一种非晶FeTiO/SiO<sub>2</sub>/p-Si异质结构材料及其制备方法
【专利摘要】一种非晶FeTiO/SiO2/p?Si异质结构材料,由p?Si薄膜层、SiO2薄膜层和非晶FeTiO薄膜层组成并形成异质叠层结构FeTiO/SiO2/p?Si,各薄膜层的厚度分别为p?Si薄膜层330μm、SiO2薄膜层2nm、非晶FeTiO薄膜层350nm;采用超高真空三靶共沉积磁控溅射镀膜机制备;用于半导体自旋电子学器件,包括磁场控制的开关、磁场敏感器和自旋二极管。本发明的优点:采用溅射法制备,靶材选择简单和靶材使用率较高,在工业化生产上具有明显成本和技术优势;异质结构材料具有较高的磁电阻效应。
【专利说明】
一种非晶FeT i 0/S i 02/p-S i异质结构材料及其制备方法
技术领域
[0001]本发明专利涉及一种具有巨大的正磁电阻效应的非晶异质结构材料的制备方法,特别是一种非晶FeTi0/Si02/p-Si异质结构材料及其制备方法。
【背景技术】
[0002]近年来,由于在磁信息存储和读取方面具有巨大的应用前景,自旋电子学材料备受关注。2007年的诺贝尔物理学奖授予了自旋电子学的开创者Albert Fert和Peter Griinberg两位教授。现在,如何获取高自旋极化的电流仍然是自旋电子学领域的热点问题之一。获得高自旋注入的办法主要有选择高自旋极化率的电极材料和制备稀磁性半导体材料。
[0003]要想将自旋电子学器件应用在实际产品中,需要与现有的Si半导体技术结合起来。但是目前的磁性薄膜材料与Si基形成的异质结构中的自旋注入效率都不高,主要是由于磁性薄膜与Si的电阻率不匹配造成的。因此后来人们采用铁磁性颗粒薄膜作为注入源材料,与Si半导体复合在一起形成异质结构,从而缓解电阻率失配的问题。Zhang等在发表在Appl.Phys.Lett.95,022503(2009)上的文章中报道了在采用脉冲激光沉积的Cox-Ch/n-Si异质结构中观察到了电压以来的正电阻效应;Lutsev等在发表在Phys.Rev.B 80,184423(2009)上的论文中发表了采用离子束共沉积法制备的Co-Si02/Si异质结构的大的磁电阻效应。然而,这些样品的制备方法在未来的工业生产中会受到局限,工业生产中多用磁控溅射法制备薄膜材料。
【发明内容】
[0004]本发明的目的是针对上述存在问题,提供一种非晶FeTi0/Si02/p-Si异质结构材料及其制备方法,该方法采用溅射法和相对简单的实验条件下制备,制备的异质结构材料具有较高的磁电阻效应,磁电阻可高达5000%。
[0005]本发明的技术方案:
[0006]一种非晶FeTi0/Si02/p-Si异质结构材料,由p-Si薄膜层、S12薄膜层和非晶FeT1薄膜层组成并形成异质叠层结构FeTi0/Si02/p_Si,各薄膜层的厚度分别为p-Si薄膜层330ym、Si02薄膜层2nm、非晶FeT1薄膜层350nm。
[0007]—种所述非晶FeTi0/Si02/p-Si异质结构材料的制备方法,采用超高真空三靶共沉积磁控溅射镀膜机制备,步骤如下:
[0008]I)在镀膜机的靶头上分别安装一个纯度为99.99 %的Ti靶和纯度为99.99 %的Fe革巴,革E材的厚度分别为4mm和2.5mm,直径均为60_ ;
[0009]2)将基底材料表面杂质清除后安装基底架上,基底与靶的距离为13cm,基片在上方,靶在下方;
[0010]3)开启磁控溅射设备,先后启动一级机械栗和二级分子栗抽真空,直至溅射室的背底真空度不小于9 X 10—6Pa;[0011 ] 4)向真空室通入纯度为99.999%的O2和99.999 %的Ar的混合气体,使得真空室中的真空度为IPa,其中02的流量为3sccm,Ar的流量为10sccm;
