专利名称:从基片上灰化有机物质的方法
技术领域:
本发明涉及一般说来,本发明涉及在各种基片上的有机物质的去除,更具体而言,涉及一种用于去除在半导体、平板显示器,读/写头和其它相关器件生产过程中临时在各种基片层上形成的有机膜和物质的灰化方法。
2.相关技术的叙述光刻胶膜的去除是制造半导体器件过程的重要组成部分。采用灰化方法,具体而言,采用含氧量高的气体去除有机膜,诸如抗蚀剂和聚酰亚胺的方法已公知一段时间。最近十年间等离子体装置和相关加工技术的进展已能满足相继几代极大规模集成(VLSI)器件和超大规模集成(ULSI)器件的要求。但是,随着这类器件特性尺寸和膜的厚度不断减小,每代集成电路(IC)在制造方面都面临新的挑战。
随着IC几何尺寸不断大幅度地缩小,灰化方法不断地面临两个问题(a)提高无残留抗蚀剂的去除速率,和(b)降低在抗蚀剂膜下面的基片层中引起的损伤。一般说来在改变灰化过程的化学条件或者改变等离子体介质的物理条件时这两个目的会相互矛盾。例如,可用产生致密等离子体环境或者在等离子体环境中利用或产生更有效地与抗蚀剂反应的化学物质可提高处理速率。
等离子体的物理和化学条件两者皆能引起基片的损伤。例如充电和离子轰击作用直接与等离子体的物理性质有关。高能离子能驱动少量重金属(例如Fe、Cu和Pb)及碱金属(例如Na和K)原子进入抗蚀剂下面的基片层中,这些金属原子通常以杂质形式存在于抗蚀剂膜中。重金属杂质特别是其后的重金属穿透和迁移进其它基片(例如硅)层可影响少子的寿命,以致损伤器件的性质。在抗蚀剂膜在随灰化过程的进行变得较薄时,特别是敏感性基片的厚度设计得较薄时,这种轰击效应尤其为严重。
基片的损伤亦由等离子体的化学性质引起,诸如对抗蚀剂下面的层的蚀刻或其它毒化作用。例如,在采用卤化气混合物如采用氧(O2)和四氟甲烷(CF4)增大等离子体灰化速率的情况下,氟(F)使氧化硅(SiO2)发生蚀刻。与此类似,高能氧离子可能有助于在玻璃上旋涂(SOG)膜的表面层内生成水,其结果将增大介电常数或相关的经由毒化的现象。
这类因素可随其用途在不同程度上适用于全部常规干蚀刻等离子体刻蚀器,例如筒体式、溢流管或平行电极结构,而顺流灰化则是应用最广的方法。为了增大处理速率和减少离子损伤问题。可采用等离子体密度较大和离子能量较低的技术。新一代改进型等离子体源采用诸如电子回旋加速器共振(ECR)或感应耦合等离子体(ICP)的微波或无线电频率能工况使等离子体的等离子体密度控制与离子能量控制去耦的方式来达到这些目的。这类技术和其它类型的等离子体工艺和等离子体装置是众所周知的,并成了许多美国专利的主题。
常规灰化方法中,与所采用的等离子体的性质和工况无关,其灰化速率和完整性以及不希望的蚀刻或对基片层的损伤在很大程度上受抗蚀剂和基片层之间的化学反应及等离子体中产生的反应性离子的、中性的和基团的形式影响。在一种典型的溢流管灰化器或其它常规灰化器中,等离子体气体混合物的性质是灰化速率的决定性因素,灰化速率亦对“灰化温度”敏感。气体混合物的性质同样影响灰化的活化能,后者是灰化速率对灰化温度的敏感性尺度。
活化能从阿仑尼乌斯图的斜率得到,该图是灰化速度与灰化温度倒数的函数图。因此,小的活化能(阿仑尼乌斯图的斜率小)表示灰化速率对灰化温度不大敏感,灰化过程比较平稳和匀速。活化能较低同时意味着灰化温度可以降低,而不致明显损失灰化速率。在VLSI或ULSI的制造要求较低的处理温度同时应保持可接受的有实效的灰化速率水平(例如>0.5μm/min)的情况下是特别适用的。
