专利名称:硬磁材料及用这种硬磁材料制造的磁铁的制作方法
技术领域:
本发明涉及有一磁性相的磁性材料,该磁性相主要是由晶体RE2Fe17构成。本发明还涉及用这种磁性材料制造的磁铁。
“铁磁材料(Ferromagnetic Material)”(E.P.Wohlfarth和K.H.J.Buschow编著,Elsevier科学出版社出版)1988年第4卷第131-209页给出了上述类型的磁性材料。更具体地说,在所说的参考文献的第150页给出了11种RE2Fe17的化合物(
图11,X=1),其中,RE表示稀土金属铈、镨、钕、钐、钆、镝、铒、铥、镱、钍和钇。这些化合物有一个Th2Ni17类型的六角形晶体结构或更接近于Th2Zn17类型的菱形六面体结构。由于铁含量比较高,因此这些化合物作为永久磁铁中的硬磁材料是令人感兴趣的。然而上述图表明这些RE2Fe17化合物没有一个是单轴磁各向异性的。这样,它们就不适合作永磁材料。
本发明的目的之一就是在RE2Fe17化合物的基础上提供一种磁性材料,它在室温下有比较高的单轴各向异性。本发明的另一个目的是提供一种用该磁性材料制造的永久磁铁。
这个目的是用第一段所述的材料实现的,根据本发明,这种材料的特征在于填隙C溶解在磁性相中,其量大到足以使磁性材料具有单轴磁各向异性,RE由至少70%(原子百分比)的稀土金属钐组成。
现已发现,当填隙C溶入其中时,RE2Fe17材料的晶体结构很难改变。RE2Fe17Cx化合物也有一个Th2Ni17或Th2Zn17类型的六角形结构。再者,RE2Fe17C的单晶胞的体积仅超过RE2Fe17的单晶胞体积约2%。就此,一个重要的结果就是没有明显的磁性稀释发生。磁性稀释是有害的,因为它会导致饱和磁化强度的降低,特别是当RE2Fe17晶格中C取代一个或更多的铁原子时,磁性稀释会发生。申请人指出,被溶解的C可使饱和磁化强度有所提高。
另外,已发现在室温下含有C的RE2Fe17化合物不含有大量钐时,其单轴磁各向异性小到可忽略不计。上述类型的化合物,如Gd2Fe17C或Y2Fe17C一般地呈现出一种所谓的平面各向异性,即在室温下材料中向异性的方向不是单轴的,而在与结晶的C轴垂直的方向延伸。这就使得它们不适合作永久磁铁的硬磁材料。
“稀有金属(J.Less-Common Met.)”142期第349-357页(1988年)给出了一些Nd2Fe17C化合物。所述的这些化合物具有平面各向异性,它甚至超过Nd2Fe17的平面各向异性。
一种按照本发明所述的最佳实施例的磁性材料其特征在于硬磁性相的构成符合分子式RE2Fe17Cx,式中0.5<X<3.0。当C的溶解量很小时,即X<0.5时,单轴各向异性也是很小的。对于各种类型的Sm2Fe17Cx化合物,当X>0.5时,通过对取向磁粉的X射线衍射已经证明,易磁化轴与C轴是平行的。现已发现,如果每个RE2Fe17单体中溶入3个以上的C原子,就得到了多相材料。在这样的材料中不仅存在所期望的有Th2Zn17结构的晶相,而且还存在大量的所不期望有的晶格。这导致了单轴各向异性的减少。如果每个RE2Fe17单体中溶入的C原子少于2个,就得到了纯的单相材料。
进一步地,已发现,就Sm2Fe17Cx化合物而论,钐和铁的亚晶格的磁化被平行地取向(铁磁耦合),这样总的磁化强度就必然与总的亚晶格的磁化强度相等。由此,根据本发明所述的RE2Fe17Cx化合物,其中RE基本上由钐构成,即钐的量超过70%(原子百分比),它具有比较高的饱和磁化强度值。用Sm2Fe17Cx化合物可达到最高值。现已发现,Sm2Fe17Cx化合物在1.0<X<1.5范围内有最大的单轴各向异性。溶入化合物RE2Fe17中的C对居里温度值(Tc)有很大的影响,这一现象也是很重要的。每个RE2Fe17单体中增加一个C原子可导致Tc增加200K。当根据本发明所述的磁性材料的Tc(居里温度)值对预期的应用来说仍然太低时,可用钴取代少量的铁(最多20%,原子百分比)而使得Tc值进一步提高。用镓、镍、硅和/或铝取代铁也可导致Tc值的增加。然而,后面所提到的元素对Tc值的影响要小于钴对Tc值的影响。
