专利名称:制造自装配微结构的方法和装置的制作方法
技术领域:
本发明在政府支持下进行,国防部给予了资助金(合同)No.AFOSR-91-0327和F49620-J-054-1。政府对本发明具有一定的权利。
本发明涉及电子集成电路领域。将会看到,本发明虽以硅基片上制造砷化镓微结构的例子来加以说明,但它具有更为广泛的适用范围。仅仅作为例子,可把本发明应用于制造含有硅基电子器件的器件,其上集成有砷化镓基微结构(或器件),例如发光二极管(LED)、激光器、隧道晶体管、Gunn氏振荡器、集成电路、太阳能收集器、液晶显示器(LCD)以及其它器件。
目前,工业上需要一种低成本、高效率和实用的方法把高价的微结构装配到能大批供应的低价基片上。尤其是,对于一些特定的电子和光电应用,由诸如砷化镓类材料作比硅等材料作具有更好的特性。然而,在制造砷化镓器件时,砷化镓大圆晶片的大部分区域通常不被利用而浪费掉。一般讲这些未利用的区域造成宝贵的芯片区域不能有使用。另外,对砷化镓进行加工处理一般需要专门的技术、化学试剂和设备,因此很昂贵。
在诸如超大规模集成电路(VLSI)一类其它应用上用硅而非砷化镓制造可能更好。在另一些应用中,可能希望获得同时具有这两种类型材料特性的集成电路。因此,工业上需要开发一种有效的方法来制造与硅基集成电路集成在一起的砷化镓器件。这样一种方法得到的结构兼有砷化镓和硅基器件这两种器件的优点。
诸如倒装晶片键合、浮蚀剥离(lift off)法及其它方法通常需要一个面积较大的基片,这与现有技术水平下微米级的微结构是不协调的。这样一些方法当把粒子定位到基片上时常常产生困难。因此,工业上需要开发一种有效的方法把诸如砷化镓等高代价的材料制作到诸如硅等低代价的基片上。
工业上使用或者提出了几种方法,来制造单个的电子元件(或者通常为微结构),并把这样一些结构装配到基片上。一种方法是把砷化镓器件直接生长在硅基片上。这种方法受到限制,因为砷化镓的晶格结构与硅并不匹配。另外,在硅上生长砷化镓本来就困难,所以很昂贵。因此,砷化镓不能有效地生长在硅基片上。
Yando在美国专利No.3,439,416中描述了另一种方法。他讲到在一磁体阵列上放置、收集或作振动的元件或结构。这些磁体包括磁化层,和非磁化层交替形成叠层结构。把元件装配到磁体阵列上并由此形成组件。然而,这些元件的形状、大小和配置存在严重限制。元件宽度必须与磁化层的间隔一致,而元件的配置受到并行的叠层几何结构的制约。另外,元件的自对准要求有叠层构造。再于,Yando所揭示的结构一般具有毫米级尺寸,因此一般讲与微米级的集成电路结构并不匹配。因而,Yando所揭示的方法和结构太大,和过于复杂,以致无法有效地使把现有技术的微结构或元件装配到基片上去。
在Liebes,Jr.等的美国专利No.5,034,802中描述了另一种方法,它涉及在包封好的表面安装器件与基片之间的配套物理特征。所描述的这种装配工艺要求把厘米级包封好的表面安装器件用人或机器人臂机械地拣起、对准并加到基片上。这种工艺受到限制是因为它需要人或机器人臂。人或机器人臂把每个包封器件一个一个地而不是同时装到基片上,因而限制了操作的效能和效率。而且,这种方法使用厘米级的器件(或者包封好的表面安装集成电路),对芯片形式的微米级集成电路,其适用性不大。
诸如Biegelsen等的美国专利No.4,542,397中描述的另一种方法包含了把诸平形四边形结构通过机械振动放置到基片上去的方法。另一方面,该法也可使用脉动气流进入支持面(或基片)上的诸小孔。这种方法的一个限制包括能振动结构的装置或者使脉动气流通过小孔的装置。而且,所描述的方法依赖厘米级尺寸的芯片,对现有技术水平的微米级结构的适用性并不大。
如Akyurek的美国专利No.4,194,668所描述的又一种方法揭示了一种装置,它把电极脚对准并焊接到可焊接的欧姆阳极触点上。该阳极触点是位于大圆晶片上的单个半导体芯片的一部分。装配这种结构需要把电极脚撒布在一掩模上,然后电磁振动这些脚以便对准的技术。这种方法由于需要为实现电磁振动步骤的振动装置而受到限制。另外,这种方法还需要一馈送面缓慢地向掩模倾斜,以便把电子脚转移到掩模上去。再此该法只适用于涉及电极脚和硅大圆晶片方面,因而,使采用这样一种方法于这些结构受到限止。
如Cohn 1992年6月23日申请的第07/902,986号申请中所描述的又一种方法,则要求通过静电力把集成电路装配在基片上。静电力如此振动粒子,俾使这些粒子以最小的势能状态进行排列。对这种方法的限制包括要提供一种能用静电力使粒子振动的装置。再此,Cohh的方法由于使它们彼此机械振动而造成部分集成电路损坏,以及一般说也不太有效。因此,该法通常与现有技术水平的微结构并不匹配。
从上面的描述中可以看出,希望有一种紧凑、低价、高效、可靠,且要求维护少的方法把微结构装配到基片上去。
本发明是关于一种把微结构装配到基片上的方法及其得到的结构。尤其是,这种方法包括通过流体把诸定形块或通常的结构转移到具有凹槽区或通常的连接位置或受纳体的基片上表面上。当转移进行时,诸块通过它们的形状自对准于凹槽区,并在那上面结合成一体。得到的结构可以包括各种有用的电子集成电路,上面包含与诸如发光二极管(LED)、激光器、隧道晶体管、Gunn氏振荡器、集成电路、太阳能收集器以及其他的砷化镓基微结构集成在一起的硅基电子器件。作为另一个例子,可以把半导体器件与其它半导体器件或诸如塑料等其它的基片材料集成在一起。
在一个特殊的实施例中,该方法提供把诸如微米级的块装配到基片上去。基片包括其上至少带有一个凹槽区的上表面,且可以是硅大圆晶片、砷化镓大圆晶片、玻璃基片、陶瓷基片或其它基片中的一种。这种基片还可以是一种包括诸如冲压、注塑定形、在内的技术所制造的塑料片。装配步骤包括提供诸定形块和把这些块转移至流体中,由此形成一混合体或者通常的浆体。然后把这种浆体以一种至少把定形块中的一块置入到凹槽区内的流速均匀地分配到基片上面。分配基本上以层流进行,并允许定形块的一部分自对准于凹槽区。另一种方法包括使流体以一种至少把定形块中的一块置入到凹槽区内的流速进行循环。一种包括但并不仅限于氮气的气体便于浆体循环,并允许形块的一部分自对准于凹槽区。
本发明进一步提供相关的装置,用以把微结构装配到其上至少具有一个凹槽区的基片上去。该装置包括含有基片、流体和定形块的容器。该装置还包括一个泵,它使定形块在容器内以一至少把其中的一块置入到凹槽区内的流速进行循环。
在另一种实施例中,该方法例如根据改进的制造工艺提供具有梯形剖面的定形块。制造过程包括提供一具有上表面的第二基片,并生长一层牺牲层(sacrificial layer)覆盖在该上表面上。然后进行在上表面上形成块层的步骤。在牺牲层上进行掩蔽并腐蚀出该块层,在其上产生梯形定形块。择优腐蚀牺牲层的步骤剥离下各梯形定形块。然后对这些块进行清洗,并把它们转移到溶液中形成浆体。在这个实施例中,该方法提供另一种制造定形块的过程。这另一种制造定形块过程的一种包括提供一第二基片作为块层,它具有上表面和下表面,在上表面上生长出牺牲层。再一种制造定形块的过程包括提供一具有上表面的第二基片,把一牺牲层覆盖在上表面上,而块层则覆盖在牺牲层上。在提供了第二基片之后,于是在牺牲层上进行形成梯形定形块并与之相接触的步骤。然后从牺牲层上除去与其相接触的梯形定形块,并把它们转移至流体以形成浆体。
