用于超高效率动力系统的燃料电池堆的制作方法

文档序号:6829436阅读:276来源:国知局
专利名称:用于超高效率动力系统的燃料电池堆的制作方法
相关专利申请本专利申请是1997年11月26日递交的名为“超高效率涡轮和燃料电池组合”的美国专利申请号08/977,835的部分继续专利申请,前述美国专利是1994年10月19日递交的名为“超高效率涡轮和燃料电池组合”的美国专利申请号08/325,486的继续申请,现在其美国专利号为5,693,201;前述美国专利是1994年8月8日递交的名为“具有内部热综合的电化学转换器”的美国专利申请号08/287,093的部分继续申请,现在其美国专利号为5,501,781。
背景技术
本发明涉及燃料电池,并且它用于与燃气涡轮、蒸汽涡轮以及加热、通风和空调(HVAC)系统相连接,并且特别涉及采用这种设备的高性能混合动力系统。
常规的高性能燃气涡轮动力系统是现有并且已知的。现有燃气涡轮动力系统包括压缩机、燃烧室和机械涡轮,它们一般同轴连接,例如,沿着相同的轴线连接。在常规的燃气涡轮中,气体进入压缩机并且以所需的高压排出。该高压气体流进入燃烧室,在此它与燃料相反应,并且被加热到所选择的高温。该加热气体流然后进入燃气涡轮并且绝热膨胀,从而做功。这种一般类型的燃气涡轮的缺点是对于兆瓦容量的系统,该涡轮以相对较低的系统效率工作,例如大约25%。用于克服该问题的现有方法是采用用于恢复热力的同流换热器。所恢复的热力一般被用于进一步在气体流进入燃烧室之前加热该气体流。一般来说,同流换热器把燃气涡轮的系统效率提高到大约30%。这种解决方案的一个缺点是同流换热器相对较昂贵,从而大大增加了动力系统的总成本。所采用的另一种现有方法是以相对较高的压力和相对较高的温度来运作该系统,从而增加系统效率。但是,由于系统受到与高温和高压机械部件相关的成本影响,因此系统效率的实际增加是有名无实的。由工厂所采用的具有大于100MW的功率容量的另一种现有方法是把涡轮的高温废气与废热回收蒸汽发电机之间热耦合,用于一种组合的燃气涡轮/蒸汽涡轮应用。这种组合的循环应用一般把系统工作效率提高到大约55%。但是,该效率仍然相对较低。总体动力系统性能进一步以组成的燃料电池和相关冷却系统的效率为基础。用于燃料电池热量管理的常规方法是强制大量冷却介质,液体或气态冷却剂蒸汽,通过燃料电池组件。冷却水通常用于室温设备,并且空气被用于较高温度的燃料电池。在一些例子中,作为燃料电池的氧化剂的同种气体也被用作为一种冷却介质。该冷却介质通过燃料电池并且由其明显的热容量带走热能。这种方法所需的冷却剂的体积流量与电解质的电化学作用的受限温度工作范围成反比,或者在具有陶瓷部件的燃料电池的情况下受到与热应力相关的限制。上述对冷却介质的温度升高量的热容量限制导致通过燃料电池的冷却剂流率比电化学反应所需的流率高得多。由于相对较大的流量必须被预热到燃料电池的工作温度附近的温度上并且循环通过,因此需要一种专用的反应剂热管理子系统。一般地,冷却剂被预热到接近燃料电池的工作温度,例如在工作温度的50℃范围内。这种热管理子系统通常包括用于过量的冷却剂流的再生加热、泵吸和处理的装置。这些部件大大增加了该系统的总成本。为了说明的目的,考虑一种适合于预热燃料电池反应剂并且以100℃温度差工作并且一般传热率为500Btu/hr-ft2(0.13W/cm2)的交流换热器。另外假设50%电池效率没有过量的冷却剂流,并且工作在常压下,该交流换热器的加热或传热表面面积将具有与燃料电池电解质的表面面积相同的量级。考虑10倍于燃料电池反应剂流所需的水平的过量冷却剂流必要条件,该水平是一个用于常规方法的代表数值,该换热器表面面积将10倍于有效燃料电池表面面积。这种大尺寸的换热器使得难以把该换热器与电化学转换器集成形成一种紧凑和高效的动力系统。另外,大体积的冷却流体通过燃料电池使得该燃料电池不适合与燃气涡轮相集成以获得相对较高的系统效率。因此,在本领域中存在一种对高性能动力系统的需求以及对提供更好的热管理方法的系统的需求,特别用于电化学或混合动力能量系统中。特别地,一种改进的动力系统,例如燃气涡轮动力系统,其能够集成和运用电化学转换器的所需性能,这将代表着工业上的重大进步。更加特别地,一种集成的电化学转换器组件,其用于一种燃气涡轮系统中,它能够减小与提供有效热处理方法相关的成本,并且大大提高整体系统动力效率,它也代表着在本领域内的重大进步。
所示实施例的描述本发明针对于一种用于增加燃料电池相关的动力系统的整体系统效率的优选解决方案。特别地,本发明针对于多种减小冷却流体的总量的方法,该冷却流体必须通过一个燃料电池,以适当地从中排除热量。如本领域所公知,燃料电池动力系统的总体系统性能决定于燃料电池的总效率,以及例如冷却和其它动力部件这样的任何相关子系统的总效率。通常,动力系统必须管理在燃料电池的电化学反应过程中产生的一定的热量,而不管总体燃料电池工作温度如何。由燃料电池所产生的废热可以通过把例如空气这样的氧化剂通过燃料电池而排除。通过燃料电池的空气或者冷却介质的大的热容量有助于排除废热。因此,导入到燃料电池的空气的入口温度是很重要的,因为初始输入温度决定了空气在通过燃料电池过程中可以吸收的热量。在常规的方法中,空气被预热到一个接近于燃料电池的工作温度的升高温度,从而显著地减小空气的热吸收能力。从而,大的流量必须被强制通过该燃料电池以带走大量废热。本发明减小必须通过燃料电池以排除燃料电池所产生的废热的冷却流体量。

图1和2示出适合用于一种动力系统中的第一动力设备,其用于把输入的具有相对较低输入温度的反应剂加热到明显较高的废气温度。图1示出采用根据本发明思想的燃料电池堆220的一种动力设备。所示的燃料电池堆20包括多个交替重叠的电解质板20和互连板30,如图6至8中所示。本领域内的普通技术人员将认识到该燃料电池堆可以采用任何常规类型的燃料电池部件,除了在此所述的之外还包括板状和管状部件。优选的燃料电池结构采用附加到在下文中详细描述的基本燃料电池单元的互连板上的导热延伸唇缘。另外,术语“燃料电池堆”是指单个完整工作的燃料电池,或者一个完整燃料电池的一个或多个轴截面。所示的燃料电池堆220具有多个轴向延伸的支管222和224。所示的燃料支管222最好由适当的流体导管连接到燃料源228。类似地,所示的空气支管224由适当的流体支管连接到一个空气和氧化剂源230。每个电解质板20一般是具有较低离子阻抗的离子导电体,以允许离子从一个电解质表面在燃料电池堆的工作条件下传送到相对电解质表面。燃料电池堆220电化学地消耗输入的反应剂并且产生废气和废热。在所示实施例中,废气234被在燃料电池堆的外围边缘的至少一部分从燃料电池堆220释放,以及通过支管224A释放。燃料电池220可以包括与本发明思想相一致的任何数目和分布的支管。燃料电池堆220进一步包括位于沿着燃料电池堆220的所选择轴向位置上的流体阻挡元件238。该流体阻挡元件238被置于燃料电池板20和30之间,并且有选择地堵塞或阻挡一个或两个轴向支管222和224。例如,流体阻挡元件238可以被构成为阻塞气体支管224,从而防止气体230通过气体支管224的全长。本领域内的普通技术人员将认识到流体阻挡元件2 38还可以被构成为阻塞燃料支管,并用附加的第四轴向支管来获得类似的气体流模式。流体阻挡元件可以由任何适当的材料所形成,该材料与燃料电池堆的工作条件以及与电解质板20和互连板30相适应。流体阻挡元件可以由与任何一个燃料电池板相同的材料所形成,并且最好与互连板的材料相同。所示的燃料电池堆可选择地连接到一个支承结构260,例如基板或底板,以对燃料电池提供机械支承。再次参见图1,燃料电池堆220被分为分离、离散和轴向相邻的温度区域或部分1、2至N,并且分别由240、242和244所表示。流体阻挡元件的位置确定了温度区域。