具有可控通态电压的功率半导体整流器的制造方法
【专利摘要】本发明题为具有可控通态电压的功率半导体整流器。本发明的目的是提供一种具有低通态电压和高阻断能力的功率半导体整流器。此目的通过包括下列项的功率半导体整流器来实现:漂移层(32),具有第一导电类型;以及电极层(35),形成与所述漂移层(32)的肖特基接触,其中漂移层(32)包括具有低于1×1016cm?3的峰值净掺杂浓度的基极层(321)以及与电极层(35)直接接触以形成肖特基接触的至少一部分的势垒调制层(322),其中势垒调制层(322)的净掺杂浓度处于1×1016cm?3与1×1019cm?3之间的范围中,并且其中势垒调制层(322)沿与电极层(35)和势垒调制层(322)之间的界面垂直的方向具有至少1nm但小于0.2 μm的层厚度。
【专利说明】
具有可控通态电压的功率半导体整流器
技术领域
[0001]本发明涉及如权利要求1的前序部分所述的功率半导体整流器并且涉及用于制造这种功率半导体整流器的方法。【背景技术】
[0002]—种常见的基于硅碳(SiC)的功率半导体整流器在图1中以截面示出。它包括SiC 晶圆,其中包括:衬底层1,其由高掺杂n型Sic来制成;以及漂移层2,其由衬底层1上形成的低掺杂n型SiC来制成。SiC晶圆具有第一主侧3以及与第一主侧3平行的第二主侧4 AiC晶圆的第一主侧3(其为装置的阳极侧)覆盖有第一金属接触层5,其形成与漂移层2的肖特基接触。在第二主侧4 (其为装置的阴极侧)上,形成有第二金属接触层6。通常,漂移层2在高掺杂 n型SiC衬底晶圆(其用作衬底层1)上外延生长。
[0003]取决于阳极与阴极之间的电压的电极性,肖特基接触阻断电流或者允许多数载流子(其是n掺杂半导体材料中的电子)通过。这两种模式与功率半导体整流器的阻断和通态操作对应。
[0004]在图2a和图2b中,示出有基于SiC的结势皇肖特基(JBS)整流器,其是另一种常见的基于SiC的功率半导体整流器。JBS整流器是混合功率装置,其将肖特基和pin二极管结构组合在一个装置中,从而利用两种结构的优点。它具有低通态电阻和高阻断能力。基于碳化硅(SiC)的JBS整流器是为了高阻断电压而取代基于硅(Si)的pin二极管的候选。与Si相比, SiC材料性质允许装置具有更高额定电压和更高操作温度。
[0005]图2a示出与装置的第一主侧3垂直的垂直截面,而图2b示出沿图2a中的线条AA’并且与第一主侧3平行的水平截面。与图1中所示的功率半导体整流器相似,图2a和图2b中所示出的JBS整流器包括SiC晶圆,其中包括:衬底层1,其由高掺杂n型SiC来制成;以及漂移层 2,其由衬底层1上形成的低掺杂n型SiC来制成。SiC晶圆具有第一主侧3(其为装置的第一主侦D以及与第一主侧3平行的第二主侧4。与漂移层2的表面相邻,在与衬底层1相对的第一主侦U上,形成有多个P型发射极区7 AiC晶圆的第一主侧3(其为装置的阳极侧)覆盖有第一金属接触层5,其在其中第一金属接触层5接触n型漂移层2的位置形成肖特基接触,并且在其中第一金属接触层5接触p型发射极区7的位置形成与p型发射极区7的欧姆接触。在本说明书中,术语“欧姆接触”通篇指的是两种材料之间的非整流结,其具有线性电流-电压特性。 与此相反,术语“肖特基接触”在本说明书中通篇指的是半导体与金属之间的整流结,其具有非线性电流-电压特性。