本发明进一步提供一种结合有基片的梯形定形块。该基片包括在其上有多个凹槽区。每个凹槽区含有定形的剖面外形,以接受梯形定形块。得到的结构通过形成装配上器件或者集成电路的凹槽区而具有同基片结合在一起的这样一些块。
又一个实施例的定形块包含截头金字塔面形的定形砷化镓结构。这种截头金字塔形定形结构包括一个基面,从基面上向较大的顶部表面伸出四个侧面。从基面至每个侧面之间的夹角大约在50°和70°之间每个侧面还可具有5μm到15μ左右的高度。块的长度约可在10μm和50μm之间,宽度约可在10μm和50μm之间。
另一个实施例提供一种形成混合集成电路的方法。该法包括提供其上含有第一电子器件部分的第一倾斜定形块和第二电子器件部分。本方法还包括把第一定形块放置到基片的第一凹槽区内。也包括互连第一定形块和第二电子器件部分的步骤。互连步骤为金属化步骤。
在这里所改进的方法和得到的结构乃涉及装配在硅基片上的由砷化镓制成的梯形定形块,目的仅为说明。所改进的方法和相关的装置乃涉及装配在硅基片上的由硅制成的大小不同的梯形定形块,目的也只不过是为了说明该定形块也可以包括圆柱形、锥形、矩形、正方形、T形、腰形或其它相似的形状(对称的和不对称的)以及这些形状的组合。一般讲,块的形状允许将块紧密地插入到基片上形状相似的凹槽区或者受纳体内。定形块还包含诸如铝砷化镓、硅、金刚石、锗、其它III-V和II-VI族的化合物一类的材料、其中也包括多层结构。这种多层结构可以是金属、诸如二氧化硅、氮化硅及其类似的一类绝缘物以及它们的组合。
参见说明书和附图的其余部分将会进一步理解本发明的特性和优点。
图1示出供改进的制造方法用的砷化大圆晶片,上面有分子束外延(MBE)生长的砷化镓层;图2a图示说明由MBE生长砷化镓层腐蚀得到的梯形定形砷化镓块;图2b图示说明倒置的梯形定形块;图3图示说明了砷化镓块剥离步骤;图4图示说明另一种使用中间基片的剥离步骤的一部分;图5图示说明图4另一种剥离步骤的另外部分;图6图示说明自对准到硅基片上的每个砷化镓块;图7图示为根据图1-3和6图所示改进的方法装配到硅基片上的微结构的实施例;图8为装配到基片上的微结构的另一种实施例;图9为装配到基片上形成砷化镓二极管微结构的一个实施例;图10为装配到基片上形成砷化镓二极管微结构的另一个实施例;图11为装配到基片上形成砷化镓二极管微结构的又一个实施例;图12图示说明诸定形块的例子;图13是根据实验所装配的微结构照片;图14是根据实验所装配光敏二极管工作时的照片;图15是覆盖在砷化镓块上的金属化环层的照片;图16为根据实验得到的砷化镓二极管的电流—电压图;图17为根据实验得到的砷化镓/砷化铝谐振隧道二极管的电流—电压图;图18为供另一种改进制造定形块方法用的硅大圆晶片,上面沉积有氮化硅层;图19为又一种改进制造定形块方法用的生长在绝缘层上的硅大圆晶片(SOI),上面具有的SOI层覆盖在上面覆盖有绝缘层上的硅基片上;图20图示说明用于制造硅定形块的掩模;以及图21图示说明了把微结构装配到基片上的装置。
参见图1-21,本发明提供一种改进过的把微结构制作到基片上的方法、相关的装置以及改进得到的结构。例如,图1-17是关于把定形的砷化镓块制造和装配到硅基片上,这目的仅是为了图示说明。作为进一步的例子,图18-21是关于把定形硅块制造和装配到硅基片上,这也仅仅是为了图示说明的目的。
在把砷化镓块装配到硅晶片上时,梯形定形块自对准位于硅大圆晶片上表面上的倒梯形凹槽区。这种方法的步骤包括形成诸砷化镓块,把块移入溶液中形成浆体,以及均匀地把浆体散布到具有凹槽区的硅基片的上表面上。在散布步骤期间,当诸块随流体在上表面上流动时,各块自对准并下沉到凹槽区内。作为一种可选择的方法,用诸如刷具、刮具、镊子、带尖的小工具、医用刀和其它工具等机械装置把浆体均匀地散布在硅基片的上表面上。机械装置可以用于移动或分配浆体,也可用以除去多余的浆体。作为散布浆体的另一种方案,该方法包括使浆体在具有凹槽区的基片上表面上循环。在循环步骤期间,当块随流体在上表面上被移动时,诸块便自对准并下沉到凹槽区内。然后使没有下沉到凹槽区内的诸块再循环,一直至达到一定的填充率。当然,也可把诸机械装置连同循环步骤一起使用。在简短地讨论形成砷化镓块之后,下面将详细地讨论制造具有凹槽区的硅基片的细节。紧跟在制造具有凹槽区的硅基片讨论之后,将详细讨论使用循环步骤的方法和相关装置的细节。
在一特定的实施例中,作为例子,该方法提供一从砷化镓大圆晶片形成诸梯形定形块的步骤。应当注意,定形块也是微机械加工过的结构或者类似物。这样的步骤包括提供一砷化镓大圆晶片10,如图1所示。该法还提供通过化学气相沉积、溅射或者类似的方法形成牺牲层13覆盖于砷化镓大圆晶片10的上表面15上。这样的牺牲层13包括,例如砷化铝。其它的牺牲层可以包括磷酸铟、二氧化硅、光致抗蚀剂,尤其能被选择腐蚀的其它材料。当然,所用的牺牲层取决于特定的应用。对于砷化铝牺牲层,该层的厚度约在0.1μm和5.0μm之间,最好为1μm左右。在形成牺牲层13之前,用诸如湿法腐蚀、等离子腐蚀或者反应离子腐蚀的方法对上表面15进行腐蚀以清除原有的氧化物。另一种方法是,当有砷存在时用解吸步骤除去原有的氧化层。其后择优腐蚀(下文详细讨论)步骤除去牺牲层13,以便于剥离形成在牺牲层13上的各个砷化镓块(也称为台面形或梯形或者截头金字塔形结构)。
在图1中,砷化镓层17形成在牺牲层13上。该砷化镓层可以用包括分子束取外延、化学气相沉积以及其它的方法来制造。根据特定的应用,砷化镓层的厚度(T)至少约为10nm,或更大,最好约为10μm,或更大。
为了得到所要求大小的块,改进的方法提供掩蔽和腐蚀砷化镓层17的步骤。图2a示出在这种掩蔽和腐蚀步骤后的砷化镓基片10,并包含有砷化镓块19和覆盖于砷化镓层17(未示出)上的光致抗蚀剂层21。通常,如图2a所示,对砷化镓层17的未曝光部分进行腐蚀,一直到牺牲层13。该腐蚀步骤提供多个定形的砷化镓块19。对于本例来说,定形块为梯形剖面或截头金字塔形。这样的梯形,根据应用,可用湿法腐蚀、等离子腐蚀、离子磨削、反应离子腐蚀的方法之一来加以制造。
通常,湿法腐蚀沿各砷化镓块的侧面或边缘产生斜剖面。如图2a所示,对于与〔110〕方向平行的掩模边缘,湿法腐蚀产生向外倾斜的剖面。另一方面,与〔110〕平行的掩模边缘则产生向内倾斜的剖面(或者倒台面)。向外倾斜的剖面提供所要求的形状,用以结合到具有以互补方式成形的凹槽区的硅基片内。
离子磨削产生具有向外倾斜剖面的砷化镓块,视离子束的角度而定。调节离子束角度从砷化镓基片10的法线至上表面15约在0到12度之间。为了在各块上形成向外倾斜的剖面(或截头金字塔形),通常在该腐蚀步骤期间使整个结构旋转。