[0012]5)开启溅射电源,采用直流电源在Ti靶上施加0.4A的电流和340V的电压;采用直流电源在Fe靶上施加0.2A的电流和300V的电压,预溅射20分钟,直至溅射电流和电压稳定;
[0013]6)打开基片的挡板,同时使基片架转动,每分钟2周,在基片上沉积非晶FeT1薄膜,沉积时间为30分钟,薄膜厚度为350nm;
[0014]7)溅射结束后关闭基片的挡板、基片架转动系统,然后关闭溅射电源,停止通入溅射气体Ar和02,继续抽真空半小时后关闭真空系统,向真空室充入纯度为99.999%的氮气,打开真空室,取出样品,制得非晶FeTi0/Si02/p_Si异质结构材料。
[0015]所述Si基底为单面刨光的p-Si(lOO)单晶片,室温电阻率为0.2Ω,厚度为330μπι,面积为3mmX 3mm,自然氧化层厚度为2nm。
[0016]—种所述非晶FeTi0/Si02/p-Si异质结构材料的应用,用于半导体自旋电子学器件,包括磁场控制的开关、磁场敏感器和自旋二极管。
[0017]本发明的优点是:
[0018]I)本发明采用溅射法制备了具有巨大的磁电阻效应的非晶FeTi0/Si02/p-Si异质结构,与常用的脉冲激光沉积法和有机物金属化学气相沉积法相比,靶材选择简单和靶材使用率较高,在工业化生产上具有明显成本和技术优势;
[0019]2)实验条件简单,不需要基底加热,不需要特殊的基底材料,在玻璃基底上就可以实现,不仅从工业上更为容易实现,同时应用范围亦较广;
[0020 ] 3)异质结构材料具有较高的磁电阻效应。
【附图说明】
[0021]图1为非晶FeTi0/Si02/p-Si异质结构的电输运测量的电路示意图。
[0022]图2为非晶FeTi0/Si02/p-Si异质结构的伏安特性曲线。
[0023]图3为非晶FeTi0/Si02/p_Si异质结构的磁电阻随电流的变化关系(磁场垂直膜面)。
【具体实施方式】
[0024]根据我们对本发明中所制备的样品进行的结构和性质分析,下面将具有巨大的磁电阻效应的非晶FeTi0/Si02/p_Si异质结构制备的最佳实施方式进行详细地说明。
[0025]实施例:
[0026]一种非晶FeTi0/Si02/p-Si异质结构材料,由p-Si薄膜层、S12薄膜层和非晶FeT1薄膜层组成并形成异质叠层结构FeTi0/Si02/p_Si,各薄膜层的厚度分别为p-Si薄膜层330ym、Si02薄膜层2nm、非晶FeT1薄膜层350nm。
[0027]一种所述非晶FeTi0/Si02/p-Si异质结构材料的制备方法,采用中科院沈阳科学仪器研制中心生产的超高真空三靶共沉积磁控溅射镀膜机制备,Si基底为单面刨光的p-Si
(100)单晶片,室温电阻率为0.2 Ω,厚度为330μπι,面积为3mm X 3mm,自然氧化层厚度为2nm,步骤如下:
[0028]I)在镀膜机的靶头上分别安装一个纯度为99.99 %的Ti靶和纯度为99.99 %的Fe革巴,革E材的厚度分别为4mm和2.5mm,直径均为60_ ;
[0029]2)将基底材料表面杂质清除后安装基底架上,基底与靶的距离为13cm,基片在上方,靶在下方;
[0030]3)开启磁控溅射设备,先后启动一级机械栗和二级分子栗抽真空,直至溅射室的背底真空度不小于9 X 10—6Pa;
[0031 ] 4)向真空室通入纯度为99.999%的O2和99.999 %的Ar的混合气体,使得真空室中的真空度为IPa,其中02的流量为3sccm,Ar的流量为10sccm;
[0032]5)开启溅射电源,采用直流电源在Ti靶上施加0.4A的电流和340V的电压;采用直流电源在Fe靶上施加0.2A的电流和300V的电压,预溅射20分钟,直至溅射电流和电压稳定;
[0033]6)打开基片的挡板,同时使基片架转动,每分钟2周,在基片上沉积非晶FeT1薄膜,沉积时间为30分钟,薄膜厚度为350nm;