燃料电池堆220的温度区域或部分最好处于不同温度,以形成沿着燃料电池堆的轴向长度的多个温度区域。多个温度区域240、242和244在单个燃料电池堆中提供多重温度区域。这使得燃料电池堆220随着反应剂通过燃料电池堆以逐级方式加热输入的反应剂。例如,输入反应剂228和230可以在显著低于废气最终从该电池堆释放的温度下被导入到燃料电池堆220。燃料电池堆220被有选择地构成为形成多个相邻温度区域,并且增加、最大化或者优化动力系统的效率。这使得一般尺寸、结构和材料可以被选择形成本发明的燃料电池堆220。特别地,燃料电池堆被确定大小尺寸,以控制在该燃料电池以及在每个温度区域内产生的能量。可以被适当地调节的尺寸是电池堆的长度和直径。在所示的例子中,燃料电池堆可以被形成为大约1英尺长并具有大约2英尺的板直径,或者可以形成为大约5英尺长并具有大约5英寸的板直径。燃料电池堆220采用连接到一个板的唇缘结构来加热反应剂和/或废气,如下文中更加具体的描述。当在所选择的温度区域中时,特定的燃料电池部件20、30可以被确定大小和结构以根据反应剂的输入温度、废气的最终温度以及轴向温度区域的数目,把输入的反应剂加热到适当的水平。本领域内的普通技术人员将容易根据上述变量选择适当的燃料电池尺寸。燃料电池堆的每个温度区域的性能可以通过形成适用该区域的工作温度的材料的每个部分而最大化。适用于在这种快温度范围中的示例电解质材料包括固态或固体氧化物材料,包括氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者上述材料的组合物;以及示例的燃料电池类型包括固体氧化物或者固态燃料电池、熔融碳化物燃料电池、磷酸燃料电池、碱性燃料电池或者质子交换隔膜燃料电池。由每个温度区域所确定的燃料电池的部分工作在所选择的温度上,因此具有相关适合的电解质材料。本领域内的普通技术人员容易得知上述材料最适合于特定的温度范围。根据一个实施例,空气230被在大约500℃的温度下导入空气支管224,其温度远低于常规固体氧化物燃料电池的1000℃的废气温度。该空气230做为用于燃料电池堆的氧化剂,并且同时做为有助于排除在燃料电池工作过程中产生的废热的冷却介质。该燃料和空气与电解质板20相互作用,以使得沿着第一温度区域240的长度发生电化学反应。由区域240所发出的中间废气234包含未反应的氧气以及用过的燃料和氮气。燃料电池堆的第一温度区域把空气230加热到一个高于输入温度的升高温度,例如600℃。流体阻挡元件238位于相临温度区域240和242之间的界面的结合部,并且阻止空气230沿着支管224流动。在温度区域240中产生的中间废气234然后沿着燃料电池堆的外围部分排出并且被置于燃料电池堆周围的气密封套所捕获。术语“气密封套”包括热封套或容器250、压力容器120、或者任何适当的流体收集装置。燃料电池堆220被置于热封套250中,并且形成废气234通过的一个环状通道,并且然后沿着该板径向地向内通过,以重新进入气体支管224A的上方部分。废气235在通过应于第二轴向相邻温度区域242的燃料电池堆的部分时被由燃料电池所产生的废热加热到高于第一区域240的所选择温度。根据本发明的思想,该废气被在轴向相邻温度区域242中加热到更高温度,例如700℃。该过程沿着电池堆的长度重复进行,使得从最后的温度区域244排出的废气一般处于所需温度,并且当利用固体氧化物燃料电池时,它最好在大约1000℃。如上文所述,反应剂228和230被以相对较低的输入温度导入到它们各自的轴向支管222和224,并且以明显的较高温度从燃料电池堆排除。与反应剂在通过燃料电池堆时的温度升高相关的能量内容被用于实现燃料电池的冷却。为了实现燃料电池的恒定能量产生,允许反应剂在通过燃料电池时的较大温度升高的系统利用较少量的反应剂来冷却。典型地,空气被用作为主要冷却剂,并且用于燃料电池的正常和适当工作的空气消耗的下限被称为化学计量率。所示的燃料电池220在尺寸上被设计为在宽的温度范围上有效地工作。特别地,所示的燃料电池包含低温氧化剂,其在通过整个电池堆时温度可以升高到远超过100℃,这是传统和常规燃料电池的典型上限,最好高达1000℃。根据另一个实施例,每个温度区域240、242和244由与每个区域的特定工作温度相适应的不同材料所形成。第一温度区域240可以在600℃的温度工作,并且由氧化铋所形成。部分用过的空气230离开该区域然后通过轴向相邻的区域240,并且被燃料电池加热到进一步升高的温度。该燃料电池的区域工作在800℃的温度下,并且其可以由镓酸镧所形成。第三区域可以工作在1000℃,并且由氧化钇稳定的氧化锆所形成。这些区域被级联在一起,以实现温度逐级上升,在每一级的温度作为空气230的输入温度和废气的所需输出温度的一个函数。输入空气和废气之间的温度差决定了由每一级所执行的温度的逐级上升,以及决定了要在燃料电池堆20中形成的区域或叠层的数目。级数可以被选择为获得在每一级中温度的明显升高,同时使通过燃料电池堆与消除由其所产生的废热所需的输入空气量230最小化。因此,所需温度在每个区域的增量、区域数目以及输入空气的温度可以被选择以使得通过燃料电池堆所需的空气量最小化,以提供一种可以调节来优化系统性能的灵活系统。在燃料电池堆20中形成多个温度区域的明显优点是燃料电池动力系统采用相对较小的空气量,一般比常规燃料电池小5至10倍,该空气作为用于由燃料电池所执行的电化学反应的氧化剂以及提供足够的排热能力以保持燃料电池的区域的温度在适当的范围内。这是通过加热在多个轴向相邻温度区域中的相同体积的温度以逐级方式增加通过燃料电池堆的空气温度而实现的。温度的逐级增加使得能够使用低温输入空气,使得冷却剂流的吸热能力最大化。因此,相对较小体积的空气可以在它通过燃料电池时从燃料电池堆提取大量废热。流体阻挡元件234有助于燃料电池转移例如空气230这样的反应剂,使其部分地由燃料电池堆或区域所消耗,然后重新导入到随后的区域,进一步由下游温度区域所使用。形成于燃料电池堆220中的多个温度区域的另一个显著优点是它们增加了动力系统的重复效率。因为可以用相对较小的冷却介质量来排除大量的热量。本发明人认识到动力系统的总效率容易通过检测动力系统的总体无用效率而计算。与动力系统的无用效率相关的一个重要物理量是系统通过气体排出或废气而造成的系统总体热量或能量损耗。典型地,废气中包含氮气、未反应的氧气和燃料产物,例如水蒸汽和二氧化碳。存在于废气中的总能量成分是废气温度和废气量的一个函数。因此,通过动力系统的空气越多则废气的体积越大,其对应于整体系统效率下降。另外,在燃料电池废气中的总氮气含量可以通过减小导入到动力系统中的空气总体积而减小。一般地,燃料电池采用水或氧化剂来有助于排除在使用过程中由燃料电池所产生的热量。在氧化剂冷却的情况中,该氧化剂例如空气,其特别应用于高温燃料电池,例如固体氧化物燃料电池,通过常规燃料电池的空气量可能比该燃料电池所需的化学计量氧化剂量高5至10倍。本发明减小通过燃料电池所需的空气230的总量,以通过采用在燃料电池的板20和30的其中一个板上的导热唇缘,或者通过形成在燃料电池堆220中的多个温度区域而吸收必须的废热量。本领域内的普通技术人员还认识到燃料228和空气230在通过燃料电池堆时可以如上文所述地导入和调节。特别地,一种有源的电子控制系统可以用于测量或控制燃料和/或空气到燃料电池堆的供给。控制设备的另一个例子包括无源设备,例如阀门或适当尺寸的流体导管或开孔。图2示出根据本发明思想的燃料电池堆的另一个实施例。在图中相同的参考标号表示相同的部件,该标号后面加上一个撇号。所示的燃料电池堆220’包括多个温度区域,例如低温区域240’和轴向相邻的高温区域242’。燃料228和空气230被分别导入到轴向地形成在燃料电池堆220’中的燃料支管222和空气支管224。燃料电池堆220’最好包括交替重叠的电解质板20和互连板30。