反应离子腐蚀(RIE)也在诸如砷化镓、硅或其它多种材料内产生具有定形剖面的块。通常,可在倾角下使用垂直腐蚀来切割每一侧壁角。也可作基本上垂直的腐蚀工艺以便在所选的角度下出现钻蚀(undercut),而无需使基片倾斜。另外,也可以把垂直腐蚀或反应离子腐蚀与湿法化学腐蚀结合一起使用,来提供钻蚀。这样一种腐蚀方法产生如图2b所示的具有钻蚀面或倒台形剖面的块。图2b示出倒梯形定形块。图2b示出经这样一种掩蔽和腐蚀步骤之后的基片925(其材料为诸如砷化镓、硅或类似的材料),并包含有在牺牲层927上的定形块929。掩模层933覆盖在包括电子或其它器件或者部分器件的器件层931上。通常,如图2b所示,块层929的未曝光部分进行腐蚀,穿过牺牲层927。这样一种腐蚀方法随着诸如腐蚀剂、压力、设备以及其它因素的变化可以形成具有形状和/或剖面基本上一致的块。可以使用垂直腐蚀和湿法腐蚀或者结合这两种腐蚀来产生这种倒台面形剖面。因而,去除牺牲层927便可得到多个定形块929。可以用例如选择性腐蚀、化学转换(诸如择优氧化牺牲层、择优转换牺牲层成多孔性硅,或者其它方法),再通过包括选择性腐蚀、热或超声波或机械破碎法,或者溶化在内的方法(最好是用选择性腐蚀)来完成把牺牲层927除去。另一方面,牺牲层927的功能可以包括在基片925中,通过全部或部分除去或腐蚀基片925来分开块929。
在一特定实施例中,如图3所示,在腐蚀了MBE生长层之后,通过剥离技术用择优腐蚀牺牲层13的方法把梯形定形块从砷化镓基片10上取下。这种剥离技术由例如对砷化铝牺牲层的择优湿法腐蚀产生。在砷化镓的例子中,这种湿法腐蚀步骤通常由诸如氢氟酸溶液或其类似的化学试剂加以完成。所用的腐蚀剂主要腐蚀牺牲层,而并不严重侵蚀砷化镓块和/或基片。
在从基片10上分开砷化镓块之后,用稀释和轻径移注湿法腐蚀溶液的方法把诸块从溶液中取出。在砷化镓的例子中,湿法腐蚀剂用纯化过的水、甲醇、乙醇或其类似物来进行稀释和移注分离。在稀释和移注分离步骤之后可任选一种淋洗步骤。淋洗步骤依靠诸如丙酮、甲醇、乙醇或者其它具有低腐蚀特性的惰性溶液进行。这样一种溶液还提供一介质(或流体),用以产生其内悬浮有诸块的混合物或者通过讲的浆体。
取代图3所示剥离技术的另一种的剥离方法则从图2a的砷化镓结构中产生图4的中间结构250。这样一种剥离替代法还可有助于在块的背面形成器件的应用中加快定形块的剥离。如图所示,该方法包括在牺牲层13暴露部分的上表面上和每个块19之间的间隙255内散布以填料或者蜡层253,最好是高温蜡。一种这样的蜡包括由TRANSENE公司制造的名叫TECH蜡的产品。该法接下来包括倒转图2a的砷化镓结构,并把上表面21粘接到中间基片257上。这样一种中间基片可以是,例如硅大圆晶片或其类似物。然而,在粘接步骤之前,中间基片表面261应经过下列步骤,即,最好用诸如氢氟酸等湿法腐蚀剂蚀去任何原有的氧化物,并用诸如也称为HMDS的六甲基二硅氮烷等粘接促进剂来处理已清洁的表面。在除去砷化镓基片10时,对基片10进行磨削,一直到其上留下约50μm为止。然后对基片10余下的厚度进行腐蚀,一直到砷化铝层13。用诸如氢氧化铵和过氧化氢(NH3OH∶H2O=6∶200)一类腐蚀剂择优腐蚀砷化镓基片,一直到砷化铝层13。砷化铝层于是起到阻止腐蚀以保护砷化镓块19的作用。除去砷化铝层13需要用诸如氢氟酸等腐蚀剂进行湿法腐蚀的步骤。这样一种腐蚀剂一般在短时浸入这种溶液后就把砷化铝层13去除。在砷化铝层完全去除之后,进行包括掩蔽、溅射和腐蚀的步骤形成如图5所示的金属化的环接触265。这种金属化环接触通过由光致抗蚀层267形成的图案加以制作。这类接触用金属化包括诸如金、铝等材料。另一方面,可以对块进行诸如腐蚀、掩蔽、注入、扩散等其他工艺步骤,以产生其它的剖面以及在其上制作有源器件。用诸如三氯乙烷(TCA)一类的溶液溶解掉位于在每个块19与光致抗蚀层21之间的填料或蜡,并从中间基片257上剥离砷化镓块19。为了减轻腐蚀,把砷化镓块转移到诸如丙酮、甲醇、乙醇或者其它具有低腐蚀特性的惰性溶液中。这样一种惰性溶液和块常被称为混合物或者通常所说的浆体。
在另一特定实施例中,作为另一例子该法提供从硅型大圆晶片形成梯形定形块的步骤,如图18所示。这些步骤包括提供第二基片,例如硅基片700,上面限定有带有底面705和上表面707的块层703。在这个实施例中,硅大圆晶片700单面抛光,大小约为2″到16″,厚约10μm到2000μm,最好约为235μm厚的两英寸大圆晶片。底面705为硅大圆晶片700的抛光面,上表面707为非抛光的粗糙面。该方法也包括由诸如化学气相沉积、溅射或者分子束外延等技术形成牺牲层709,覆盖在上表面707上。牺牲层709由氮化硅(SiNx)、二氧化硅SiO2、金属或者有机物制成,其厚约100到100μm,最好是厚0.4μm左右的SiNx层。与制造砷化镓块的例子相似,可以用掩模、腐蚀步骤以块层703来形成梯形定形块或者截头金字塔形块。在这个实施例中,梯形定形块或截头金字塔形结构包括一基面从其上有四个侧面伸向较大的顶部表面。每个侧面与顶部表面之间的夹角约在20和90度之间,最好约为55度。该块的长度可以约在1μm到1cm之间,宽度约在1μm到1cm之间,最好是长约1.Omm,宽约1.2mm。较大的面在牺牲层709上,并与其接触。下一步骤是择优腐蚀除去牺牲层709,分离出形成在牺牲层709上的各梯形定形块。然后把这些块转移入一流体内形成包含有较大梯形定形块的浆体。
在又一特定的实施例中,作为另一个例子,该方法提供如图19所示的从绝缘体上的硅(SOI)大圆晶片形成梯形定形块的步骤。这些步骤包括提供一诸如SOI大圆晶片800为第二基片,上面限定有带有上表面805的硅基片803,在上表面805上覆盖有牺牲层807,而在牺牲层807上则覆盖有块层809。由SiO2组成的牺牲层807为SOI大圆晶片800的绝缘层,由硅组成的块层809为SOI大圆晶片800的绝缘体上的硅层。在这个实施例中,SOI大圆晶片具有厚约1μm到2000μm的绝缘体上硅层,和厚约100至1000μm的绝缘层,最好具有厚约35μm的硅层和厚约0.4μm的SiO2绝缘层的SOI层。与其它的块制造例子相似,可以用掩蔽和腐蚀步骤在牺牲层807上由块层809形成梯形定形块,并与之接触。
在这个实施例中,梯形定形块或者截头金字塔形结构包括一个带有四个侧面从其上伸向较大顶部表面的基面。每个侧面与顶部表面的夹角约在20和90度之间,最好为55度左右。该块的长度可以约在1μm到2000cm之间,宽度约在1μm和2000μm之间,最好长约150μm,宽约150μm。如在具有较大梯形定形块的硅例子那样,较小梯形定形块的较大面与牺牲层807相接触。下一个步骤是择优腐蚀,除去牺牲层807,分离出形成在牺牲层709上的各梯形定形块。当然,可以通过诸如择优腐蚀、离子磨削或者溶解牺牲层一类步骤把接触在的牺牲层上的梯形定形块取下来。然后把这些块转移到流体内,形成浆体。
在由硅形成梯形定形块的前两个例子中,硅在所用的KOH∶H2O腐蚀液中最慢的腐蚀面为{111}面,它可以被看作是形成定形块倾斜面的腐蚀阻挡。在每个硅例子中,限定块用的相关掩模必须对准合适的晶体轴。如图20所示,掩模850用于形成硅梯形块855。硅梯形定形块855形成在掩模850的对角线交点上,而硅梯形定形块855的较大面860则与牺牲层(对于前面的第一和第二硅例子,分别为709和807)相接触。图20中的对角掩模线的宽度必须是硅块层厚度(t)的两倍。对于较大的硅梯形块,a=0.2mm,硅块层703的t=235μm;而对于较小的硅梯形块,a=0,硅块层809的t=35μm。
