一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法

文档序号:10490983阅读:919来源:国知局
一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法
【专利摘要】本发明公开了一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,属于燃料电池催化剂的合成技术领域。本发明的技术方案要点为:以氯化铜为铜源,葡萄糖为碳源,十六烷基三甲基溴化铵为表面活性剂和结构导向剂,去离子水为溶剂,水热合成花状铜/氧化铜微纳米复合材料,再将花状铜/氧化铜微纳米复合材料功能化后与贵金属前驱体在还原剂的作用下反应得到目标产物。本发明氧化铜作为过渡金属氧化物可以通过助催化作用,提高贵金属催化剂的活性,减少贵金属的用量,降低燃料电池催化剂的成本;载体中铜单质与氧化铜组成复合材料,铜的加入有效增强了材料电子传导性能,改善了过渡金属氧化物导电性差的问题。
【专利说明】
一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法
技术领域
[0001]本发明属于燃料电池催化剂的合成技术领域,具体涉及一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法。
【背景技术】
[0002]质子交换膜燃料电池(PEMFC)作为清洁能源,燃料可再生,来源广泛,储备安全且环境友好。在质子交换膜燃料电池中,催化剂是核心组成部分,也是决定电池成本和性能的关键材料。燃料电池催化剂常用的载体有碳黑(XC-72)、碳纳米管(MWCNTs)和介孔碳载体等。碳黑是目前广泛应用的催化剂载体之一,但其抗腐蚀性较弱,稳定性差;碳纳米管表面呈惰性,缺乏活性位,贵金属颗粒很难在其表面均匀沉积附着;介孔碳的多孔特性使得部分催化剂金属纳米颗粒可能会被包覆在孔道内,导致催化剂的利用率降低。因此,开发一种可以提高催化剂活性的新型载体成为燃料电池催化剂合成技术领域有待解决的重要问题之
O
[0003]近年来,有关过渡金属氧化物作为直接醇类燃料电池(DAFC)催化剂载体及助催化剂的研究层出不穷。主要原因在于:一方面过渡金属氧化物可以通过助催化作用,提高贵金属催化剂的活性,减少贵金属的用量,进而降低燃料电池催化剂的成本;另一方面过渡金属氧化物可以提高催化剂的电化学稳定性,延长催化寿命。然而目前并没有关于花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂制备方法的相关报道。

【发明内容】

[0004]本发明解决的技术问题是提供了一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,有效提高了燃料电池催化剂的性能。
[0005]本发明为解决上述技术问题采用如下技术方案,一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于具体步骤为:
(1)以氯化铜为铜源,葡萄糖为碳源,十六烷基三甲基溴化铵为表面活性剂和结构导向剂,去离子水为溶剂,于150-200 0C水热反应9-48h,将产物经去离子水和无水乙醇洗涤后干燥得到黑色粉末产物;
(2)将步骤(I)得到的黑色粉末产物置于管式炉中于800°C煅烧3h,然后取出样品分散于摩尔浓度为0.5-3mo I /L的碱溶液中加热回流I _5h,待反应结束后冷却并用去离子水洗涤至中性,干燥后得到花状铜/氧化铜复合物载体;
(3)将步骤(2)得到的花状铜/氧化铜复合物载体与柠檬酸钠超声分散于水醇溶液中,再加入贵金属前驱体并调节反应体系的PH为10,然后加入还原剂还原后洗涤并干燥得到花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂,其中贵金属前驱体为H2PtCl6、Na2PdClhRuCl3或RhCl3中的一种或多种,还原剂为KBH4、NaBH4、抗坏血酸、水合肼、H2或CO。
[0006]进一步优选,所述的氯化铜与葡萄糖的质量比为1:10-10:1,氯化铜与十六烧基三甲基溴化铵的质量比为I: 20-20:1。
[0007 ]进一步优选,所述的碱溶液为氢氧化钾溶液、氢氧化钠溶液或氨水溶液。
[0008]进一步优选,所述的花状铜/氧化铜复合物载体的形貌为多维放射状花型结构,其尺寸为1-5μηι。
[0009 ] 进一步优选,所述的贵金属活性组分为Pt、Pd、PtPd、PtRu、PtRh、PdRu或PdRh。
[0010]进一步优选,所述的水醇溶液中水与醇的体积比为1:1,醇具体为甲醇、乙醇或丙醇。
[0011]本发明与现有技术相比具有以下有益效果:
1、本发明首次合成了花状铜/氧化铜微纳米复合材料作为燃料电池催化剂载体,该合成方法操作简单,产量较高;
2、本发明合成的花状铜/氧化铜微纳米复合材料具有花状特殊结构,该特殊结构对贵金属催化剂的均匀负载起到了有利作用,防止了贵金属纳米颗粒的团聚,因此有效提高了催化剂的催化活性;