所示的燃料电池堆220’没有封闭的气密封套和流体阻挡元件。被导入到燃料电池支管的燃料228和空气230通过整个轴向支管,该支管通常没有障碍物。因此,空气和燃料在它通过燃料电池220’过程中被加热。众所周知,燃料电池220’消耗输入的反应剂以产生从燃料电池堆的外围部分排出的输出废气262。通过允许空气230吸收由燃料电池堆220’在工作过程中产生的所选择的废热量,从而低温部分240’把例如空气230这样的输入氧化反应剂从输入温度加热到更高温度。所示的高温部分242’工作在比低温部分240’更高的温度下,从而把输入反应剂从较低输入温度加热到与该部分的工作温度相一致的较高温度。高温和低温部分240’和242’由适应于该特定部分的优选温度的材料所形成。每个轴向相邻部分的特定温度可以通过测量导入到燃料电池堆220’的燃料228的量而调节。尽管所示实施例示出单个燃料源228和用于把燃料导入燃料电池堆220’的相关燃料导管,但是可以采用多燃料源系统来把燃料导入燃料电池堆220’,或者分别导入在电池堆中的每个温度区域。本领域内的普通技术人员容易认识到可以采用例如阀门、适当尺寸的燃料导管或者电池反馈控制系统这样的无源或有源控制系统来控制导入到燃料电池堆的燃料或空气量。所示的燃料电池220’适合用于放置在其密封套或容器内的燃料电池堆的阵列或组件,例如放置在容器120中。特别地,燃料电池堆可以分布在容器中,使得低温燃料电池被置于接近压力容器的壁面,在此处热损耗更加严重,并且高温压电池被置于远离壁面并向着燃料电池组件的中心或内部,在此容器的热损耗被最小化。图3和4示出根据本发明思想的燃料电池动力系统的另一个实施例。图3示出一种动力系统280,其中采用串联、空间分离的燃料电池组件,例如燃料电池堆282和284,来把在不同阶段中的空气量加热到最终的所需温度。本领域内的普通技术人员将认识到任何数目的燃料电池可以用于该动力系统中,并且作为一个示例在图中仅仅示出两个燃料电池。因此,该组件可以包括一个燃料电池或多个燃料电池。该燃料电池可以径向或轴向分离。每个所示燃料电池282和284包括多个交替重叠的电解质板20和互连板30,如上文所述,所示的燃料电池堆282置于一个热封套286中,以有助于收集由燃料电池282所产生的中间废气288。燃料228被导入到径向延伸的燃料支管290,并且同时导入形成在燃料电池堆284中的径向延伸的燃料支管294。阀门300可以被用于调节导入到燃料电池堆282和284的燃料量,并且根据另一个实施例,该阀门可以选择性连接到一个控制器310,以提供向燃料电池供给的燃料的自动控制。空气供给230被导入到形成在燃料电池282中的径向延伸的空气支管292。由燃料电池282所产生的中间废气288被热封套286所收集,并且通过适当的流体导管导入到燃料电池284的空气支管296。因此,由燃料电池282所产生的用过的反应剂被导入到燃料电池堆284的空气支管296,而燃料228的新的供给被导入到燃料支管294。所示的燃料电池284消耗燃料和空气以产生电力、废热和废气312。根据本发明一个实施例,所示的燃料电池282可以工作在低于第二串联连接的燃料电池284的工作温度的第一工作温度。在该装置中,输入空气230被在第一温度导入到燃料电池堆282,并且被由燃料电池所产生的废热加热到高于输入温度的第二温度。然后,加热的废气288被导入到较高温度的燃料电池堆284,并且进一步被加热到更高的温度,其产生处于比由燃料电池堆282所产生的废气288更高温度的废气312。所示的动力系统28 0提供另外一种在所选择级中把例如空气230这样的输入反应剂加热到更高的工作温度的方法。该加热方法可以用于减小通过燃料电池的空气230的体积,从而增加整体系统效率。燃料电池282和284可以由适合于该燃料电池所工作在的工作温度的所选择材料而形成。另外,系统280可以被用于连接不同类型的燃料电池,以把输入反应剂加热到所需温度。适合用于所示动力系统280中的燃料电池包括固体氧化物或者固态燃料电池、熔融碳化物燃料电池、磷酸燃料电池、碱性燃料电池或者质子交换隔膜燃料电池。固态燃料电池进一步由所选择材料所构成,其中包括氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者上述任何材料的组合物。再次参见图3,由燃料电池282和284所产生的废气被每个燃料电池的发热反应所加热,并且可以被收集用于其它应用,例如用于由一个联合发电系统随后使用,或者由一个燃气或蒸汽涡轮所使用。燃料228可以由一个专用的燃料供给系统分别导入到每个燃料电池,或者当另外一个轴向支管被提供用于返回的燃料流时,单个燃料供给系统可以用于把燃料供给到所有串联的燃料电池。本领域内的普通技术人员容易认识到可以在所示的动力系统280中采用任何数目的燃料电池堆,并且该数目可以容易地根据燃料电池的类型、动力系统的类型、输入反应剂的温度、动力系统的热标准、以及燃料电池废气的最终所期望温度而选择。本领域内的普通技术人员还将认识到在图1和2中所示的燃料电池堆可以用于该多个串联连接燃料电池动力系统280中,来把反应剂从第一输入温度加热到所需温度。图4示出根据本发明的思想适用于例如容器120这样的气密封套的动力系统320。所示的动力系统320采用燃料电池的组件,其被选择性的设置为形成置于接近的容器120的壁面的燃料电池堆324的外部组件,以及燃料电池堆326的内部组件。外部和内部燃料电池堆根据本发明的思想而形成。燃料220和空气230被在一个并行供给装置中导入到燃料电池堆。特别地,空气和燃料被导入到每个燃料电池堆,并且轴向通过并行支管。在所示装置中,置于外部组件324中的燃料电池堆通常在比置于组件的内部的燃料电池堆更低的温度下工作。这种现象由于外部电池堆更加接近于例如容器120这样作为散热器的相邻结构部件而产生的。内部燃料电池堆326通常工作在更高温度,因为它们更加远离任何散热器结构。因此,所示的系统320采用由适合燃料电池堆所工作在的实际温度分布的所选择材料所构成的燃料电池。例如,置于该组件外部的燃料电池堆,例如外部电池堆部分324,可以由适合于较低温度工作的材料所形成。相反,置于组件内部的燃料电池堆,例如内部电池堆部分326,由适合于相对外部组件的燃料电池堆更高温度下工作的材料所形成的。该材料包括氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者上述任何材料的组合物。本领域内的普通技术人员将认识到如果该组件被设置在一个三维阵列中,则该燃料电池堆可以被设置为具有内部和外部燃料电池,以及具有上部和下部燃料电池。每个轴向相邻部分的特定温度可以通过测量导入到燃料电池堆220的燃料量228而调节。尽管所示实施例示出单个燃料供给源228以及用于把燃料导入燃料电池堆220的相关燃料导管,但是多个燃料供给系统可以用于把燃料导入到燃料电池堆220,或者分别导入到电池堆中的每个温度区域。本领域内的普通技术人员容易认识到可以采用例如阀门、适当尺寸的燃料导管或者电池反馈控制系统这样的无源或有源控制系统来控制导入到燃料电池堆的燃料或空气量。在工作过程中,燃料电池堆形成可能存在于三维空间中的温度梯度。因此,对于垂直温度梯度,可以采用例如图1和2中所示的具有多个离散温度区域的燃料电池堆。对于沿着燃料电池堆组件的水平分布温度梯度,该燃料电池堆可以被选择以用适合这种应用的材料形成在较低温度区域的燃料电池堆,并且用适合高温的材料形成较高温度工作区域的燃料电池堆。采用这两种燃料电池堆设计方案的一个显著优点是它们可以用于根据本发明的燃料电池动力系统中,以大大减小对额外的绝热或热补偿装置的需求,该装置用于产生燃料电池组件的总体一致输出。这减小了通过容器120的热绝缘的能量损耗,导致提高整体动力系统的热效率。