对于前面每个硅例子,腐蚀是在完全腐蚀去硅块层703或809且在精确地形成了棱角的同时完成。超过这点继续进行腐蚀并不改变梯形定形块的整体大小,但仅使棱角变圆。由于几何学上的考虑,定形块顶部表面的宽度必须至少是硅块层厚度 倍。这限制了用这种技术制造的块的宽高比。如果块棱角之间没有距离,则这种掩模图形利用的硅面积高达50%。
在较大定形块的第一个硅例子中,把腐蚀过的硅大圆晶片放置在浓HF腐蚀液内,去除与SiNx牺牲层接触的定形块,以及掩模层上任何残留的SiNx。在较小定形块的第二个硅例子中,同样把腐蚀过的SOI大圆晶片放置在浓HF腐蚀液中,去除与SiO2牺牲层接触的定形块,以及掩模层上任何残留的SiNx。这种HF腐蚀液择优腐蚀SiO2和SiNx以释放定形块而并不腐蚀硅定形块。尤其是,用浓缩度约为1∶1 HF∶H2O的HF溶液来腐蚀牺牲层和残留的SiNx来释放定形块。
浆体包含(流体的)惰性溶液和定形块。在浆体中有足够的溶液以使块在基片的上表面上滑动。最好混合物中溶液的量至少与块的量相等。当然,溶液的量必须随诸如块的大小、块的材料、基片大小、基片材料和溶液等特性而变化。在做了准备工作之后,如图6所示,把浆体转移或散布在硅基片50的上表面53上。转移技术的细节在下面简短讨论制造硅基片50之后加以论述。
如图6所示,硅基片50包含腐蚀的凹槽区55。可以用包括湿法腐蚀、等离子腐蚀、反应离子腐蚀、离子磨削等多种技术之一提供凹槽区55,或者是通常的沟槽、受纳体或者粘结位置。这些技术刻蚀出具有几何剖面与块19互补的凹槽区55。在硅基片内,每个凹槽区的形状,例如为梯形剖面或者倒截头锥形。梯形剖面使块19能自对准并通过改进的转移技术紧密地装配到凹槽区55内。
转移技术包括均匀地把浆体散布或者倾倒在上表面53上。转移技术可以通过把一罐浆体均匀地倾倒在上表面53上来完成。另一方面,也可以从移液管、长颈瓶、量杯或者任何能均匀地把浆体转移到上表面53上的其它类型的罐和/或装置进行转移。通常,把浆体以能基本上覆盖上表面但又能防止已位于凹槽区内的块浮出或突然弹出的速率倾倒在上表面53上。浆体流一般是层流式的,但随着特定的应用场合,也可以是非层流式的。在砷化镓块的例子中,上表面53上的流体流量以约0.01mm/秒和100mm/秒之间的速率进行。最好使流体流量约为1mm/秒。在这样一种流量下,块随着流体均匀地流动,在上表面53上滚动(tumble),并自对准和下沉到凹槽区55内。为了防止已定位于凹槽区内的块浮出,可选用在离心机或者类似的装置内进行转移步骤的方案。例如离心机作力于已在凹槽区内的块上,从而防止这些块随溶液浮出。
另外可代之以通过包括使浆体以能使块落入凹槽区内的速率在上表面上作循环的方法和装置来完成转移技术。可以调整该速率使块填充到凹槽区内,以达到所要求的填充率。把浆体以一定的速率再循环,俾使尚未定位的块继续在上表面上流动,直至达到某一填充率。最好选择使浆体以不妨碍已经定位于凹槽内的块的速率进行再循环。
循环速率可以调整,以适应所要求的填充率,它可随块的大小、凹槽区的数量和具体的应用场合而变化。某些应用场合需要把硅电路结合到诸如玻璃或塑料等透明基片上,以供有源矩阵平板显示器使用。每个像素或者像素单元将具有的用该法装配的相应的小电路。也可以装配较大的电路,诸如多芯片模块,可能在同一基片上需要许多不同的较大规模电路。这些电路的每一个都可以腐蚀成特定的形状,并用这种方法装配到相匹配的凹槽区内。不同的应用场合还可以要求不同的填充率。例如,多芯片模块可能允许比平板显示器更低的填充率,这是因为元件数目的差异。本发明的方法和装置对不同大小的定形块都表现出高的填充率。在把定形块装配到基片上后,如果必要的话,可以对定位的块进行粘接和平面化,或者进行其它类似的加工。
为了使定形块连续地在基片上流动,用一装置使含有定形块的浆体在基片上循环。定形块和流体在装置内循环,并且一般在也包含于该装置内的基片的上表面上进行滚动。定形块自对准并与具有互补形状的凹槽区啮合。未置入凹槽区内的定形块流离基片,进入装置的再循环通路,再在基片上流动以便定位置入凹槽区内,直至达到某一填充率。
如图21所示,装置900包括容缸903和泵905。在这个特定的实施例中,装置900完全由玻璃制成,但也可以用其它合适的材料来制作。容缸903包括贮池907和导管909。容缸903包含一具有凹槽区的基片911和流体与定形块的混合物。连接到含有基片911的贮池907上的导管909包括输入口913、通回到贮池907的输出口915和一端连接到输入口913,另一端连接到输出口915上的柱管917。泵905连接到输入口913,把气体压送分配到导管909内,以使流体和定形块以至少有一个定形块被定位置入到凹槽区内的速率在基片911上进行循环变得容易。
贮池907包括保持器919和漏斗状底部921。保持器919固定基片911,它能移动基片911,以便于地填充凹槽区。另外,保持器919抖动基片911或者调整基片911的方向,俾使未定位置入到凹槽区内的定形块能流离基片911,并返回到容缸903的再循环通路内。贮池907底部成为漏斗状,促使未置入基片911上凹槽区内的定形块落入到贮池907的底部以便通过容缸903再循环。于是未被置入到凹槽区内的定形块再次循环通过容缸903。
更具体地说,漏斗状底部921连接到导管909的输入口913。没有置入到凹槽区内的定形块滚落到漏斗状底部921,并进入导管909的输入口913,那里,泵905压入气体,例如氮气。喷入的气体在导管909的柱管917内的流体内形成气泡。气泡传输一部分流体和至少一个收集在输入口913的定形块通过柱管917和输出口915返回到贮池907,再尝试定位置入到凹槽区内。气泡上升通过柱管917,并把流体和定形块传输到通回到贮池907的输出口915。
在这个实施例中,装置900使用氮气气泡使流体和定形块在基片911上循环,而不损伤定形块。尤其是根据所用定形块和流体的材料,装置900可以使用其它的介质或气体,诸如空气、氢气(H2)、氮气(N2)、氧气(O2)或者氩气(Ar)等,它们并不损伤定形块或与流体反应,对后者要不然就可改变泵905对气体或传输介质的压入分配以达到不同的凹槽区填充率。
在特定的实施例中,图7示出用图1-3和6所述方法得到的结构20。装配成的微结构包括硅基片10、砷化镓块19和凹槽区55。块和凹槽区55的梯形使得块在转移期间能自对准并能紧密地装配到凹槽区内。块的一侧面与凹槽区相应侧面之间形成的角度(A)大致约在0到20度之间。较好的是,该角度约小于5度但大致大于0度。这样的角度使得每个块的自对准过程变得容易。经改进的方法通过各种定形块和凹槽区的几何形状以及流体转移步骤能把多重块或微结构制作在基片上。