3、本发明合成的花状铜/氧化铜微纳米复合材料具有较大的比表面积,同时导电性强,有利于在电解液中传质与电流传导;
4、本发明合成的花状铜/氧化铜微纳米复合材料中氧化铜作为过渡金属氧化物,其表面的含氧基团有效消弱了一氧化碳类物质对催化剂的毒化作用,花状铜/氧化铜微纳米复合材料中铜提高了该载体的导电性,并起到了表面修饰改性的良好作用,有效提高了催化剂分散程度进而增强了电化学活性。
【附图说明】
[0012]图1是本发明实施例1制得的花状铜/氧化铜复合物载体的SEM图;
图2是本发明实施例1制得的花状铜/氧化铜复合物载体的XRD图谱;
图3是本发明实施例1与对比例1、对比例2制得的Pt催化剂的电化学循环伏安测试曲线对比。
【具体实施方式】
[0013]以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
[0014]实施例1
取3g氯化铜、Ig葡萄糖和Ig十六烷基三甲基溴化铵溶于30mL去离子水中配成溶液,然后于160°C水热反应36h,并将产物经去离子水和无水乙醇洗涤数遍,干燥后得到黑色粉末状产物;将制得的黑色粉末状产物置于管式气氛炉中于800°C煅烧3h,然后取适量样品分散于摩尔浓度为2mol/L的氢氧化钠溶液中沸水浴加热回流3h,将其表面功能化处理,待反应结束后经冷却后用去离子水洗涤至中性,干燥后得到黑色粉末样品即花状铜/氧化铜复合物载体;取40mg花状铜/氧化铜复合物载体和10mg梓檬酸钠超声分散于体积比为1:1的水/乙醇混合液中,再加入1mL贵金属前驱体H2PtCl6并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。由图1可知本实施例制得的目标产物为花状结构,形貌均一,直径大约为3μπι。
[0015]实施例2
取2g氯化铜、Ig葡萄糖和1.5g十六烷基三甲基溴化铵溶于30mL去离子水中配成溶液,然后于180°C水热反应24h,并将产物经去离子水和无水乙醇洗涤数遍,干燥后得到黑色粉末状产物;将制得的黑色粉末状产物置于管式气氛炉中于800°C煅烧3h,然后取适量样品分散于摩尔浓度为3mol/L的氢氧化钠溶液中沸水浴加热回流2h,将其表面功能化处理,待反应结束后经冷却后用去离子水洗涤至中性,干燥后得到黑色粉末样品即花状铜/氧化铜复合物载体;取40mg花状铜/氧化铜复合物载体和10mg梓檬酸钠超声分散于体积比为1:1的水/乙醇混合液中,再加入1mL贵金属前驱体H2PtCl6并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。由图2可知本实施例制得的目标产物为铜/氧化铜复合物结构,没有杂质峰出现,衍射峰尖锐说明结晶度较好。
[0016]实施例3
取20g氯化铜、5g葡萄糖和Ig十六烷基三甲基溴化铵溶于30mL去离子水中配成溶液,然后于200°C水热反应18h,并将产物经去离子水和无水乙醇洗涤数遍,干燥后得到黑色粉末状产物;将制得的黑色粉末状产物置于管式气氛炉中于800°C煅烧3h,然后取适量样品分散于摩尔浓度为2mol/L氨水溶液中沸水浴加热回流4h,将其表面功能化处理,待反应结束后经冷却后用去离子水洗涤至中性,干燥后得到黑色粉末样品即花状铜/氧化铜复合物载体;取40mg花状铜/氧化铜复合物载体和10mg柠檬酸钠超声分散于体积比为1:1的水/丙醇混合液中,再加入1mL贵金属前驱体Na2PdCl4并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。
[0017]实施例4
取6g氯化铜、Ig葡萄糖和2g十六烷基三甲基溴化铵溶于30mL去离子水中配成溶液,然后于160°C水热反应18h,并将产物经去离子水和无水乙醇洗涤数遍,干燥后得到黑色粉末状产物;将制得的黑色粉末状产物置于管式气氛炉中于800°C煅烧3h,然后取适量样品分散于摩尔浓度为lmol/L的氢氧化钠溶液中沸水浴加热回流3h,将其表面功能化处理,待反应结束后经冷却后用去离子水洗涤至中性,干燥后得到黑色粉末样品即花状铜/氧化铜复合物载体;取40mg花状铜/氧化铜复合物载体和10mg梓檬酸钠超声分散于体积比为1:1的水/乙醇混合溶液中,再加入5mL贵金属前驱体IfePtCh和5mL贵金属前驱体Na2PdCl4并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。
[0018]实施例5
取5g氯化铜、3g葡萄糖和5g十六烷基三甲基溴化铵溶于30mL去离子水中配成溶液,然后于150°C水热反应48h,并将产物经去离子水和无水乙醇洗涤数遍,干燥后得到黑色粉末状产物;将制得的黑色粉末状产物置于管式气氛炉中于800°C煅烧3h,然后取适量样品分散于摩尔浓度为0.5mol/L的氢氧化钠溶液中沸水浴加热回流lh,将其表面功能化处理,待反应结束后经冷却后用去离子水洗涤至中性,干燥后得到黑色粉末样品即花状铜/氧化铜复合物载体;取40mg花状铜/氧化铜复合物载体和10mg梓檬酸钠超声分散于体积比为1:1的水/甲醇混合溶液中,再加入5mL贵金属前驱体IfePtCh和5mL贵金属前驱体RuCh并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。
