接例如较粗的引线,而不是焊接常规的引线,并且避免了引线或者固定焊接与焊接区之外相邻的在水平方向凸起的介质或另一个相邻的凸起的管芯区域之间的接触。
另外,本领域普通技术人员将会明白,上述的装置和方法消除了现有技术中引线固定方法和结构中出现的焊料蔓延和焊料短路问题,并且以极其简单和方便的方式,提高了器件的成品率,改善了器件的可靠性。
再有,本领域普通技术人员还会明白,在不脱离本发明范围的前提下,可以基于上述原则,对其装置和方法作出许多改进或变型。据此,以下的权利要求书中将包括所有这种变型。
权利要求
1.一种半导体器件,包括具有彼此相对的第一和第二表面的半导体管芯,其中,半导体管芯的第二表面上具有比管芯第二表面高的焊接区,其中,焊接区与介质的一部分横向相邻,介质的上表面比半导体管芯的第二表面高并且高于焊接区的高度,其特征在于还包括第一引线装置,具有允许外部与器件接触的第一部分和与第一部分相连的安装半导体管芯第一表面的第二部分;第二引线装置,具有允许外部与器件接触的第一部分和在焊接区上与半导体管芯的第二表面进行电连接的第二焊接部分;其中,第二引线装置的焊接部分至少在一个方向上是向焊接区凸向弯曲的,以使得在把焊接部分连接到焊接区上时,焊接部分与焊接区之间的距离在水平方向上从焊接部分最靠近焊接区的那部分到横向邻近的介质处增加。
2.按照权利要求1的器件,其中,所述焊接部分与焊接区之间的距离是单调增加的。
3.按照权利要求1的器件,其中,焊接部分至少在两个方向上凸起弯曲。
4.一种半导体器件,包括具有彼此相对的第一和第二表面的半导体管芯,第一表面基本上为平的,在第二表面上至少有一个电焊接区,焊接区至少有部分被比它高的凸起的介质所围绕,在第二表面上还有从焊接区横向向外延伸的一个上表面;其特征在于还包括具有其外部部分与器件接触,其内部部分分别与半导体管芯的第一、第二表面相连接的第一和第二安装装置,其中,在第二安装装置的内部部分有一个在一个方向上朝着至少一个焊接区部分凹陷的区域,该区域通过不扩展到介质的上表面上的导电材料与之进行电连接。
5.按照权利要求4的器件,其中,第二安装装置的内部部分上的部分凹陷区域至少在一个方向上是弯曲的。
6.一种制造半导体器件的方法,包括提供一个具有彼此相对的第一表面和第二表面的半导体管芯,其中,在第二表面上至少有一个焊接区,该焊接区至少部分地被具有上表面的另一个区域包围,这另一个区域的上表面距第二表面的高度大于焊接区的高度;提供一个具有安装管芯用的第一安装部分和焊接到焊接部位的第二焊接部分的引线装置,其中,引线装置的焊接部分至少在一个方向上弯曲;装配引线装置和半导体管芯,以使得引线装置弯曲的焊接部分与管芯的焊接区相对,并且使焊接部分的弯曲部位定向,使得弯曲的焊接部分的中心比弯曲的焊接部分的边缘更靠近焊接区,并使得焊接部分上没有与另一区域相接触的部分;借助于导电粘着材料将弯曲的焊接部分焊接到焊接区上,使得焊接部分与焊接区相接触,而不扩展到另一区域的上表面上。
7.按照权利要求6的方法,其中,焊接步骤包括让导电粘着材料基本上接触暴露于弯曲的焊接部分之下的整个焊接区。
8.一种制造半导体器件的方法,包括提供一半导体芯片,其安装面与安装表面相连接,另一面具有至少部分被凸起的介质所包围的焊接区,介质的上表面与该面基本平行。提供一个芯片支撑部件,它具有一安装表面,以支撑安装面;提供一个电极部件,它具有与焊接区进行电连接的焊接表面,其中,焊接表面至少在一个方向上是弯曲的,以便其中心部位可以比边缘部位距焊接区更近。在安装表面和安装面之间提供第一粘着材料;在焊接表面和焊接区之间提供第二导电粘着材料;用第一粘着材料连接安装表面和安装面;由第二粘着材料实现焊接表面和焊接区间的电连接,而第二材料没有扩展到介质的上表面上。
9.按照权利要求8的方法,其中,焊接表面为部分圆柱体或部分椭球体的。
10.按照权利要求8的方法,其中,连接安装表面和安装面以及电连接焊接表面与焊接区的两个步骤同时进行。
全文摘要
通过在用作管芯接触的一平面金属引线上提供接触凹陷区,来改善在邻近管芯接触区域有凸起的介质区域的功率器件的接触。凹陷区安排在管芯接触区之上,并与其焊接。调节凹陷区的弯曲半径和凹陷深度,使得接触引线与包围在管芯接触区边缘的凸起介质边缘的距离远得足以使那个位置上提供一个横向凹陷的空气—焊料界面。这可防止焊料蔓延到介质表面,避免管芯边缘短路。
文档编号H01L23/495GK1041067SQ8910699
公开日1990年4月4日 申请日期1989年9月8日 优先权日1988年9月9日
发明者马丁·卡尔福斯, 欧吉恩·L·福兹 申请人:莫托罗拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1