所示的燃料电池动力系统220、220’、280和320可以用于发电系统中,其可以用低温输入反应剂工作,并且能够用于宽的温度范围中,大约在20℃和2000℃之间。结果,输入的反应剂可以被在每个燃料电池堆的出口加热到所需的选择温度。然后,燃料电池的废气或废热可以被在下游燃料电池中进一步利用。一旦达到所需温度,加热的燃料电池废气可以用于低层设备中,例如用于HAVC系统的燃气涡轮或者吸收冷却剂。本发明的动力系统的另一个优点是燃料电池堆可以用于减小温度增量和燃料电池在工作过程中受到的热机械应力。如下文中详细描述,带有延伸唇缘的连接板的应用进一步保证沿着该板的共面和径向表面上的等温条件,以及沿着燃料电池堆所选择部分的等温条件,作为在宽温度范围上最佳的工作条件。图5是采用根据本发明思想的燃料电池和燃气涡轮的动力系统的热动力学表示的曲线图。所示曲线图350示出沿着横坐标轴的熵S以及示出沿着纵坐标轴的温度。典型的燃气涡轮循环由1、2、3和4所表示。特别地,包括一个同流换热器的燃气涡轮工作在由1-2-2’-3-4-4’所表示的循环中,其中4-4’把热量提供给过程2-2’。该燃料电池除了产生电力之外还产生废热,没有同流换热时由循环部分2-3所表示,或者具有同流换热时由循环部分2’-3所表示。根据本发明思想的燃料电池保持一种同温条件,以获得最佳电化学性能。根据另一个实施例,具有不同工作温度的燃料电池在一系列增加温度上排列。燃料电池的工作温度在大约20℃和大约1500℃之间,并且优选的燃料电池类型包括质子交换隔膜燃料电池、磷酸燃料电池、碱性燃料电池、熔融碳化物燃料电池以及固态氧化物燃料电池或者固态燃料电池,其氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者任何上述材料的组合物所组成,所有这些材料按照温度的升序排列。图6示出不同工作温度的燃料电池A、B、C、D的一个组件。所示曲线图360还示出沿着横坐标轴的熵S和沿着纵坐标轴的温度T。动力系统循环按照如下过程状态1、2、2’、3、4和4’。特别地,在压缩机工作过程中,温度从1增加到2,并且保持接近恒定的熵。如果燃气涡轮包括一个同流换热器,则空气在循环部分2-2’过程中被加热,并且进一步被在循环部分2’-3之间的燃料电池的所选择组件所加热。本发明的动力系统可以采用一系列根据本发明思想的燃料电池来提供逐级增加的温度,如循环部分3A、3B、3C和3D所表示。所示的系统循环进一步示出与涡轮的功率输出相关的循环部分3-4。同流换热器冷却涡轮的废气,如系统循环4-4’所示。图7示出根据本发明思想的燃料电池动力系统的另一个实施例。所示动力系统400包括一系列安装在气密壳体406中的矩形燃料电池堆402。该燃料电池堆包括多个矩形电解质板408和互连板410,它们交替重叠以形成燃料电池堆402。互连板和电解质板由与附图中所示实施例相同材料所形成。动力系统400进一步安装在气密容器内置于燃料电池堆的相对侧上的一对支管盖子416和418上。支管盖形成燃料支管420,其把燃料轴向的沿着燃料电池堆的长度引导。燃料支管420和燃料电池堆的偏离在它们之间形成一个空气支管422。动力系统400可以用两种模式中的一种来工作。在第一工作模式中,例如空气中的氧化反应剂被横向导入燃料电池堆,如空气流箭头424所示,并且沿着电解质板的氧化剂侧通过,平面地横过该板表面。燃料反应剂还被横向导入燃料电池堆,通过沿着接收空气反应剂的与燃料电池堆相邻一侧通过燃料支管。然后,该燃料对基本上同时供应到两个燃料电池堆,如燃料电池箭头428所示。因此燃料反应剂被分别导入两个电池堆,并且用过的反应剂被从该电池堆排除。在第二工作模式中,例如空气这样的氧化剂被再次导入横过燃料电池堆,如空气流箭头434所示,并且沿着电解质板的氧化剂侧通过。燃料反应剂被导入通过沿着燃料电池堆的相邻侧的燃料支管横过燃料电池堆。燃料被首先提供到第一燃料电池堆,沿着另一个燃料支管通过,然后在相反方向导入第二燃料电池堆,如燃料电池箭头438所示。因此,燃料和空气反应剂被顺序导入到两个燃料电池堆。除了在此所述的圆筒状和矩形燃料电池堆之外,根据本发明的动力系统还可以采用管状燃料电池堆。图8为根据本发明的燃气涡轮动力系统。所示的同轴空气导出燃料涡轮动力系统70包括电化学转换器72和燃气涡轮组件。燃气涡轮包括压缩机76、涡轮880和发电机84。来自空气源73的空气被通过任何适当的导管导入到压缩机76,在此被压缩,从而被加热,然后被释放并且导入电化学转换器72。燃料74被导入预热器68,在此它被预热到所选择的低于转换器工作温度的升高温度。被加热的空气和燃料作为输入反应剂并且向电化学转换器72提供能量。转换器72把由压缩机76所导入的压缩空气和燃料74加热,以产生高温废气。废气被导入到燃料涡轮80,其把热能转换为旋转能,用于随后传送到一个发电机84。具体来说,涡轮把高温废气转换为旋转动作(通过涡轮杆),其做功来用于发电。发电机84产生可以用于商业和家用目的的电力。利用电化学转换器作为燃气涡轮燃料室的一个优点是该转换器作为一个附加的发电机。所示的电连接88A和88B示出电能可以从发电机84和转换器72中提取。气体涡轮部件和发电机是本领域内所公知的,并且可以在市场上购得。本领域内的普通技术人员容易理解燃气涡轮部件的工作,以及电化学转换器与燃气涡轮的集成,特别是在本说明书和附图的启发下。例如,普通技术人员将容易认识到转换器72可以完全或部分地代替本发明的燃气涡轮的燃料室。图9示出一个动力系统90,其中电化学转换器72’与燃气涡轮不共轴连接。来自空气源73’的空气被压缩机76所压缩、释放、然后导入到不共轴转换器72’。来自燃料源74’的燃料被导入到转换器,并且空气和燃料被消耗。转换器把燃料热分解为成分不复杂的反应物,一般是氢气和一氧化碳,并且产生高温废气。该废气被导入到燃料涡轮80’,其连接到发电机84’。所示的发电机84’和转换器72’可以被用于向所示的推进电动机86供能。该系统90可以进一步采用类似于图8的预热器的一个预热器,来在反应剂被导入到转换器72中之前加热该反应剂。图10示出一种动力系统95,其采用如图所示连接的电化学转换器72”、废热回收蒸汽发电机108(HRSG),以及蒸汽涡轮112。蒸汽发电机108作为一个预热器,把例如空气和燃料这样的输入反应剂预热到低于转换器72’的工作温度的所需升高温度。转换器利用输入反应剂并且产生废热和加热的废气91。废气91可以被通过任何适当的装置,例如通过流体导管传送到蒸汽发电机108。通过一个再生热交换过程,加热的废气有助于预热该反应剂73、74,同时加热例如水这样一般与蒸汽涡轮相关的工作介质,以产生用于蒸汽涡轮112的蒸汽。在另一个实施例中,蒸汽发电机1 08内部包括一个重整器,用于通过热分解而重整燃料,其一般涉及碳氢化合物的重整,并且把反应剂重整为不复杂的反应物。图11示出另一种动力系统100,其利用电化学转换器、燃气涡轮和蒸汽涡轮。所示的动力系统100包括第二燃料室104、蒸汽发电机108’和蒸汽涡轮112’。来自燃料源74的燃料和一般由流体容器(未示出)所供给的用于重整的水102被导入到电化学转换器72”。水102和由转换器72”所产生的废热有助于把例如矿物燃料这样的输入燃料重整为可用的不复杂反应物,例如氢气和一氧化碳。来自空气源73的空气最好被通过压缩机或吹风机76”导入到转换器72”,并且与输入燃料相结合来向转换器72”供能。转换器72”产生高温废气,一般在1000℃左右,其被第二燃料室104进一步加热到所选择的升高温度,例如1300℃,以与燃料涡轮80”的预定入口温度要求相一致。燃料涡轮产生废气输出81,其通过一个废热回收蒸汽发电机108用于随后由低层蒸汽涡轮112所使用。蒸汽涡轮的输出被耦合到产生电力的发电机84”。电连接88A’和88B’表示该电力可以直接从电化学转换器72”和发电机84”这两者中提取。