[0019]对比例I
以多壁碳纳米管(MWCNTs)负载贵金属Pt作催化剂为例进行说明。取40mg载体MffCNTs和10mg柠檬酸钠超声分散于体积比为1:1的水/乙醇溶液中,再加入1mL贵金属前驱体H2PtCl6并调节反应体系的pH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。
[0020]对比例2
以XC-72负载贵金属Pt作催化剂为例进行说明。取40mg载体XC-72和10mg柠檬酸钠超声分散于体积比为1:1的水/乙醇溶液中,再加入1mL贵金属前驱体H2PtCl6并调节反应体系的PH为10,然后加入KBH4还原后用去离子水洗涤并放入真空干燥箱中于40°C干燥,最后得到黑色目标产物。
[0021 ] 实施例6
分别取等量(3mg)的实施例1制得的花状铜/氧化铜负载铂催化剂(Pt/F-Cu/CuO)、对比例I制得的Pt/MWCNTs催化剂与对比例2制得的Pt/XC-72催化剂,分散在分散剂中,再加入质子交换膜(Naf 1n),将混合液超声后涂在玻碳电极表面,采用组成三电极系统,通过电化学工作站测量该催化剂的电催化性能。该催化剂对甲醇、乙醇、乙二醇和丙三醇的循环伏安曲线如图3所示,经实验表明,实施例1制得的花状铜/氧化铜负载铂催化剂的电催化醇类氧化性能优于对比例中碳纳米管载体(MffCNTs)和炭黑载体(XC-72)制得的催化剂。
[0022]本发明的花状铜/氧化铜复合微纳米材料载体负载一元、二元贵金属作催化剂,适用于多种小分子酸类和醇类的催化氧化,并具有良好的电催化活性和稳定性。通过对比例得出,与传统的碳黑和碳纳米管载体相比,所发明的花状铜/氧化铜复合物载体负载贵金属催化剂的电催化活性和稳定性更加优异,是一种具有广阔应用前景的燃料电池催化剂。
[0023]以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
【主权项】
1.一种花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于具体步骤为: (1)以氯化铜为铜源,葡萄糖为碳源,十六烷基三甲基溴化铵为表面活性剂和结构导向剂,去离子水为溶剂,于150-200 0C水热反应9-48h,将产物经去离子水和无水乙醇洗涤后干燥得到黑色粉末产物; (2)将步骤(I)得到的黑色粉末产物置于管式炉中于800°C煅烧3h,然后取出样品分散于摩尔浓度为0.5-3mo I /L的碱溶液中加热回流I _5h,待反应结束后冷却并用去离子水洗涤至中性,干燥后得到花状铜/氧化铜复合物载体; (3)将步骤(2)得到的花状铜/氧化铜复合物载体与柠檬酸钠超声分散于水醇溶液中,再加入贵金属前驱体并调节反应体系的PH为10,然后加入还原剂还原后洗涤并干燥得到目标产物花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂,其中贵金属前驱体为H2PtCl6、Na2PdCl4、RuCl3或RhCl3中的一种或多种,还原剂为KBH4、NaBH4、抗坏血酸、水合肼、H2 或 CO。2.根据权利要求1所述的花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于:所述的氯化铜与葡萄糖的质量比为1:10-10:1,氯化铜与十六烷基三甲基溴化铵的质量比为1:20-20:1。3.根据权利要求1所述的花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于:所述的碱溶液为氢氧化钾溶液、氢氧化钠溶液或氨水溶液。4.根据权利要求1所述的花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于:所述的花状铜/氧化铜复合物载体的形貌为多维放射状花型结构,其尺寸为1-5μηι。5.根据权利要求1所述的花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于:所述的贵金属活性组分为Pt、Pd、PtPd、PtRu、PtRh、PdRu或PdRh。6.根据权利要求1所述的花状铜/氧化铜微纳米复合材料负载贵金属燃料电池催化剂的制备方法,其特征在于:所述的水醇溶液中水与醇的体积比为1:1,醇具体为甲醇、乙醇或丙醇。
【文档编号】B82Y30/00GK105845948SQ201610211099
【公开日】2016年8月10日
【申请日】2016年4月7日
【发明人】白正宇, 石敏, 张庆, 黄茹梦, 赖小伟, 李珊珊, 房立, 杨林
【申请人】河南师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1