美国专利1,961,820给出了对一系列由一种或多种氧、氢、氮、水蒸汽和卤化物气体组成的气体混合物的灰化速率和活化能的全面讨论。结果表明,向氧等离子体添加氮不改变活化能(对氧为0.52eV),并只稍为改进灰化速率(160℃下从0.1变到0.2μm/min)。但是,向氧等离子体添加5-10%的氢或水蒸汽使活化能降低到约0.4eV,对灰化速率的改进与添加氮的情况相似。向氧等离子体添加氮和5-10%的氢或水蒸汽对使灰化速率增加到更有效的水平即0.5μm/min 160℃下具有协同效应。
如果向氧等离子体添加卤化物(例如四氟甲烷),其活化能(降到0.1eV)和灰化速率(>1.5μm/min)可获得最大的改进。但是,在这种情况下,CF4同样会由于氟反应引起诸如氧化硅、聚硅和铝等基片层的蚀刻。曾经报导,反应气体混合物中包含水蒸汽将降低CF4引起的损伤,显然是由于水和CF4的反应抑止了卤化反应。
从上面的讨论可以看出,研究具有适宜高的灰化速率,又对抗蚀剂膜下的基片层无损伤作用的反应气体混合物仍在继续。此外,随着VLSI和ULSI制造的约束条件更加严格,较低灰化温度和保持灰化过程的稳定性(较低活化能)越来越成为对合适的反应气体混合物的主要要求。
本发明的提出者成功地在于低于200℃的温度下以非等离子体去除抗蚀剂的应用中采用了不含水的三氧化硫(SO3)。实验表明,将抗蚀剂覆盖的基片表面暴露在SO3中,对聚硅和金属基片表面无损伤,也无任何有害影响。暴露的硅和金属表面也因三氧化硫的钝化作用受到保护。因此,三氧化硫显示为一种适宜等离子体灰化应用的候选物,它可单独或者在反应气体混合物中应用。特别是在氧等离子体中,SO3可望促进氧基团的生成,从而明显地改进灰化反应的速率。
发明简述本发明的目的在于提供一种用于从基片上灰化有机物质,包括光刻胶残余物的改进型方法,该方法采用三氧化硫气体作为反应气体混合物的一部分。在灰化过程中可通过采用三组气体混合物之一来实现。这些混合物包括(1)第一组气体,该气体仅包括三氧化硫;(2)第二组气体,该气体包括三氧化硫和一种辅助性气体诸如水蒸汽、臭氧、氢、氮、氧化氮或卤化物诸如四氟甲烷(CF4)、氯(Cl2)、三氟化氮(NF3)、六氟乙烷(C2F6)、或三氟甲基(CHF3)的混合物;和(3)第三组气体,该气体包括三氧化硫和至少两种上述辅助性气体的混合物。
工艺表明,如果在主要反应灰化气体以适当的量并在过程的适当的时间添加某些辅助性气体,则它们将对灰化过程特性和有机膜去除性能起有利的作用,此类有利的特性和性能包括(a)较高的灰化速率,(b)较低的活化能,和(c)在有机物去除过程中对基层无蚀刻作用。
优选实施方案的描述采用上述三组气体之一进行的有机光刻胶的去膜和等离子体灰化可籍助当前技术中已知的常规溢流式、筒体式、顺流式、直流式和或其它类型的等离子体灰化装置实现。本发明涉及用于灰化过程的气体的性质及其在所有常规灰化装置中的应用。溢流式,筒体式,直流式和顺流式以及其它类型的等离子体灰化装置在当前技术中是已知的,不构成本发明的一部分。
本发明所立足的基本概念在于三氧化硫气体,在适当体积和工艺条件下,与还可添加的为降低活化能、增加灰化过程速度、降低灰化过程操作温度或改善灰化过程效率或有效性所需的某些辅助性气体一起,以气态作为反应气体混合物用于等离子体灰化,或与所有类型的有机涂层、膜、层和残留物,包括过程固化的光刻胶作用,致使其从基片表面基本被去除、清洁或去膜。在本发明的所有实施方案中,三氧化硫由源容器提供,三氧化硫从该容器按一定数量并在灰化过程的适宜时间送入处理室。在源容器中,三氧化硫可以呈固态、液态或气态混合物,固态物质呈α态、β态、γ态或其混合物。