图8至11所示的动力系统所提供的优点在于它通过把高效紧凑的电化学转换器与底层工厂构成部件相集成,允许在一个高效系统中产生便利。电化学转换器与燃气涡轮按照图8至11中所示的方式相集成产生一个燃气涡轮动力系统,其具有大约70%的总效率。该系统效率表示比现有燃气涡轮系统和现有电化学系统单独获得的效率有明显的提高。所示的燃料涡轮动力系统包含电化学转换器,以提供高的热能和电能,同时利用电化学转换器的优点。例如,该转换器作为一个低Nox的热源,从而相对于常规的燃气涡轮发电机来说提高了环境性能。组合的电化学转换器和燃气涡轮系统的高系统效率在图17中示出。该图的纵座标轴以百分数表示总系统效率,并且横座标轴表示混合系统的功率比。功率比被定义为电化学转换器与燃气涡轮的尺寸总和(FC+GT)被燃气涡轮(GT)所除而得的商。曲线200表示当利用具有50%效率的燃料电池以及具有25%效率的燃气涡轮时总系统效率可以超过60%。类似地,曲线210表示当利用具有55%效率的燃料电池和具有35%效率的燃料电池时总系统效率可以超过60%,并且根据该功率比,其效率可以到达70%。曲线200和210还示出电化学转换器和燃气涡轮的尺寸和效率可以被选择来最大化总系统效率。另外,该图示出当燃气涡轮与电化学转换器相组合时出现系统效率的相应较大增加,到目前为止这种结果是为他人所不知的。例如,如上文所述,采用电化学转换器的燃气涡轮动力系统具有超过60%和接近70%的总系统效率,这取决于构成燃气涡轮和电化学转换器的尺寸和效率。图16为把电化学转换器与多轴燃气涡轮系统相集成的动力系统300的示意图。所示的燃气涡轮系统可以是常规的燃气涡轮系统。所示的混合系统300包括一对压缩机C1和C2、一对涡轮T1和T2、发电机305和中间冷却器310、以及一个或多个电化学转换器320。一对轴322、324分别把涡轮T1和T2连接到机械压缩机C1和C2。如图所示,来自一个空气入口的空气在压缩机的入口进入压缩机C1并且被压缩。然后,所压缩的空气在出口离开压缩机并且进入中间冷却器310,其在空气离开该中间冷却器之前降低该压缩空气的温度。中间冷却器310在其入口从流体源(未示出)接收冷却流体,例如水,并且在其出口释放水。然后,冷却压缩空气进入压缩机C2,其在空气导入到第一电化学转换器320之前再次压缩空气。该空气被在转换器320和压缩机C2之间通过流体通道328而传送。空气在导入转换器时与来自流体源(未示出)的流体相反应,并且被电化学转换器320所消耗以产生电力。转换器的废气被沿着流体通道330导入到涡轮T2,其废气被导入到第二转换器320。第二转换器产生电力,并且在废气导入到涡轮T1之前重新加热该废气。涡轮T1的废气最好被从系统300沿着流体通道332排出,用于后续使用。涡轮T1的旋转能量最好通过动力转轴组件322在机械压缩机C1与发电机305之间分配。发电机305可以被用于产生电力,用于各种家用和商业目的。尽管所示的系统300采用一对电化学转换器320,但是本领域内的普通技术人员将认识到可以仅仅采用一个转换器,而另一个转换器由常规的燃料室所代替。上述现有设计的其它变形被认为在普通技术人员的范围内。例如,可以采用一系列燃气涡轮组件,或者可以采用任何数目的压缩机、燃料室和涡轮。本发明目的是进一步包含电化学转换器与大多数类型的燃气涡轮之间的组合,该燃气涡轮包括单轴燃气涡轮、双轴燃气涡轮、再生燃气涡轮、中间冷却燃气涡轮以及重新加热燃气涡轮。在最广的方面中,本发明包括一种混合动力系统,其中组合电化学转换器和一种常规的燃气涡轮。根据本发明一个优选实施例,转换器完全或部分代替燃气涡轮动力系统的一个或多个燃烧室。当电化学转换器72被装在一个高压容器120中时,电化学转换器与燃气涡轮的直接集成是有利的。一种优选类型的转换器外壳在图12中示出,其中还做为一个再生热封套的压力容器120包住一系列叠层的燃料电池组件122,这在下文中更加具体描述。压力容器120包括废气出口支管124、电连接器126和输入反应剂支管128和130。在一个优选实施例中,氧化物反应剂被通过位于中心的支管130导入到固有燃料电池组件,并且燃料反应剂被通过位于容器120外围的燃料支管128导入。如上文所述,电化学转换器可以工作在一个升高温度并且在常压或者在升高压力环境中。电化学转换器最好是一个燃料电池系统,其中可以包括一个相互交叉的热交换机,类似于美国专利第4,853,100号中所示和描述的类型,该专利被包含于此以供参考。燃料电池一般通过利用例如氢气或二氧化碳分子这样的所选择燃料种类的化学来分解燃料,除了电力之外还产生氧化分子。由于供给氢气和一氧化碳的成本比提供常规的矿物燃料相对较高,因此一个燃料处理或重整步骤可以被用于把例如煤和天然气这样的矿物燃料转换为氢气和一氧化碳含量的反应燃气混合物。从而,一个专用或者置于燃料电池内部的燃料处理器被用于通过利用蒸汽、氧气或者二氧化碳(在一个吸热反应中)把矿物燃料重整为不复杂的反应燃气。图13至15示出电化学转换器72的基本电池单元10,其特别适用于与常规的气体涡轮相集成。该电池单元10包括一个电解质板20和一个互连板30。在一个实施例中,电解质板20可以由例如稳定化的氧化锆材料ZrO2(Y2O3)这样的陶瓷所制成,在其上放置一个多孔的氧化剂电极材料20A和一个多孔的燃料电极材料20B。用于氧化剂电池材料的示例材料是钙钛矿材料,例如LaMnO3(Sr)。用于燃料电极材料的示例材料是例如ZrO2/Ni和ZrO2/NiO这样的金属陶瓷。互连板30最好由导电和导热的互连材料所制成。这种材料的例子包括镍合金、铂合金、非金属导电体,例如碳化硅、La(Mn)CrO3以及最好是由美国Inco公司所生产的市场上可购得的铬镍铁合金。互连板30作为相邻电解质板之间的电连接器,并且作为燃料和氧化反应剂之间的一个部分。如图15中最佳示出,互连板30具有一个中心孔32和一组中间同心向外径向间隔的孔34。第三组外侧孔36沿着板30的外圆周部分或外围放置。互连板30具有一个有织纹表面38。该织纹表面最好具有形成在其上面的一系列凹陷40,如图15中所示,其形成一系列连接的反应剂流的通路。最好,互连板30的两侧具有形成在其上面的凹陷表面。尽管中间和外侧通孔34和36分别示出为具有一个所选择数目的通孔,但是本领域内的普通专业人员将认识到可以根据系统和反应剂流的要求采用任何数目的通孔或分布图案。类似地,电解质板20具有中央孔22以及一组互连板30的中间和外侧孔24和26,这些孔形成在与孔32、34和36互补的位置。参见图14,隔板50可以置于电解板20和互连板30之间。隔板50最好具有皱折表面52,这形成一系列类似于互连板30的连接反应剂流通路。隔板50还具有多个同心孔54、56和58,其位于与互连板和电解质板的孔互补的位置,如图中所示。另外,在该装置中,互连板30没有反应剂流通路。隔板5 0最好由导电材料所制成,例如镍。所示的电解质板20、互连板30和隔板50可以具有任何所需的结构。另外,具有所示支管的板可以按照往复或者非往复模式向外延伸,因此如图中用虚线示出。参见图15,当电解质板20和互连板30交替重叠并且沿着它们各自的通孔对齐时,该通孔形成轴支管(相对于叠层),该支管把输入反应剂和排出的用过燃料输送给电池单元。特别地,对齐的中心孔22、32、22’形成输入氧化剂支管17,对齐的同心通孔24、34、24’形成输入燃料支管,并且对齐的外部通孔26、36、26’形成用过的燃料支管19。互连板30的凹陷表面38在图15的横截面中具有形成在两侧的基本上皱折的图案。该皱折图案形成反应剂流通路,其把输入反应剂通向互连板的外围。互连板还具有延伸的加热表面或者唇缘结构,该结构在每个轴支管中延伸并且在互连板外围附近。特别地,互连板30具有沿着外围边缘形成的扁平环状延伸表面31A。在一个优选实施例中,所示的加热表面31A延伸超过电解质板20的外围边缘。