[0006]上述已知功率半导体整流器的阻断能力主要通过n掺杂漂移层2的厚度和掺杂密度来给出。然而,由于肖特基接触的性质,在高阻断电压的升高电场水平下的像力降低使电子的势皇收缩。图1中所示出的功率半导体整流器(其是没有P掺杂发射极区7的完全肖特基势皇二极管)将易于以高反向偏置来增加泄漏电流的电平。相当多数量的载流子在碰撞电离期间将需要强化电子-空穴对生成。因此,图1中所示出的功率半导体整流器呈现相对高的泄漏电流和低击穿电压。在图2a和图2b中所示的JBS整流器中,p型发射极区7帮助改进这种状况。在反向偏置下,耗尽层跨P型发射极区7与n型漂移层2之间的pn结按照与pin二极管中其做出的相同的方式来形成。P掺杂发射极区7周围的单独耗尽区最终可相互连接并且封闭在肖特基接触之下的两个相邻发射极区7之间。这样,有效地保护肖特基接触免受高电场峰值。因此,肖特基接触与P掺杂发射极区7的组合将降低泄漏电流,并且允许达到与完全肖特基势皇二极管(例如图1中所示的功率半导体整流器)相比要高许多的击穿电压。
[0007]在上述功率半导体整流器中,用于第一金属接触层5的金属的功函数与漂移层2的导带边缘之间的能量差限定肖特基势皇高度,其定义通态电压。这又在原理上通过金属的选择来限定。因此,已知功率半导体整流器的通态电压通过金属的类型(其必须满足过程兼容性要求)来限制。因此,将要用于上述已知功率半导体整流器中的第一金属接触层5的金属的数量受到很大限制。
[0008]通态电压应当尽可能低,以便使正向偏置条件下的损耗最小化。在保持阻断能力的同时降低通态电压的已知方式是将两种不同金属用于第一金属接触层,从而产生双肖特基势皇高度(SBH)整流器。这种双SBH整流器例如在US 6 362 495 B1中描述。然而,将两种不同金属用于第一金属接触层在装置的制造期间要求附加过程步骤,这涉及更高成本。
【发明内容】
[0009]鉴于现有技术的上述缺点,本发明的目的是提供一种具有低通态电压和高阻断能力的功率半导体整流器,并且提供用于制造这种功率半导体整流器的简易、可靠和有效的制造方法。
[0010]该目的通过如权利要求1所述的功率半导体整流器来实现。
[0011]在本发明的功率半导体整流器中,具有比其余漂移层(S卩,基极层)要高的掺杂浓度的薄势皇调制层降低漂移层与电极层之间的接触的肖特基势皇高度,以便在没有损害阻断能力的情况下降低装置的通态电压。较低肖特基势皇高度通过能带弯曲和隧穿来增加载流子注入。通过使用具有低于0.2WI1的厚度并且具有足够低以形成与电极层的肖特基接触的掺杂等级的势皇调制层,有可能避免阻断能力的任何显著损害。
[0012]在本发明的功率半导体整流器的示范实施例中,基极层具有在8 X 1014cnf3与6 X 1015cnf3之间的范围中的峰值净掺杂浓度。本说明书中,层的峰值净掺杂浓度通篇表示这个层的最大净掺杂浓度。利用这种掺杂浓度,能够实现低通态电压与高阻断能力之间的良好折衷。
[0013]在本发明的功率半导体整流器的示范实施例中,势皇调制层的净掺杂浓度处于5 X 1016cnf3与1 X 1019cnf3之间的范围中,g卩,势皇调制层中的最小净掺杂浓度高于5X 1016cm而势皇调制层中的最大净掺杂浓度低于IX 1019cnf3。与当肖特基接触与具有低于IX 1016cnf3的峰值净掺杂浓度的基极层直接形成时的肖特基势皇高度相比,净掺杂浓度的这种值能够确保肖特基势皇高度的显著降低。
[0014]在本发明的功率半导体整流器的示范实施例中,势皇调制层的净掺杂浓度处于1 X 1017cnf3与5 X 1018cm 3之间的范围中。在这种示范实施例中,能够实现低通态电压与高阻断能力之间的改进的折衷。