特别是下列呈涂层、膜、层和残留物的有机物质可用本发明的方法去除聚合的和非聚合的光刻胶、光刻胶残留物、光敏和非光敏的有机化合物、涂料、树脂、多层有机聚合物、有机金属络合物、侧壁聚合物和有机的玻璃上旋涂膜。光刻胶可包括正光光刻胶、负光光刻胶、电子束刻胶、X-射线光刻胶以及离子束光刻胶。
此类涂层、膜、层和残留物可形成在各种基片上,包括但不限于,(a)由硅、聚硅、锗、Ⅲ-Ⅴ物质和Ⅱ-Ⅵ物质所组成的半导体晶片和器件;(b)氧化物、(c)氮化物、(d)氧氮化物、(e)无机介电质、(f)金属和金属合金、(g)陶瓷器件、(h)光掩模、(ⅰ)液晶和平板显示器、(j)印刷电路板、(k)读/写磁头、以及(I)薄膜头。
本发明的灰化过程可在室温(约为20℃)至350℃范围的温度下进行。但是,灰化过程优选在尽可能低同时又保持尽可能高的蚀刻速率的温度下进行,灰化过程更优选在低于200℃的温度下进行。1.第一实施方案一个实施方案是采用现有技术中已知的常规的溢流式、筒体式、直流式和顺流式和其它类型的灰化装置的任意一种装置实施的等离子体灰化过程。在这个第一实施方案中,采用第一组气体产生等离子体。具体而言,反应气体仅含三氧化硫。将三氧化硫送入等离子体形成室,后者是先被抽空并保持适宜的真空。SO3的流量在过程中用控制器控制。微波能送入等离子体形成室,室中以反应气体生成等离子体。作为等离子体生成的活性物质向下流入处理室,按照现有技术中已知的一种方法与基片表面上的有机膜进行接触,有机膜和等离子体相互作用的结果,有机膜或被去除,或发生化学变化,致使膜能在过程下一步的冲洗或清洁工序中被去除。过程的限制因素,诸如流量、微波能等等与现有技术通常采用的相同,如在美国专利4,669,689和4,961,820所公布的。2.第二实施方案本发明的另一实施方案是采用常规的溢流式、筒体式、直流式和顺流式和其它类型的灰化装置的任一种装置实施的等离子体灰化过程。在第二个实施方案中,采用第二组气体产生等离子体。具体而言,反应气体含三氧化硫和一种辅助性气体。将三氧化硫和辅助性气体送入等离子体形成室,后者先已抽空并保持适当的真空。第二组反应气体中三氧化硫的浓度约在1-95%(体积)范围内,辅助性气体占其余部分(99-5%(体积))。
每种气体的流量在过程中用控制器控制。微波能送入等离子体形成室中,其中由反应气体产生等离子体。作为等离子体生成的活性物质向下流入处理室,按现有技术已知的一种方法使其与基片表面上的有机膜进行接触。有机膜和等离子体相互作用的结果,使有机膜或被除去或者发生化学变化,致使有机膜能在过程的下一步的冲洗或清洁工序中被去除。如上所述,过程的限制因素,诸如流量、微波能等等与现有技术通常采用的相同。
辅助性气体可包含选自下列的任一气体水蒸汽、臭氧、氢、氮、氮氧化物、或卤化物如四氟甲烷(CF4)、氯(Cl2)、三氟化氮(NF3)、六氟乙烷(C2F6)、或甲基三氟化物(CHF3)。氮氧化物的例子包括氧化二氮(N2O)、氧化氮(NO)、三氧化氮(N2O3)和二氧化氮(NO2)。3.第三实施方案本发明的另一实施方案是采用常规的溢流式、筒体式、直流式和顺流式以及其它类型的灰化装置中的任一种装置实施的等离子体灰化过程。在第三实施例子中采用第三组气体产生等离子体。具体而言,反应气体含三氧化硫和至少两种辅助性气体组成。将三氧化硫和辅助性气体送入等离子体形成室,该室已先抽空并保持适当的真空。第三组反应气体中三氧化硫的浓度约在1-95%(体积)范围内,辅助性气体组成余量(99-5%(体积))。