互连板进一步具有延伸的加热表面,其在轴支管内延伸,例如,边缘31B延伸到轴支管19内并且包在其中;边缘31C延伸到轴支管18内并且包在其中;以及边缘31D延伸到轴支管17内并且包在其中。延伸的加热表面可以与互连板整体形成,或者可以连接或附着在互连板上。该加热表面不必须由与互连板相同的材料所制成,而是可以包括任何能够经受电化学转换器的工作温度的适当导热材料。在另一个实施例中,延伸的加热表面可以与隔板整体形成或连接到隔板。在互连板外围没有凸脊或者其它凸脊结构,提供与外部环境相连通的废气口。反应剂流通路流向地把输入反应剂支管与外围相连接,从而允许反应剂被排除到外部环境,或者排除到置于电化学转换器附近的热容器或压力容器,如图12中所示。再次参见图15,所示的密封材料60可以在支管结合部施加到互连板306部分上,从而允许特定的输入反应剂有选择地流过互连板表面并且横过电解质板20对应表面。互连板底部30B与电解质板20的燃料电极涂层20B相接触。在这种结构中,需要使密封材料仅仅允许燃料反应剂进入反应剂流通路,从而与燃料电极相接触。如图所示,密封材料60A置于输入氧化剂支管17周围,形成绕着氧化剂支管17的有效反应剂屏障。密封材料有助于保持与电解质板20的燃料电极侧20B相接触的燃料反应剂的完整性,以及保持通过用过燃料支管19排除的用过燃料的完整性。互连板30的顶部30A具有置于燃料输入支管18和用过燃料支管19周围的密封材料60B。互连板30A的顶部与相对电解质板20’的氧化剂涂层氧化剂20B’相接触。从而,在输入氧化剂支管17的结合部没有密封材料,从而允许氧化反应剂进入反应剂流通路。完全围绕燃料支管18的密封材料60B阻止燃料反应剂过量泄漏到反应剂流通路,从而防止燃料和氧化反应剂相混合。类似地,完全围绕用过燃料支管19的密封材料60C防止用过的氧化反应剂流进入用过燃料支管19。因此,保持被泵吸通过支管19的用过燃料的纯度。再次参见图15,氧化反应剂可以被通过分别由电解质板和互连板的通孔22、32和22’所形成的轴向支管17导入到电化学转换器。氧化剂被反应剂流通路在互连板30A的顶部以及在氧化剂电极表面20A’上分布。然后,用过的氧化剂向着外围边缘21A向外径向流动,并且最终沿着转换器部件外围释放。密封材料60C防止氧化剂流到用过的燃料支管19。通过轴向支管的氧化剂的流路由实线黑箭头26A示出,并且通过氧化剂电池单元,由实线黑箭头26B示出。燃料反应剂被通过由该板的对齐通孔24、34和24’所形成的燃料支管18导入到电化学转换器10。燃料被导入到反应剂流通路并且在互连板30B的底部以及在电解质板20的燃料电极涂层20B上分布。同时,密封材料6 0A防止输入的氧化反应剂进入反应剂流通路并与纯燃料/用过燃料反应剂混合物相混合。在用过燃料支管19处没有任何密封材料使得用过燃料可以进入支管19。燃料随后沿着互连板30的环状边缘31A释放。燃料反应剂的流路由实线黑箭头26C示出。互连表面的凹陷40具有在装配中与电解质板相接触以建立电连接的顶点40A。各种广泛的导电材料可以用于本发明的薄电连接板。这种材料应当满足如下要求(1)高强度,以及高的导电率和导热率;(2)在工作温度具有良好的抗氧化性;(3)对于输入的反应剂具有化学相容性和稳定性;以及(4)当形成作为反应剂流通路的织纹板结构时制造工艺经济。用于互连器制造的适合材料包括镍合金、镍-铬合金、镍-铬-铁合金,铁-铬-铝合金、铂合金、这种合金的金属陶瓷以及例如氧化锆或氧化铝、碳化硅和二硅化钼这样的难熔材料。互连板的顶部和底部的织纹图案例如可以通过用一组和多组匹配的阴阳印模来冲压该金属合金片而获得。该印模最好预先根据互连板的所需结构而制造,并且可以通过热处理硬化,以经受重复性的压缩动作和大规模生产,以及经受高的工作温度。由于气体通路网络的几何复杂性,例如凹陷的互连板表面的复杂性,因此用于互连器的冲压形成处理最好在多个步骤中进行。在互连板中形成的支管最好在最后步骤中被冲孔。在连续步骤之间最好进行温度退火以防止片状材料的过度应力。冲压方法能够制造各种各样复杂几何形状的物品,并且保持统一的材料厚度。另外,皱折的互连器可以通过利用一组适当的掩膜在初始平面金属板上进行电镀形成。碳化硅互连板可以通过蒸汽淀积到预定形状的基板上、通过粘合粉的烧结或者通过制粘合工艺而形成。氧化剂和燃料反应剂最好在进入到电化学转换器之前被预热到适当的温度。该预热可以通过任何适当的加热结构而执行,例如交流换热器或者辐射热交换器,用于把反应剂加热到足以减小施加到转换器上的热应力的量的温度。本发明的一个重要特征是图8-11、16和17中所示的混合动力系统出人意料地以超过任何已知系统效率的效率工作。本发明的另一个重要特征是延伸的加热表面31D和31C把包含在氧化剂和燃料支管17和18内的反应剂加热到转换器的工作温度。特别地,凸进氧化剂支管17的延伸表面31D加热该氧化反应剂,并且凸进燃料支管18的延伸表面31C加热该燃料反应剂。高导热性的互连板30通过把来自例如传导互连板的中部区域的燃料电池内表面的热量传送到延伸表面或唇缘部分促使输入反应剂的加热,从而在输入反应剂通过反应剂流通路之前加热到工作温度。延伸表面如此作为一个散热片。反应剂加热结构提供一种紧凑的转换器,其能够与一个发电动力系统相集成,并且进一步提供一种高效系统,其成本相对较低。根据这些原理构成并且与燃料涡轮相结合采用的包含燃料电池部件的电化学转换器提供一种具有相对简单的系统结构的动力系统。电化学转换器的工作温度最好在大约20℃和1500℃之间,并且由本发明所采用的优选燃料电池类型固体氧化物燃料电池、熔融碳化物燃料电池、碱性燃料电池、磷酸燃料电池和质子交换隔膜燃料电池。在另一个实施例中,电解质和互连板可以具有基本上管状形状并且具有置于一侧上的氧化剂电极材料和置于相对表面上的燃料电极材料。该板然后可以按照类似的方式重叠在一起。因此可以看出本发明比现有技术具有改进。由于可以在上述结构中做出特定的改变而不脱离本发明的范围,包含在上述描述和附图中示出的所有材料是做为解释的目的,而不是用于限制。
还应当理解,下文的权利要求覆盖所有在此描述的本发明一般和特别的特征。例如,采用本发明的互连板边缘延伸的电化学转换器还可以采用熔融碳化物、磷酸、碱性和质子交换隔膜电化学转换器以及其它类似的转换器。
权利要求
1. 一种用于发电的燃料电池动力系统,其中包括一个造用于工作在不同工作温度的燃料电池堆的组件,其中所述工作温度在所述组件中的两个或多个燃料电池堆之间变化,以及其中每个所述燃料电池堆包括用于接收用于电化学发电的反应剂的装置。
2.根据权利要求1所述的系统,其中所述燃料电池堆的组件具有在大约20℃到大约2000℃之间范围的工作温度。
3.根据权利要求1所述的系统,其中所述组件包括由固态氧化物燃料电池、固态燃料电池、熔融碳化物燃料电池、磷酸燃料电池、碱性燃料电池或者质子交换隔膜燃料电池所构成的组中选择的两个或多个燃料电池堆。
4.根据权利要求1所述的系统,其中每个所述的燃料电池堆包括固态或固体氧化物,其中包括氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者上述材料的组合物中的至少一种。
5.根据权利要求1所述的系统,其中该燃料电池堆包括在一侧上具有氧化剂电极材料以及在相对侧具有燃料电极材料的多个电解质板,用于提供与电解质板的电接触的多个互连板,其中燃料电池堆是通过把互连板与电解质板交替重叠而组成的,以及与该电池堆轴向相关并适合于接收反应剂的多个支管。
6.根据权利要求5所述的系统,其中进一步包括用于加热一种或多种反应剂的反应剂加热装置,所述反应剂加热装置包括凸进轴支管中的互连板的导热和整体形成的延伸表面。
7.根据权利要求1所述的系统,其中所述燃料电池堆具有圆柱或矩形截面形状。