[0034]7)溅射结束后关闭基片的挡板、基片架转动系统,然后关闭溅射电源,停止通入溅射气体Ar和02,继续抽真空半小时后关闭真空系统,向真空室充入纯度为99.999%的氮气,打开真空室,取出样品,制得非晶FeTi0/Si02/p_Si异质结构材料。
[0035]为确认本发明最佳的实施方案,我们对本发明所制备的异质结构材料进行了电输运特性和磁电阻效应的测量。
[0036I本发明中测量非晶FeTi0/Si02/p-Si异质结构的电输运测量的电路示意图,如图1所示。所采用的电极为风干的银胶。
[0037]本发明中制备非晶FeTi0/Si02/p-Si异质结构的伏安特性曲线,如图2所示,其中测量温度为300K。从图2中可以看出,伏安特性曲线呈现出非线性的二极管整流效应。。
[0038]本发明测量了非晶FeTi0/Si02/p-Si异质结构的磁电阻随电流的变化关系,磁场方向垂直于膜面,磁场大小为90k0e;在测量磁电阻过程中,所采用的电极为风干的银胶;所采用电输运测量模式为电流垂直于膜面;所施加磁场的方向垂直于膜面。从测量结果上可以看出,最大值为5000 %,如图3所示。
[0039]本发明通过大量的实验研究,包括改变实验过程中的溅射电流、溅射电压和薄膜厚度,在室温条件下,以Si为基底,制备不同厚度的薄膜。最后发现只有在Ti靶上施加0.4A的电流和340V的电压;在Fe靶上施加0.2A的电流和300V的电压;薄膜的厚度为350nm时,非晶FeTi0/Si02/p_Si异质结构具有巨大的磁电阻效应。
【主权项】
1.一种非晶FeTi0/Si02/p-Si异质结构材料,其特征在于:由p_Si薄膜层、Si02薄膜层和非晶FeT1薄膜层组成并形成异质叠层结构FeTi0/Si02/p_Si,各薄膜层的厚度分别为p-Si薄膜层330ym、Si02薄膜层2nm、非晶FeT1薄膜层350nm。2.—种如权利要求1所述非晶FeTi0/Si02/p_Si异质结构材料的制备方法,其特征在于采用超高真空三靶共沉积磁控溅射镀膜机制备,步骤如下: 1)在镀膜机的靶头上分别安装一个纯度为99.99%的Ti靶和纯度为99.99 %的Fe靶,靶材的厚度分别为4mm和2.5mm,直径均为6 Omm ; 2)将基底材料表面杂质清除后安装基底架上,基底与靶的距离为13cm,基片在上方,靶在下方; 3)开启磁控溅射设备,先后启动一级机械栗和二级分子栗抽真空,直至溅射室的背底真空度不小于9 X 1-6Pa; 4)向真空室通入纯度为99.999%的O2和99.999 %的Ar的混合气体,使得真空室中的真空度为IPa,其中02的流量为3sccm,Ar的流量为10sccm; 5)开启溅射电源,采用直流电源在Ti靶上施加0.4A的电流和340V的电压;采用直流电源在Fe靶上施加0.2A的电流和300V的电压,预溅射20分钟,直至溅射电流和电压稳定; 6)打开基片的挡板,同时使基片架转动,每分钟2周,在基片上沉积非晶FeT1薄膜,沉积时间为30分钟,薄膜厚度为350nm; 7)溅射结束后关闭基片的挡板、基片架转动系统,然后关闭溅射电源,停止通入溅射气体Ar和O2,继续抽真空半小时后关闭真空系统,向真空室充入纯度为99.999%的氮气,打开真空室,取出样品,制得非晶FeTi0/Si02/p_Si异质结构材料。3.根据权利要求2所述非晶FeTi0/Si02/p_Si异质结构材料的制备方法,其特征在于:所述Si基底为单面刨光的P-Si(10)单晶片,室温电阻率为0.2 Ω,厚度为330μπι,面积为3_X3mm,自然氧化层厚度为2nm。4.一种如权利要求1所述非晶FeTi0/Si02/p_Si异质结构材料的应用,其特征在于:用于半导体自旋电子学器件,包括磁场控制的开关、磁场敏感器和自旋二极管。
【文档编号】C23C14/08GK105845315SQ201610298979
【公开日】2016年8月10日
【申请日】2016年5月6日
【发明人】王晓姹
【申请人】天津理工大学