在对上述特定实施例的一种改进方案中,如图8的结构70所示,通过共晶体层75把块19附着到凹槽区55内。在剥离步骤之前,在表面73上形成诸如金、银、焊料等类似材料的金属化层。另一种方法是,粘连块与各凹槽区的层可以是合成粘接剂或者类似的材料,而不用共晶体层。工艺步骤通常包括掩蔽、腐蚀和溅射以形成这样的金属化层。在转移步骤之后,对结构70加热,在金属化层73和硅基片10之间形成共晶体层75。共晶体层在结构10和块19之间提供机械和电学的接触。这种把块粘附到基片上的方法提供了一种有效的、成本效果佳且容易的技术。
在另一特定实施例中,图1、2、4、5和6改进方法的部分提供得到的砷化锭发光二极管(LED)200,如图9所示。如图所示,砷化镓LED包括硅基片203和砷化镓块205。每个砷化镓块至少包括金属化环接触207、p型砷化镓层209、n型砷化镓层211和共晶体层213。为了使该器件发光,在金属化环接触207或金属化层上施加电压。如图所示,砷化镓块205的每个金属化环接触207以内的中心区域有光子(hv)发出。
在又一个特定的实施例中,如图10所示,改进的结构形成砷化镓发光二极管(LED)90。与前一个实施例一样,砷化镓LED包括基片93和砷化镓块95。与前一个实施例相似,每个砷化镓块还至少包括金属化面97、p型砷化镓层101、n型砷化镓层103和共晶体层105。为了使该器件发光,通过例如探针把电压施加到金属化层97上。如图所示,砷化镓块95的边缘区域而不是中心区域有光子(hv)发出。
在再一个特定的实施例中,如图11(未按比例制作)所示,改进的结构形成了具有锥形波道通路123的砷化镓结构120。诸如湿法腐蚀、离子磨削、反应离子腐蚀以及其它一类工艺步骤形成该锥形波道通路123。砷化镓结构可以是LED、激光器或者类似的器件。与前一个实施例相似,砷化镓结构120包括基片125和砷化镓块127。结构120也包括诸如铝一类顶端金属化131覆盖在砷化镓块127和绝缘层133上。环形接触屋135在基片125和砷化镓块127之间提供机械和电学接触。对砷化镓块的机械支承和电学接触来自凸缘137。图中还示出发光(或发出激光)窗口139,其大小约在5μm到40μm之间。为了接通该器件,在金属化层131上施加电压。如图所示,通过发光窗口139和锥形波道通路123,砷化镓块127发出光子(hv)。光纤电缆141接收这些光子。
本文中所改进的方法及其得到的结构乃涉及用砷化镓或硅制成的梯形定形块,目的仅为了说明。换言之改进的方法和结构几乎可以涉及任何具有定形特征的块。定形块允许这样一些块通过流体传输,在基片表面上移动,对准相应的凹槽区,并插入到该凹槽区内。图12示出另一些定形块的例子。如图所示,这些块可以是例如,矩形300、八边形303或者圆形305。矩形定形块包括多至四个取向,用以插入到具有相应凹槽区的基片内。另一方面,八边形定形包括多至八个取向,圆形定形块包括连续的取向,只要窄端首先插入到凹槽区内。这些块还可以包含这样一些材料,诸如硅、砷化镓、铝砷化镓、金刚石、锗其它III-V和II-VI族化合物,尤其是多层结构。这些多层结构可以包括金属、诸如二氧化硅、氮化硅等及其类似物的绝缘体以及它们的组合。一般市,块几乎可以用能形成定型特征的任何一类的材料加以制作。这些块通常借助包括离子磨削、反应离子腐蚀及其类似工艺加以制造。为了使每个块能容易地对准凹槽区,块的一侧面与放置该块的凹槽区的相应面之间的夹角大致约在0度到20度之间。较好的是,该角度小于约5度,但大体上大于0度。
定形块装配在诸如硅大圆晶片、塑料片、砷化镓大圆晶片、玻璃基片、陶瓷基片或者类似的基片上。基片包括几乎任何一种材料,只要能在其上形成与定形块互补的定形凹槽区或者一般的粘接口或受纳体即行。例子为了证明原理,并演示本方法和结构的工作情况,把一二极管形式的砷化镓块装配到硅基片上,并进行工作。
在砷化镓的例子中,转移包括砷化镓块的浆体,以使块自对准到位于硅基片上表面上的凹槽区内。该方法的步骤包括形成砷化镓块,把这些块转移到溶液中形成浆体,把浆体均匀地输送到具有凹槽区的硅基片的上表面上。定形块通常在基片的上表面上滚动,自对准并与具有互补形状的凹槽区相啮合。
在制作硅基片时,用乙二胺、邻苯二酚、对二氮杂苯溶液(EDP)或者氢氧化钾(KOH)溶液产生具有梯形剖面或倒截头金字塔形的凹槽区。每种溶液产生的梯形定形剖面具有一向外倾斜、与基片上表面的法线呈大约55度的角。梯形剖面的产生起因于{111}面与{100}面或者{110}面之间的选择性腐蚀比(1∶100)。具体地说,{111}面的腐蚀速度比{100}或{110}面的慢,其比率为1∶100。
在本例子中,EDP溶液在硅基片上腐蚀出凹槽区。EDP包括乙二胺(约500ml)、邻苯二酚(约160gm)、水(约160gm)对二氮杂苯(约1gm)。EDP浴的温度约为115C。在进行腐蚀之前,首先在该基片的上表面上形成一厚约200nm的热氧化物(SiO2)层。掩蔽和腐蚀该氧化物层后形成矩形区域。然后在垂直方向上腐蚀去掉这些区域约10μm,在上表面上形成边长约23μm的正方形窗口。诸侧面从每个窗口对称地朝下伸向边长约9μm的正方形基面。
在制造梯形定形块时,一二英寸的现成n型砷化镓大圆晶片提供形成自对准块用的基片。首先用解吸附工艺清除掉该块上表面上的原有氧化物。解吸附工艺包括把晶圆片暴露于大约700℃的温度和包括砷在内的诸元素之下。在解吸附步骤之后,在上表面上生长出1μm厚的掺杂或不掺杂的砷化铝牺牲层,并使之与上表面接触。于是在砷化铝上通过MBE工艺生长出厚约10.7μm的掺硅砷化镓。硅掺杂剂的浓度约为1018个原子/cm3。然后用光致抗蚀剂在MBE生长层的上表面光刻形成图案。
在MBE生长层的上表面上形成图案包括在MBE生长的砷化镓层的上表面上散布一层厚约1.6μm的光致抗蚀层。所用的光致抗蚀层为Shipley制造的产品,名称为AZ1400-31产品。形成图案的步骤至少还包括对光致抗蚀剂进行曝光、显影和烘干。该烘干步骤在约120C的温度下进行约1小时,使光致抗蚀层坚硬化。光刻形成图形步骤在上表面上形成多个矩形,每个矩形的大小约为35μm×24μm(光致抗蚀剂的曝光出部分)。
在形成图案之后,对未曝光区进行腐蚀,形成粘附于砷化铝牺牲层上的梯形定形块。在块与凹槽区之间合适的装配要求每个块具有基本上相同的形状。因此,在该特定的例子中对湿法腐蚀的各种浓度和技术进行了试验。
一般讲,湿法腐蚀未曝光区产生的结果与掩模边缘的取向性有关。如果掩模边缘与〔110〕方向平行,湿法腐蚀未曝光区产生从每个块的上表面向外倾斜的剖面。另一方面,湿法腐蚀掩模边缘与〔110〕方向平行的未曝光区则产生向内的倾斜的剖面(或倒台面)。
因为砷化镓包括两种性质不同的{111}平面组,所以湿法腐蚀产生这样一种不同的剖面(台形或倒台形)。在{111}A面或{111}镓面,表面上的每个镓原子下键合有三个砷原子。对于{111}B面或{111}砷面,表面上的每个砷原子下包括三个键合的镓原子。{111}B层上的每个砷原子包括有一对悬空的电子,因此砷原子是暴露的。这些悬空的电子没有出现在{111}A面的结构上。因此,{111}B面的腐蚀比{111}A面的快,从而形成具有倒台面形的块,它通常与硅基片上腐蚀出的凹槽区并不相匹配。