8.根据权利要求1所述的系统,其中所述燃料电池堆包括管状燃料电池的阵列。
9.根据权利要求1所述的系统,其中进一步包括一个或多个支管,其置于所述燃料电池堆的外部或内部,用于把流体通向或排出所述燃料电池堆。
10.根据权利要求1所述的系统,其中进一步包括用于把所述反应剂导向所述燃料电池堆的装置。
11.根据权利要求1所述的系统,其中进一步包括用于把在所述组件中的一个或多个燃料电池堆流体连接的装置。
12.根据权利要求1所述的系统,其中进一步包括用于把所述燃料电池堆在反应剂流方向上流体串联的装置。
13.根据权利要求1所述的系统,其中进一步包括用于把所述燃料电池堆在反应剂流的方向上流体并联的装置。
14.根据权利要求1所述的系统,其中进一步包括用于把其中一个所述燃料电池堆的废气连接另一个燃料电池堆的装置,其中所述一个燃料电池堆的所述燃料电池废气被导入另一个燃料电池堆。
15.根据权利要求1所述的系统,其中进一步包括置于所述组件的一个或多个燃料电池堆周围的气密封套,所述气密封套适合于从所述燃料电池堆收集废气。
16.根据权利要求1所述的系统,其中所述燃料电池堆的组件包括适合于在第一工作温度产生废气的第一燃料电池堆,以及第二燃料电池堆,其连接到所述燃料电池堆以接收所述废气,并适合于把所述废气加热到高于所述第一工作温度的第二工作温度。
17.根据权利要求16所述的系统,其中所述第二燃料电池堆适合于把所述废气加热到所述第二工作温度,所述废气被耦合到具有高于所述第二工作温度的第三工作温度的第三燃料电池堆。
18.根据权利要求16所述的系统,其中进一步包括用于把燃料供给到所述第一和第二燃料电池堆中的至少一个电池堆的燃料供给源,用于把氧化剂供给到所述第一燃料电池堆的氧化剂供给源,以及用于把来自所述第一燃料电池堆的所述废气耦合到所述第二燃料电池堆的装置,所述废气被作为所述氧化剂导入。
19.根据权利要求1所述的系统,其中进一步包括用于把所选择数目的燃料电池堆串联在一起的装置,以把流体从第一温度加热到所选择温度,所述数目的燃料电池堆被选择作为所述所选择温度的一个函数。
20.根据权利要求1所述的系统,其中进一步包括用于把燃料供给到一个或多个所述燃料电池堆的燃料供给源。
21.根据权利要求20所述的系统,其中进一步包括用于控制供给到所述燃料电池堆的燃料量的控制装置。
22.根据权利要求21所述的系统,其中所述控制装置包括一个用于控制燃料流的阀门或通孔。
23.根据权利要求22所述的系统,其中所述控制装置进一步包括连接到所述阀门用于自动控制供给到燃料电池堆的燃料量的控制器。
24.根据权利要求1所述的系统,其中所述组件的一个或多个所述燃料电池堆具有作为所述工作温度的一个函数的变化重整特性。
25.根据权利要求1所述的系统,其中所述燃料电池堆的组件被设置为形成上部燃料电池堆和下部燃料电池堆,其中所述上部燃料电池堆包括适合于在第一工作温度工作的材料,所述下部燃料电池堆包括适合于在第二较低工作温度工作的材料。
26.根据权利要求25所述的系统,其中进一步包括一个置于所述组件周围的气密封套,使得所述下部燃料电池堆相对于所述上部燃料电池堆更加接近于一个支承结构,其中所述下部燃料电池堆的所述工作温度与所述上部燃料电池堆的所述工作温度不同。
27.根据权利要求1所述的系统,其中所述燃料电池堆的组件被设置为形成内部燃料电池堆和外部燃料电池堆,其中所述外部燃料电池堆包括适合于在第一工作温度工作的材料,所述外部燃料电池堆包括适合于在第二较高工作温度工作的材料。
28.根据权利要求1所述的系统,其中所述燃料电池堆的组件被置于一个热封套内,所述组件的所述外部燃料电池堆相对于所述组件的内部燃料电池堆更加接近于所述热封套的内壁,以及其中所述外部燃料电池堆的所述工作温度低于所述内部燃料电池堆的所述工作温度。
29.根据权利要求1所述的系统,其中所述组件的一个或多个燃料电池堆包括沿着所述电池堆的多个轴向相邻的温度区域,每个所述区域工作在不同的工作温度。
30.根据权利要求29所述的系统,其中所述燃料电池堆进一步包括一个用于接收燃料反应剂的燃料支管和一个用于接收氧化反应剂的氧化剂支管。
31.根据权利要求30所述的系统,其中进一步包括一个置于所述燃料电池堆周围用于从所述燃料电池堆所述废气的气密封套。
32.根据权利要求31所述的系统,其中进一步包括置于所述燃料电池堆中并且位于选择性阻挡其中一个所述支管的位置的流体阻挡元件,用于在所述位置防止支管内的所述相应反应剂通过。
33.根据权利要求32所述的系统,其中所述流体阻挡元件置于所述氧化剂支管内,并且其中所述燃料电池堆在一个温度区域外围的至少一部分附近排出废气,所述气密封套把所述废气重新导入在所述外围的所述相邻温度区域,并且进入所述氧化剂支管。
34.根据权利要求32所述的系统,其中所述流体阻挡元件置于所述温度区域之间的结合部。
35.根据权利要求32所述的系统,其中所述燃料电池堆包括第一和第二相邻温度区域,其中所述第一温度区域由适合工作在第一工作温度的第一材料所形成,所述第二区域由适合工作在与所述第一工作温度不同的第二工作温度上的第二材料所形成,所述流体阻挡元件置于所述第一和第二区域的结合部。
36.根据权利要求1所述的系统,其中所述组件包括两个或多个燃料电池堆,其分别形成工作在不同工作温度的空间分离的燃料电池。
37.根据权利要求36所述的系统,其中进一步包括一个置于所述组件的至少一个所述燃料电池堆周围的气密封套,所述气密封套适合于从所述燃料电池堆收集废气。
38.根据权利要求37所述的系统,其中进一步包括用于把其中一个所述燃料电池堆的废气耦合到另一个空间分离的燃料电池堆的装置,其中所述一个燃料电池堆的所述燃料电池废气被导入到另一个燃料电池堆。
39.根据权利要求37所述的系统,其中所述燃料电池堆的组件包括适合于在第一工作温度产生废气的第一燃料电池堆,以及第二燃料电池堆,其连接到所述第一燃料电池堆,以接收所述废气,并且适合于把所述废气加热到高于所述第一工作温度的第二工作温度。
40.根据权利要求39所述的系统,其中进一步包括用于把所述废气从所述第一燃料电池堆耦合到所述第二燃料电池堆的装置,所述废气被作为氧化反应剂导入。
41.根据权利要求1所述的系统,其中进一步包括与所述组件的一个或多个所述燃料电池堆相关联的一个或多个压缩机,用于压缩其中一种所述反应剂,以及与所述一个或多个燃料电池堆相关联并且适合于接收由燃料电池堆所产生的废气的一个或多个涡轮,其中该涡轮把废气转换为旋转能量。
42.根据权利要求41所述的系统,其中进一步包括与该燃气涡轮相关联并适合接收该燃气涡轮的废气的蒸汽发电机,该蒸汽发电机把该燃气涡轮的废气耦合到一种工作介质。
43.根据权利要求42所述的系统,其中进一步包括与该蒸汽发电机相关联并且用于发电的蒸汽涡轮。
44.根据权利要求41所述的系统,其中进一步包括与该涡轮相关联并且适合于接收其旋转能量的发电机,其中该发电机响应该涡轮的旋转能量产生电力。
45.一种用燃料电池动力系统发电的方法,其中包括如下步骤提供一个燃料电池堆的组件,使所述燃料电池堆的至少一部分工作在不同的工作温度,其中所述工作温度在所述组件中的两个或多个所述燃料电池堆之间变化,以及把反应剂导入所述燃料电池堆,用于电化学发电。
46.根据权利要求45所述的方法,其中进一步包括使所述燃料电池堆的组件工作在大约20℃到大约2000℃之间范围内的步骤。
47.根据权利要求45所述的方法,其中进一步包括从由固态氧化物燃料电池、固态燃料电池、熔融碳化物燃料电池、磷酸燃料电池、碱性燃料电池或者质子交换隔膜燃料电池所构成的组中选择的两个或多个所述燃料电池堆的步骤。
48.根据权利要求45所述的方法,其中进一步包括由氧化钇稳定的氧化锆、镓酸镧、二氧化铈基氧化物、铋基氧化物或者上述材料的组合物中的至少一种形成所述燃料电池堆的步骤。