[0015]在本发明的功率半导体整流器的示范实施例中,电极层穿透势皇调制层以便与基极层直接接触,其中电极层与基极层之间的接触是第一势皇肖特基接触,以及电极层与势皇调制层之间的接触是第二势皇肖特基接触,第一势皇肖特基接触的肖特基势皇高度比第二势皇肖特基接触的肖特基势皇高度要高。在这个示范实施例中,通过仅使用一种单电极层材料(其对第一势皇肖特基接触以及对第二势皇肖特基接触是相同的),能够实现双势皇高度整流器。
[0016]在本发明的功率半导体整流器的示范实施例中,漂移层具有第一主侧以及与第一主侧平行的第二主侧,其中第一势皇肖特基接触包括多个第一势皇肖特基接触段,其中第二肖特基接触包括多个第二势皇肖特基接触段,并且其中第一势皇肖特基接触段沿与第一主侧平行的至少一个横向方向与第二势皇肖特基接触段进行交替。其中,第一势皇肖特基接触段可形成网格或者蜂窝结构。在这个示范实施例中,阻断能力能够进一步被改进。
[0017]在示范实施例中,本发明的功率半导体整流器包括多个发射极区,其中各发射极区具有与第一导电类型不同的第二导电类型,其中电极层形成与发射极区的每一个的欧姆接触,并且其中每个发射极区与基极层形成pn结。在这个示范实施例中,功率半导体整流器是JBS整流器,其呈现改进的阻断能力。
[0018]在本发明的功率半导体整流器中,漂移层可由碳化硅或硅来制成。碳化硅具有对功率半导体装置是优选的材料性质。
[0019]本发明的目的还通过一种如权利要求10所述的用于制造这种功率半导体整流器的方法来实现。
[0020]在该方法的示范实施例中,该方法包括在形成电极层的步骤之前将至少一个沟槽或孔形成到漂移层中的步骤,沟槽或孔穿透势皇调制层并且延伸到基极层中。电极层可在至少一个沟槽或孔中形成,以形成与基极层的肖特基接触。这种示范实施例允许按照简单有效的方式来制造仅具有一个单电极层的双SBH整流器。[0021 ]在示范实施例中,该方法包括在形成电极层的步骤之前至少在至少一个沟槽或孔的底部形成发射极区的步骤,其中发射极区具有与第一导电类型不同的第二导电类型,并且与漂移层形成pn结,以及其中电极层形成与发射极区的欧姆接触。其中,发射极区可通过将第二导电类型的半导体层沉积到至少一个沟槽或孔中来形成,或者发射极区可通过至少在至少一个沟槽或孔的底部将第二导电类型的掺杂剂注入漂移层中来形成。在这种示范实施例中,具有低通态电压和相对高阻断能力的JBS整流器能够按照简单有效的方式来制造。【附图说明】
[0022]下面将参照附图来解释本发明的详细实施例,其中:图1示出现有技术肖特基势皇二极管的垂直截面;图2a示出现有技术结势皇肖特基(JBS)二极管的垂直截面;图2b示出图2a的现有技术结势皇肖特基(JBS)二极管的水平截面,其中截面沿图2a中的线条AA’来截取;图3示出按照第一实施例的功率半导体整流器的垂直截面;图4a示出按照第二实施例的功率半导体整流器的垂直截面;图4b示出按照第二实施例的功率半导体整流器的水平截面,其中截面沿图4a中的线条 AA’来截取;图5a示出按照第三实施例的功率半导体整流器的垂直截面;图5b示出按照第三实施例的功率半导体整流器的水平截面,其中截面沿图5a中的线条 AA’来截取;图6a示出按照第四实施例的功率半导体整流器的垂直截面;图6b示出按照第四实施例的功率半导体整流器的水平截面,其中截面沿图6a中的线条 AA’来截取;图7a示出按照第五实施例的功率半导体整流器的垂直截面;图7b示出按照第五实施例的功率半导体整流器的水平截面,其中截面沿图7a中的线条 AA’来截取;以及图8a至图8d说明用于制造按照第一至第五实施例的功率半导体整流器的制造方法中的不同步骤。