掩模边缘平行于〔110〕面产生了比掩模边缘平行于〔110〕面更大的钻蚀。在本例中,掩模边缘平行于〔110〕方向,在块顶部附近每垂直腐蚀1微腐便产生,约1.1μm水平腐蚀。在块基面区域附近,则产生每垂直腐蚀1微料,约0.4μm的水平腐蚀。另一方面,掩模边缘平行于〔110〕平面时,在块顶部附近的区域每垂直腐蚀1微米产生,约0.8μm的水平腐蚀,在块底部附近,每垂直腐蚀1微料,约水平蚀刻0.1μm。在基面上形成正方形区域要求掩模在〔110〕方向上长一些。
除了掩模对准之外,腐蚀剂浓度也影响每个砷化镓块的形状。磷酸、过氧化氢和水(H2PO3∶H2O2∶H2O)的溶液为本例中的MBE生长的砷化镓层提供有价值的腐蚀剂。这样一种腐蚀剂根据加入到磷酸中过氧化氢和水的量产生三种不同性质的剖面外形。稀释的磷酸浓度(1∶1∶40 H2PO3∶H2O2∶H2O)可以得到块的上表面与相应侧面之间的夹角为30度的梯形或台面形剖面。不太浓的腐蚀剂溶液产生夹角约在10度到20度之间的较浅梯形或台形剖面。这种较浅的剖面可能是腐蚀反应在{111}B面受到传输限制的结果。
浓度较高的磷酸(1∶1∶20 H2PO3∶H2O2∶H2O或更高)由于受到{111}B面上反应限制而产生向内的倾斜剖面(或倒台面)。较好的是,在稀释的和浓溶液之间的磷酸浓度(1∶1∶30 H2PO4∶H2O2∶H2O)可以提供较佳的剖面用以装配到腐蚀在硅基片上的凹槽区内。这样一种腐蚀剂产生的块平行于〔110〕面的角度为55度,平行于〔110〕面的角度为49度,且一般地以约0.133μm/分钟(或约133nm/分钟)的速度腐蚀MBE生长层。在得到所述结果之际,如腐蚀剂用尽则一般加以补充。
把磷酸对过氧化氢的比率提高到3∶1得到与上述实验相似的剖面外形,但通常引起侧面的表面变得粗糙。这种粗糙的表面正是本应用所希望的。
在对本例的一种改进方案中,一种相似的湿法腐蚀剂(1∶1∶30H2PO3∶H2O2∶H2O)使从铝砷化镓MNE生长层形成铝砷化镓块变得容易。这种腐蚀剂为铝砷化镓(x=0.1,AlxGa1-xAs)MBE生长层在平行〔110〕方向上提供向内的倾斜的剖面。垂直腐蚀速度约与砷化镓MBE生长层的相同。然而,砷化铝的存在,使{111}B面进入反应速度限制状态的腐蚀增加。这样一种腐蚀剂产生向内倾斜的剖面,因为在{111}B面上腐蚀x=0.1的AlxGa1-xAs比砷化镓更易反应。
除了湿法腐蚀之外,也可以用离子磨削来得到砷化镓梯形定形块。离子磨削MBE生长的砷化镓层提供向外倾斜的剖面,其上表面与相应的侧面之间的夹度约在68度到90度之间。为了获得这些角度,离子束相对于从MBE生长层到上表面的法线的角度范围约为0度到25度。陡峭的束角度(接近90度)通常产生垂直或大体上垂直的剖面。离子磨削也要求基片在该工艺步骤期间绕中心轴旋转。另一些工艺变量包括氩气刻蚀剂,压力约为50毫乇,离子能量约为1000v,而离子磨削速度为每7分钟1μm。在磨削期间,当光致抗蚀剂掩模每70分钟横向侵蚀约5μm时,得到的侧壁角度约为68度。砷化镓与光致抗蚀剂的选择比约为3∶1。离子磨削产生基本上一致的砷化镓块,因此,在该特定的例子中,它比用湿法腐蚀更为有效。
最后用浓度为1∶1∶30的H2PO3∶H2O2∶H2O的溶液浴清除残留在砷化镓或砷化铝上的氧化物。这样一些氧化物一般在把砷化铝暴露于腐蚀池或离子磨削时形成。于是可以用氢氟酸清除氧化层(一般看上去较粗糙,并且呈棕色)。通常,这些氧化层便氢氟酸腐蚀砷化铝牺牲层的效率降低。
在清除了氧化层之后,HF溶液择优腐蚀砷化铝牺牲层,以剥离砷化镓块。尤其是,用浓度为5∶1的H2O∶HF的HF溶液来腐蚀牺牲层,剥下块。由于表面张力可能仍留在基片上的块可以用机械的方法把它们移入溶液中。与设计的24μm×24μm的尺寸相比,取下块的基面大小约为22μm×23μm。
在从基片上取下块之后,用聚四氟乙烯移液管从砷化镓块上吸去大部分HF溶液。残留的任何HF用水冲掉。该冲洗步骤得到包括块和水的混合物。然后用诸如丙酮等惰性溶液来代替水,减少块上任何氧化物的形成。一旦在惰性溶液中,这些块可能集聚在一起,不是浮到溶液的表面上,就是下沉到溶液的底部。这些结块团常用肉眼可看见,使其后转移步骤的效率降低,因此应用超声波振动法机械地振动溶液,使它们分开。
于是把含有砷化镓块的惰性溶液均匀地转移(或倾倒)到硅基片的上表面上。尤其是,用移液管把这些溶液转移到基片的上表面上。溶液以基本上产生层流的速度进行转移。这种层流允许块在基片上表面上滚动和/或滑动,然后通过梯形剖面自对准入凹槽区。通常,转移速度应当使包含块的溶液在基片表面上均匀地流动,而不应使已经置入凹槽区内的块脱出或移动。
用离子磨削制造块的成品率高于用湿法腐蚀的。用离子磨削得到的块具有基本上一致的剖面外形,它们在溶液基本上蒸发之前自对准并插入到位于基片表面上90%以上的凹槽区内。随着溶液蒸发,表面张力常常使一部分块拉出凹槽区。在蒸发之后,约30%到70%的凹槽区仍被填充。成品率的降低可以通过在蒸发期间使用表面张力较低的液体,或者用使表面张力基本消除的超限临界干燥方法来加以改善。另一方面,可以把块在溶液蒸发之前粘接到凹槽区内从而固定成品率。块的剖面外形一致性低的湿法腐蚀块正确地插入到大约1%至5%的可用凹槽区。因此,离子磨削块相对于用湿法腐蚀制造块具有较高的成品率。
如图13所示的照片显示出根据本例置入到硅基片150上凹槽区内的砷化镓块。每个凹槽区的上部153为正方形,测得的长度约为23μm。如图所示,该照片包括有凹槽区155、硅基片157和梯形定形块159。
为了进一步图示说明本例的工作情况,在图14的照片中示出一发光二极管170。该照片包括硅基片173和发光的砷化镓LED175。在电偏压下,砷化镓LED发出红外射线。每个生长在MBE层上的砷化镓LED包括一层N+砷化镓罩(约100nm厚),N+Al0.1Ga0.9As输运层(约1μm厚)、P-有源区(约1μm厚)和P+缓冲层(约1μm厚)。如图15所示,砷化镓LED在每个块的顶部也需一施加电压用环形金属化接触400和光输出的窗口403。图16所示的电流-电压曲线显示出图14砷化镓结构的典型的p-n结特性。
还把砷化镓/砷化铝谐振隧道二极管(RTD)也集成在硅片上。生长在MBE层上的谐振隧道二极管包括在两砷化铝势垒(深约2.5nm)之间的砷化镓阱(深约5.0nm)。如图17所示,与硅集成的谐振隧道二极管的电流-电压特性曲线600在峰值电压VP=2.0v时显示出适当的微分负阻(NDR)。在该电压下,峰-谷比约为2.5。把谐振隧道二极管偏置在NDR区域后探测到的振荡(rf)被限制在大约100MHz。偏置电路的外部电容和电感造成这种频率限制。
上面的描述通过把砷化镓块装配到硅基片上来表示,仅是为了说明目的。如图所示,本发明可以应用于在硅基片上形成砷化镓二极管。另一种商业上的应用包括装配有硅集成电路的砷化镓激光器。硅芯片可在极高比特率的光学通道上与其它带有集成光探测器的芯片进行通信。其它的应用还可以包括把微波砷化镓器件为了微波电子学的目的而集成到硅集成电路上来。又一种应用包括把微结构与塑料片构成整体,形成有源液晶显示器(ALCD)或者类似的器件。在这种应用中,塑料片可以用包括冲压、注塑定形之一的技术来制造。本发明的优点包括,例如能用传统的金属化或其它工艺在平面上互连诸块之间和/或块与基片上其它电子器件之间的集成电子器件或一部分电子器件。可以把本发明的概念应用于要装配到较大基片上的几乎任何一种微结构。