气体的流量在过程中用控制器控制。将微波能送入等离子体形成室,其中由反应气体生成等离子体。作为等离子体产生的活性物质向下流入处理室,按现有技术中已知的一种方法使其与基片表面上的有机膜进行接触。作为有机膜和等离子体相互作用的结果,有机膜或被去除,或发生化学变化,致使膜能在过程的下一步的冲洗或清洁工序中被去除。如上所述,过程的限制因素,诸如流量、微波能等等与现有技术通常采用的相同。
辅助性气体至少包含上述辅助性气体的两种。
在上面的每个实施例子中,有机膜的去除,包括抗蚀剂层的去除是基本完全的,对下面的基层几乎无损伤或无损伤。
这样,本发明公开了一种采用等离子体灰化方法从基片表面上去除有机物质的方法,该过程采用了含三氧化硫的反应气体。很明显,对本专业技术人员来说,对上述可作各种变化和修正,这些变化和修正被视为在所附权利要求范围之内。
权利要求
1.一种用于从基片表面上去除有机物质的方法,该方法包括下列步骤(a)由反应气体产生等离子体,该反应气体含5-99%(体积)的三氧化硫及至少一种选自水蒸汽、臭氧、氢、氮、氮氧化物和卤化物的辅助性气体;和(b)用该等离子体轰击含有有机物质的基片的表面,轰击时间足以灰化该有机物质,但不足以侵蚀该基片的该表面。
2.权利要求1的方法,其中该反应气体主要由三氧化硫气体组成.
3.权利要求1的方法,其中该反应气体主要由三氧化硫和一种辅助性气体组成,该三氧化硫的浓度约在1-95%(体积)范围内。
4.权利要求1的方法,其中该反应气体主要由三氧化硫和至少两种辅助性气体组成,该三氧化硫的浓度约在1-95%(体积)范围内。
5.权利要求1的方法,其中该氮氧化物是选自氧化二氮(N2O)、一氧化氮(NO)、三氧化二氮(N2O3)和二氧化氮。
6.权利要求1的方法,其中卤化物是选自四氟甲烷(CF4)、氯(Cl2)、三氟化氮(NF3)、六氟乙烷(C2F6)和甲基三氟化物(CHF3)。
7.权利要求1的方法,其中有机物质包括是选自聚合的和非聚合的光刻胶、光刻胶残留物、光敏的和非光敏有机化合物、涂料、树脂,多层有机聚合物、有机金属络合物、侧壁聚合物和有机的玻璃上施涂物。
8.权利要求7的方法,其中该光刻胶是选自正光光刻胶、负光光刻胶、电子束光刻胶,X-射线光刻胶和离子束光刻胶。
9.权利要求1的方法,其中基片是选自(a)由硅、聚硅、锗、Ⅲ-Ⅴ物质,Ⅱ-Ⅵ物质组成的半导体和器件、(b)氧化物、(c)氮化物、(d)氧氮化物、(e)无机介电质、(f)金属和金属合金、(g)陶瓷器件、(h)光掩模、(i)液晶和平板显示器、(i)印刷电路板、(k)读/写磁头、和(I)薄膜头。
10.权利要求9的方法,其中该金属和金属合金是选自铝和铝-硅-铜含金。
11.权利要求1的方法,其中等离子体灰化过程是在室温和350℃之间的温度下进行的。
12.权利要求11的方法,其中该温度小于200℃。
13.权利要求1的方法,其中该过程是在一种溢流式、筒体式、顺流式或直流式的灰化装置中进行的。
全文摘要
本发明涉及从基片上灰化有机膜的方法,灰化采用一种含气体或气体混合物的等离子体进行,该气体或气体混合物是选自(a)仅是三氧化硫;(b)三氧化硫加一种辅助性气体;和(c)三氧化硫加至少两种辅助性气体。下列任一种气体均可用作辅助性气体:水蒸汽、臭氧、氢、氮、氮氧化物或卤化物如四氟甲烷、氯、三氟化氮、六氟乙烷或甲基三氟化物。
文档编号H01L21/02GK1289452SQ99802399
公开日2001年3月28日 申请日期1999年1月26日 优先权日1998年1月28日
发明者E·O·莱文松, A·瓦莱 申请人:安农公司