49.根据权利要求45所述的方法,其中进一步包括从如下部件形成燃料电池堆的步骤在一侧上具有氧化剂电极材料以及在相对侧具有燃料电极材料的多个电解质板,用于提供与电解质板的电接触的多个互连板,其中燃料电池堆是通过把互连板与电解质板交替重叠而组成的,以及与该电池堆轴向相关并适合于接收反应剂的多个支管。
50.根据权利要求49所述的方法,其中进一步包括形成互连板的导热和整体形成的延伸表面的步骤,该延伸表面凸进轴支管中,用于加热一种或多种反应剂。
51.根据权利要求45所述的方法,其中进一步包括提供一个圆柱或矩形截面形状的燃料电池堆的步骤。
52.根据权利要求45所述的方法,其中进一步包括提供一个管状燃料电池阵列的步骤。
53.根据权利要求45所述的方法,其中进一步包括提供一个或多个支管的步骤,其置于所述燃料电池堆的外部或内部,用于把流体通向或排出所述燃料电池堆。
54.根据权利要求45所述的方法,其中进一步包括把所述燃料电池堆在反应剂流方向上流体串联或并联的装置的步骤。
55.根据权利要求45所述的方法,其中进一步把其中一个所述燃料电池堆的废气连接另一个燃料电池堆的步骤,其中所述一个燃料电池堆的所述燃料电池废气被导入另一个燃料电池堆。
56.根据权利要求45所述的方法,其中进一步包括把一个气密封套置于所述组件的一个或多个燃料电池堆周围的步骤,所述气密封套适合于从所述燃料电池堆收集废气。
57.根据权利要求45所述的方法,其中进一步包括如下步骤提供适合于在第一工作温度产生废气的第一燃料电池堆,以及提供第二燃料电池堆,其连接到所述燃料电池堆以接收所述废气,并适合于把所述废气加热到高于所述第一工作温度的第二工作温度。
58.根据权利要求57所述的方法,其中进一步包括把来自所述第二燃料电池堆的所述废气耦合到具有高于所述第二工作温度的第三工作温度的第三燃料电池堆的步骤。
59.根据权利要求57所述的方法,其中进一步包括如下步骤把燃料供给到所述第一和第二燃料电池堆中的至少一个电池堆,把氧化剂供给到所述第一燃料电池堆,以及把来自所述第一燃料电池堆的所述废气耦合到所述第二燃料电池堆,所述废气被作为所述氧化剂导入。
60.根据权利要求45所述的方法,其中进一步包括把所选择数目的燃料电池堆串联在一起的步骤,以把流体从第一温度加热到所选择温度,所述数目的燃料电池堆被选择作为所述所选择温度的一个函数。
61.根据权利要求45所述的方法,其中进一步包括控制供给到所述燃料电池堆的燃料量的步骤。
62.根据权利要求61所述的方法,其中所述控制步骤进一步包括提供用于控制燃料流的阀门或通孔的步骤。
63.根据权利要求45所述的方法,其中进一步包括改变所述组件的一个或多个所述燃料电池堆的重整特性作为所述工作温度的一个函数的步骤。
64.根据权利要求45所述的方法,其中进一步包括如下步骤把所述燃料电池堆的组件被设置为形成上部燃料电池堆和下部燃料电池堆,从适合于在第一工作温度工作的材料形成所述上部燃料电池堆,以及从适合于在第二较低工作温度工作的材料形成所述下部燃料电池堆。
65.根据权利要求64所述的方法,其中进一步包括把一个气密封套置于所述组件周围的步骤,使得所述下部燃料电池堆相对于所述上部燃料电池堆更加接近于一个支承结构,其中所述下部燃料电池堆的所述工作温度与所述上部燃料电池堆的所述工作温度不同。
66.根据权利要求65所述的方法,其中进一步包括如下步骤把所述燃料电池堆的组件设置为形成内部燃料电池堆和外部燃料电池堆,由适合于在第一工作温度工作的材料形成所述外部燃料电池堆,以及由适合于在第二较高工作温度工作的材料形成所述外部燃料电池堆。
67.根据权利要求45所述的方法,其中进一步包括把所述燃料电池堆的组件置于一个热封套内的步骤,所述组件的所述外部燃料电池堆相对于所述组件的内部燃料电池堆更加接近于所述热封套的内壁,其中所述外部燃料电池堆的所述工作温度低于所述内部燃料电池堆的所述工作温度。
68.根据权利要求45所述的方法,其中进一步包括沿着所述电池堆形成多个轴向相邻的温度区域的步骤,每个所述区域工作在不同的工作温度。
69.根据权利要求68所述的方法,其中进一步包括提供一个用于接收燃料反应剂的燃料支管和一个用于接收氧化反应剂的氧化剂支管。
70.根据权利要求69所述的方法,其中进一步包括把一个气密封套置于所述燃料电池堆周围用于从所述燃料电池堆所述废气。
71.根据权利要求70所述的方法,其中进一步包括把一个流体阻挡元件置于所述燃料电池堆中并且位于选择性阻挡其中一个所述支管的位置的步骤,用于在所述位置防止支管内的所述相应反应剂通过。
72.根据权利要求71所述的方法,其中进一步包括如下步骤把所述流体阻挡元件置于所述氧化剂支管内,在一个温度区域外围的至少一部分附近排出废气,以及把所述废气重新导入在所述外围的所述相邻温度区域,并且进入所述氧化剂支管。
73.根据权利要求71所述的方法,其中进一步包括把所述流体阻挡元件置于所述温度区域之间的结合部的步骤。
74.根据权利要求71所述的方法,其中所述燃料电池堆包括第一和第二相邻温度区域,其中所述第一温度区域由适合工作在第一工作温度的第一材料所形成,所述第二区域由适合工作在与所述第一工作温度不同的第二工作温度上的第二材料所形成,所述流体阻挡元件置于所述第一和第二区域的结合部。
75.根据权利要求45所述的方法,其中所述组件包括两个或多个燃料电池堆,其分别形成工作在不同工作温度的空间分离的燃料电池。
76.根据权利要求75所述的方法,其中进一步包括把一个气密封套置于所述组件的至少一个所述燃料电池堆周围的步骤,所述气密封套适合于从所述燃料电池堆收集废气。
77.根据权利要求76所述的方法,其中进一步包括把其中一个所述燃料电池堆的废气耦合到另一个空间分离的燃料电池堆的步骤,其中所述一个燃料电池堆的所述燃料电池废气被导入到另一个燃料电池堆。
78.根据权利要求76所述的方法,其中所述燃料电池堆的组件包括适合于在第一工作温度产生废气的第一燃料电池堆,以及第二燃料电池堆,其连接到所述第一燃料电池堆,以接收所述废气,并且适合于把所述废气加热到高于所述第一工作温度的第二工作温度。
79.根据权利要求78所述的方法,其中进一步包括把所述废气从所述第一燃料电池堆耦合到所述第二燃料电池堆的步骤,所述废气被作为氧化反应剂导入。
80.根据权利要求45所述的方法,其中进一步包括如下步骤提供与所述组件的一个或多个所述燃料电池堆相关联的一个或多个压缩机,用于压缩其中一种所述反应剂,以及提供与所述一个或多个燃料电池堆相关联并且适合于接收由燃料电池堆所产生的废气的一个或多个涡轮,其中该涡轮把废气转换为旋转能量。
81.根据权利要求80所述的方法,其中进一步包括提供与该燃气涡轮相关联并适合接收该燃气涡轮的废气的蒸汽发电机的步骤,该蒸汽发电机把该燃气涡轮的废气耦合到一种工作介质。
82.根据权利要求81所述的方法,其中进一步包括提供与该蒸汽发电机相关联并且用于发电的蒸汽涡轮的步骤。
83.根据权利要求80所述的方法,其中进一步包括提供与该涡轮相关联并且适合于接收其旋转能量的发电机的步骤,其中该发电机响应该涡轮的旋转能量产生电力。
全文摘要
一种用于利用燃料电池动力系统发电的系统和方法。该动力系统包括工作在不同温度的燃料电池堆(220)的组件,该温度在两个或多个燃料电池堆之间变化。该燃料电池堆可以具有沿着该电池堆轴向形成的多个温度区域(240、242、244),或者多个空间分离的燃料电池堆可以被用于把一种反应剂从输入温度加热到所需温度。该燃料电池堆具有在约20℃和约2000℃之间范围的工作温度。
文档编号H01M8/02GK1339181SQ99815349
公开日2002年3月6日 申请日期1999年11月1日 优先权日1998年11月2日
发明者M·S·苏 申请人:兹特克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1