为了说明本方法和装置在诸如要求定形块有不同尺寸的各种应用中的一般的工作情况和效果,本发明的进一步例子包含利用具有两种不同尺寸和质量上相差2.5个数量级的硅定形梯形块把微结构装配到硅基片上。
在第一个硅实验中,把较大的梯形块设计成具有两重旋转对称,其较大面的尺寸约为1.0mm×1.2mm,深约235μm,而凹槽区则被设计成对应于较大的梯形块尺寸。在第二个硅实验中,把较小的梯形块设计成具有四重对称,较大面的尺寸约为150μm×150μm,深度约为35μm,凹槽区则被设计成对应于较小梯形块的尺寸。在该两个实验中,本方法和装置均表现出高的填充率。
在每个硅例子中,利用使浆体在基片上循环的装置把含有硅定形块和惰性流体的混合物或浆体输送至具有互补凹槽区的硅基片的上表面上。另取在为每次硅实验制作具有凹槽的硅基片时,氢氧化钾(KOH)溶液产生具有梯形或倒截头金字塔形的凹槽区。该溶液产生的梯形或倒截头金字塔形,带有横向尺寸的较大面在上表面上其侧面向内倾斜,与基片上表面的向内倾斜夹角约为55度。梯形剖面的产生是由于{111}面与{100}面之间的选择性腐蚀比(1∶200)。具体地说,{111}面的腐蚀比{100}面的腐蚀慢,近似的比率为1∶200。
在这些硅例子中,KOH溶液用由矩形窗口组成的掩模把梯形凹槽区腐蚀成厚约500μm的硅大圆晶片(整体面积为5cm×5cm)。这些例子中所用的KOH腐蚀液约80C的KOH∶H2O为1∶2(重量比)的溶液。在腐蚀步骤之前,首先在这些基片的上表面上形成氮化硅(SiNx)掩模层。
掩模和腐蚀该氮化硅层形成梯形凹槽区。梯形凹槽区的深度由腐蚀硅基片的时间长度决定。如果腐蚀硅的时间长度正确,则可以把凹槽区制成与块的形状和大小一致。
对于第一个的硅实验,在使与较大的梯形定形块互补的腐蚀进行了约23分钟之后,基片上较大凹槽区上表面的横向尺寸约为1.0mm×1.2mm,深度约为235μm。该实验中的掩模由总共191个对应于凹槽区的孔组成,这些孔以各种不同的试验图案分布。
对于第二个硅实验,在使与较小的梯形定形块互补的腐蚀进行了约30分钟之后,另一基片上较小凹槽区上表面的横向尺寸约为150μm×150μm,深度约为35μm。该实验中的掩模为简单的64×64个孔的阵列(对应于4096个凹槽区),相邻孔之间的间隔约为300μm。
在上述两个硅实验的基片上,氮化硅掩模层在整个微结构装配方法中,始终留着而没有从基片上除去。在制造供第一个硅实验用较大的梯形定形块时,厚约235μm单面抛光的两英寸硅大圆晶片提供形成自对准定形块用的基片。在这个实验中,硅晶圆片自身就是形成梯形定形块的块层。在大圆晶片的抛光底面和未抛光的上表面两者上均沉积厚约0.4μm的SiNx层。覆盖在大圆晶片未抛光的上表面上的SiNx层形成牺牲层,覆盖在大圆晶片抛光底面上的SiNx层则形成掩模层。然后用光致抗蚀剂对覆盖在大圆晶片的抛光底面上的SiNx掩模层进行光刻形成图案。
对覆盖在大圆晶片抛光底面上的SiNx掩模层进行光刻形成图案包括把光致抗蚀层散布在该SiNx层上。光刻形成图案步骤还至少包括对光致抗蚀剂进行曝光、显影和烘干。这种烘干步骤是在约120℃的温度下进行约20分钟,以使光致抗蚀层坚硬化。上述光刻步骤形成多个正方形(或矩形)。在光刻形成图案之后,对曝光区域进行腐蚀,形成粘附在SiNx牺牲层上的梯形定形块。
在制造供第二个硅实验用较小的梯形定形块时,用SOI大圆晶片来提供形成自对准定形块用的基片。所用的特定的SOI大圆晶片有一厚约35的SOI层,一厚约0.4μm的二氧化硅(SiO2)层使它与大圆晶片的其余部分隔开。35μm厚的SOI层为形成梯形定形块的硅块层。厚约0.4μm的SiO2层则为牺牲层。在35μm厚的硅块层上沉积厚约为0.4μm的SiNx掩模层,并用光致抗蚀剂进行光刻形成图案。
对覆盖在大圆晶片上表面上的SiNx掩模层进行光刻形成图案包括在该SiNx掩模层上散布光致抗蚀剂。光刻形成图案步骤还至少包括对光致抗蚀剂进行曝光、显影和烘干。光刻形成图案步骤形成多个矩形,每个矩形图形的大小约为150μm×150μm(光致抗蚀剂的曝光部分)。在形成图案之后,对未曝光区域进行腐蚀,形成粘附在SiO2牺牲层上的梯形定形块。
在该KOH∶H2O腐蚀液中对硅的腐蚀最慢的面是{111}面,可以把它看作是形成定形块倾斜侧面的腐蚀阻挡层。在每次硅实验中,用于限定块的相关掩模必须对准适当的晶体轴。图20示出,用于形成硅梯形定形块的掩模。在掩模对角线的交叉点上形成梯形定形块。图中的对角线宽度必须是硅块层厚度的两倍。对于较大的梯形块,a=0.2mm,t=235μm;而对于较小的梯形块,a=0,t=35μm。
腐蚀是在该硅块层被全部腐蚀完,且在精确地形成了棱角的同时完成。超过这点继续进行腐蚀并不改变梯形定形块的整体大小,仅使棱角变圆。由于几何学上的考虑,定形块上表面的宽度必须至少是硅块层厚度的 倍。这限制了用这种技术所制造的块的宽高比。如果块棱角之间没有距离,则这种掩模图形利用的硅面积高达50%。
在较大定形块的第一个硅例子中,把腐蚀后的硅大圆晶片放置在浓HF腐蚀液内,以取下定形块,使之不与SiNx牺牲层接触,并从掩模层上除去任何残留的SiNx。在较小定形块的第二个硅例子中,同样把腐蚀过的SOI大圆晶片放置在浓HF腐蚀液中,以取下定形块,使之不与SiO2牺牲层接触,并从掩模层上除去任何残留的SiNx。这种HF腐蚀液择优腐蚀SiO2和SiNx,以分离诸硅定形块而不与之腐蚀。尤其是,用浓缩度约为1∶1 HF∶H2O的HF溶液腐蚀牺牲层和残留的SiNx,来分离定形块。
在所有的定形块在溶液中分离后,轻轻倒出HF,并加入水。对于它一个硅实验,水和较大的定形块形成混合物或浆体。然而,对于第二个硅实验,甲醇和较小的定形块形成混合物或浆体。由于硅的属性是疏水性的,故质量较小的定形块倾向于浮在水面上。较大的定形块则没有这个问题,因为它们的质量较大。由于甲醇特性具有极性和无极性两者,所以较小的定形块不会浮出,但却没入流体中。正如硅例子所说明那样,可根据包括定形块的质量在内的一些因素来选择浆体中所用的流体。
在第一个硅实验中,把包括大约500个较大定形块和水(约0.5升)的混合物放入该装置(直径约4英寸)中。基片约为5cm×5cm,并含有191个以各种图形分布的凹槽区。开始时,由于所有的硅表面都是疏水性的,所以较小的水泡附着于较大的定形块和基片上的凹槽区。把大约5滴的少量表面活化剂加到水中(1∶100,000),使硅表面的疏水性降低,水泡就再附着于定形块或凹槽区。调整基片的角度成能使取向不正确的块滑落。对基片抖动和正确取向使块填充到孔中的速率提高。由于梯形块的倾斜外形,所以几乎所有块均以较大的表面朝向上方式下落通过流体。这样,这些块一旦着陆于基片,便合理地调整取向,填充入凹槽区而导致高的填充率。当重复进行这第一个硅实验时,在约4.5分钟内,所有191个凹槽区均被填满而使填充率达到100%。