用少量的镍、铜、锰、铝、镓和/或硅取代铁可增加RE2Fe17Cx化合物的耐蚀性。有少量的稀土金属镨和/或钕可增加RE2Fe17Cx化合物的饱和磁化强度。
按照本发明所述的磁性材料能够以公知的方式制造,通过按照所期望的比例熔化(例如电弧熔化)元素组分RE、Fe、也许还有C0和C,而得到一种铸件。由于RE组分主要地或全部地由钐组成,因此,较低的蒸发温度需要使用超量的上述稀土金属(钐的10-15%)。随后铸件要在900-1100℃及保护性气氛(惰性气体或真空)的条件下退火处理至少5天。然后退过火的材料迅速地冷却到室温。照此,退过火的化合物就得到Th2Zn17型的六角形晶体结构以及预期的单轴各向异性。
磁铁可用这种烧结材料以公知的方式制造。为了这一目的,把烧结的材料研磨成粉末,然后在磁场中取向,再压成磁体。也可以将磁粉散布在液态树脂中,用一磁场使粉末微粒取向,随后将上述粉末微粒固定在合成树脂中。
下面通过实施例并参考附图对本发明作更详细的说明。
图1表示在室温下磁化强度δ┴和δ11与Sm2Fe17C的外加磁场H的函数关系。
图2表示居里温度(Tc)与硬磁化合物Sm2Fe17Cx的X的函数关系。
实施例利用电弧熔炼来制备一些Sm2Fe17Cx化合物。X的取值范围从0.0到2.0,将各元素组分(纯度为99.9%)在二氧化钍坩埚中混合,各元素组分的量应该与结构式相符,将坩埚置于含有被降压的氩气容器中。考虑到快速蒸发,而加入少量的钐(重量的10%)。利用氩弧使混合物熔化。这样熔化的材料在1050℃的真空条件下退火14天。然后,退过火的材料被研磨成粉末。在磁场中取向后的粉末微粒的X射线照片表明所得到的晶体材料是单相的,并且具有单轴各向异性,磁化的取向与六角晶体结构的C轴平行。
各种组成的粉末微粒被散布在以聚酯为基的合成树脂中,然后被磁性取向,再固定。对这些磁铁进行测量,测出其垂直(δ┴)和平行(δ11)磁化强度与外加磁场H的函数关系。图1所示的是对Sm2Fe17C进行测量的结果。考虑到磁性颗粒的取向是不完全的,可能有某种程度的取向紊乱,由此可推测出Sm2Fe17C的各向异性磁场约为3200KA/m(40KOe)。其它方式的测量结果表明这种化合物的各向异性磁场在室温下为53KOe。
进一步已发现这种化合物易磁化轴的温度范围从4.2K到Tc。
比较例一些RE2Fe17Cx化合物,其中RE代表钬、镝、铒、铥、钆、钇镱和钕,0≤X≤2.0,上述化合物按照本发明的实施例中所述的方法制造。在这些情况下,不加过量的RE。借助于X射线衍射,证明制成的化合物具有六角形晶体结构。在室温下,这种化合物没有或不明显地具有单轴各向异性。
权利要求
1.一种磁性材料,包括一个主要由晶体RE2Fe17组成的磁性相,其特征在于填隙C被溶入磁性相中,其溶入量足以使磁性材料在室温下具有单轴磁各向异性,以及RE由至少70%(原子百分比)的稀土金属钐组成。
2.如权利要求1所述的磁性材料,其特征在于硬磁性相的构成符合分子式RE2Fe17Cx,式中0.5<X<3.0。
3.如权利要求1或2所述的磁性材料,其特征在于磁性相中铁的含量的最高20%可用钴代替。
4.一种由上述任一权利要求所述的磁性材料构成的永久磁铁。
全文摘要
本发明公开了一种硬磁材料,其成份可用分子式RE
文档编号H01F1/058GK1047755SQ9010412
公开日1990年12月12日 申请日期1990年5月7日 优先权日1989年5月10日
发明者库尔特·海因茨·于尔根·布希秋, 德克·巴斯蒂安·迪穆伊, 西奥多拉·亨德里卡·雅各斯 申请人:菲利浦光灯制造公司