在第二个硅实验中,把包括约30,000个较小的定形块和甲醇(约0.5升)的混合物放入到该装置中。基片约为5cm×5cm,在基片中央含有3cm×3cm的64×64阵列(4096)的凹槽区。以类似于第一个具有较大定形块的硅实验中所用的相似的方法操作该装置,在约15分钟之后,可以得到约为70%的饱和填充率。
如果定形块的较大面是粗糙的,则可以达到较高的填充率。对具有平滑的较大面的定形块,定形块倾向于附着到基片的平滑表面上,降低了块在基片上的整体运动,流体流动不足以使以这种方式附着的块脱离开来。在第一个硅实验中,由于块较大的面为未抛光大圆晶片的粗糙背面,所以较大的成形块没有这一问题。带有诸如电路或者接触压脚等特征的定形块,在较大的面上均具有使填充率达到较高的这样一些粗糙表面。
把具有凹槽区的基片的上表面变得粗糙也可以导致较高的填充率。在除去了SiNx掩模层之后,用约0.5μm的Al2O3磨削粉对基片磨削刚好足够合理长的时间(约1-2分钟),以在表面上产生约0.3μm的粗糙度。在把它变粗糙之后,在所有取向上的块都容易脱离基片。在具有较小定形块的第二个硅实验中,在装置中进行了约15分钟之后,可以达到约90%的饱和填充率。重复进行第二个硅实验,确定对较小的块所达到的90%的填充率是稳定的状态。
为了达到甚至更高的填充率,尤其是对较小的定形块,必须小心地正确腐蚀基片,并保持基片和溶液不含有可能干扰填充的颗粒。例如,如果凹槽区底部由于KOH腐蚀留下粗糙面,或者如果在磨削工艺期间在凹槽区内沉积有粒子,则填充的干扰就会发生。凹槽区底部的不均匀性可能或者阻止块进入到凹槽区,或者使得已填充到这些凹槽区内的块又离开。另外,基片上的凹槽区没被腐蚀到足够的深度不能达到高的填充率,因为突出在基片凹槽区边缘之上的块会更易被流体冲离。但基片的凹槽区腐蚀得太深也不能达到高的填充率。虽然过腐蚀的凹槽区顶部的横向尺寸保持相同,但凹槽区底部的横向尺寸却随深度的增加而变得小了。因此,填充到过腐蚀的凹槽区内的块只有其边缘,而非其较小的底面将与基片接触。最好是,凹槽区既不欠腐蚀,又不过腐蚀,以达到较高的填充率。
也以一般方式描述了供获得自装配器件用独有的剖面外形。这样一些独有的剖面外形乃为,例如,以在基片上具有与凹槽区结构相对应的单个块结构的形式出现,目的为了图示说明而已。块的结构也可以包括各种形状,诸如圆柱形、矩形、正方形、六边形、金字塔形、T-形、卵石形(kidney)等。块结构包括宽度、长度和高度,以有助于对所要求的取向进行自装配。另外,只要每种结构在基片上包括有特定的粘接位置,可在混合物(溶液和块)内存在超过一种类型的结构。
虽然为能清楚地理解,通过图示说明和例子较详细地描述了上术发明,但显然,可在所附权利要求书的范围内作出一些变化和改变。
上述的描述仅是说明,并不是限制。该技术领域的熟练人员,在看了这里的揭示后将对本发明的多种变化都变的明显起来。仅通过例子说明,本发明可以用于把砷化镓器件装配到硅基片上以及其它一些应用。因此本发明的范围不应由上述的描述来限定,而应由所附的权利要求书以及与它们等效的全部范围加以确定。
权利要求
1.一种把微结构装配到基片上的方法,所述基片包含一个至少在其上带有一个凹槽区的上表面,其特征在于,所述方法包含下列步骤在流体内提供多个定形块,以形成浆体;使所述浆体在所述基片上以至少有一个所述定形块以选定的取向定位置入于所述凹槽区内的速度在所述基片上循环,每个所述的定形块包含一倾斜的边棱,以所述选定的取向匹配于所述凹槽区内。
2.如权利要求1所述的方法,其特征在于,每个所述的定形块包括至少一个电子器件。
3.如权利要求1所述的方法,其特征在于,每个所述定形块包括电子器件的一部分。
4.如权利要求1所述的方法,其特征在于,所述基片从硅大圆晶片、塑料片、砷化镓大圆晶片、玻璃基片以及陶瓷基片中选择。
5.如权利要求1所述的方法,其特征在于,所述流体为惰性流体,从水、丙酮和乙醇中选择。
6.如权利要求1所述的方法,其特征在于,所述的每个定形块具有梯形剖面的外形。
7.如权利要求6所述的方法,其特征在于,所述基片上的每个所述凹槽区基本上形成与每个所述定形块互补的梯形。
8.如权利要求1所述的方法,其特征在于,气体使所述浆体在所述基片上循环。
9.如权利要求8所述的方法,其特征在于,所述气体包括氮气。
10.如权利要求1所述的方法,其特征在于,每个所述的块包含半导体材料。
11.如权利要求1所述的方法,其特征在于,每个所述的块为截头金字塔形,所述截头金字塔形包括一基面和从所述基面伸向顶部的诸侧面。
12.如权利要求11所述的方法,其特征在于,所述基面为矩形和所述侧面共有四个。
13.如权利要求11所述的方法,其特征在于所述基面为正方形和所述侧面共有四个。
14.如权利要求12或13所述的方法,其特征在于,每个所述块的长度约为5微米到2000微米,宽度约为5微米到2000微米,从所述基面到所述上顶部的厚度约为2到500微米。
15.如权利要求1所述的方法,其特征在于,由泵使所述浆体在所述基片上再循环。
16.如权利要求1所述的方法,其特征在于,用机械装置使所述浆体在所述基片上移动。
17.一种输送包含集成电路部分的微机械加工块的方法,其特征在于,所述方法包含下列步骤把至少一个块放置在流体中,把所述块输送到选定的位置上。
18.如权利要求17所述的方法,其特征在于,由泵来输送所述块。
19.如权利要求17所述的方法,其特征在于,由气泡泵来输送所述的块。
20.如权利要求17所述的方法,其特征在于,由喷气泵来输送所述的块。
21.如权利要求17所述的方法,其特征在于,所述块自对准入基片的凹槽区。
22.如权利要求17所述的方法,其特征在于,所述块为已腐蚀出的块。
23.如权利要求17所述的方法,其特征在于,用机械装置来移动所述的块和所述的流体。
24.一种形成混合集成电路的方法,其特征在于,所述方法包含下列步骤提供其上包括有第一电子器件部分的第一倾斜定形块和第二电子器件;把所述第一倾斜定形块放置到基片上的第一凹槽区;互连所述第一倾斜定形块与所述第二电子器件部分,所术互连步骤为金属化步骤。
25.如权利要求24所述的方法,其特征在于,所述第二电子器件部分位于所述基片上。
26.如权利要求24所述的方法,其特征在于,所述第二电子器件部分位于放置入所述基片的第二凹槽区内的第二倾斜定形块上。
27.如权利要求26所述的方法,其特征在于,把位于所述基片上的第三电子器件部分互连到所述第一电子器件部分或者所述第二电子器件部分上。
全文摘要
本发明提供一种通过流体输送把微结构装配到基片上的方法和装置。自对准入凹槽区内的定形块微结构位于基片上,俾使微结构与基片变成为一个整体。改进的方法包括把定形块转移到流体中心制成浆体的步骤。然后把该浆体在其上具有凹槽区的上表面上均匀地分配或者循环。微结构通过形状和流体在基片的表面上滚动、自对准并齿合于凹槽区内。
文档编号H01L21/3065GK1147153SQ9610668
公开日1997年4月9日 申请日期1996年6月7日 优先权日1995年6月7日
发明者约翰·斯蒂芬·史密斯, H-J·J·叶 申请人:加利福尼亚大学董事会