[0023]在参考标号列表中概括附图中使用的参考标号及其含意。一般来说,相似元件在本说明书中通篇具有相同参考标号。描述的实施例意在作为示例而不应当限制本发明的范围。【具体实施方式】
[0024]图3中,示出按照第一实施例的功率半导体整流器的垂直截面。按照第一实施例的功率半导体整流器是基于4H_SiC的功率半导体整流器。它包括4H_SiC晶圆,其具有第一主侧33以及与第一主侧33平行的第二主侧34。从第一主侧33到第二主侧34,4H-SiC晶圆包括势皇调制层322、基极层321和衬底层31。衬底层31由具有比基极层321的峰值净掺杂浓度 (即,最大净掺杂浓度)要高的净掺杂浓度的高掺杂n型4H-SiC来制成,所述基极层321由具有低于1 X 1016cnf3的峰值净掺杂浓度、示范地具有在8 X 1014cnf3与6 X 1015cnf3之间的范围中的峰值净掺杂浓度的低掺杂n型4H-SiC来制成。与第二主侧34相邻的衬底层31的净掺杂浓度示范地为1 X 1019cnf3或以上。势皇调制层322由具有在1 X 1016cnf3与1 X 1019cnf3之间的范围中、示范地在5 X 1016cnf3与1 X 1019cnf3之间的范围中以及进一步示范地在1 X 1017cnf3 与5X1018Cnf3之间的范围中的净掺杂浓度的n型4H-SiC来制成。基极层321和势皇调制层 322形成按照第一实施例的功率半导体整流器中的漂移层32。[〇〇25]在4H-SiC晶圆的第一主侧33上,形成有第一电极层35,其与势皇调制层322直接接触,以形成第一电极层35与势皇调制层322之间的肖特基接触。第一电极层35是金属层,例如钛(Ti)、钴(Co)、钽(Ta)、钨(W)、铂(Pt)、镍(Ni)、钼(Mo)、钯(Pd)或者这些金属的任何组合。第一电极层35还能够包括硅化物或碳化物化合物,例如NiS1、TiC或TaC。第一电极层35 还能够是金属层的叠层,例如 Al/T1、Al/N1、Al/W、Al/Pt、Al/Ni/T1、Al/Mo、Al/Pd、Al/WC 或 Al/TaC,其中扩散势皇层(例如TaSiN)能够在顶部A1与第一金属层之间形成。[〇〇26]在4H-SiC晶圆的第二主侧34上,形成有第二电极层36,其形成与衬底层31的欧姆接触。[〇〇27]势皇调制层322的厚度为至少lnm,沿与第一主侧33垂直的方向(其是与第一电极层35与势皇调制层322之间的界面垂直的方向)小于0.2mi。基极层321的厚度取决于所需阻断能力。示范地,沿与第一主侧33垂直的方向的基极层的厚度处于5wii与600wii之间的范围中。
[0028]在用于制造按照第一实施例的功率半导体整流器的方法的示范实施例中,首先提供了具有第一主侧33和第二主侧34的低掺杂n型4H-SiC晶圆。低掺杂n型4H-SiC晶圆具有与最终装置中的基极层321的净掺杂浓度相同的净掺杂浓度。n型掺杂剂从其第二主侧34注入和/或扩散到4H-SiC晶圆中,以形成具有如上所述的净掺杂浓度和厚度的衬底层31。在下一个步骤,通过从其第一主侧33将n型掺杂剂注入和/或扩散到4H-SiC晶圆中来与第一主侧33 相邻地形成势皇调制层322。按照这种方式所形成的势皇调制层322具有如上所述的用于按照第一实施例的功率半导体整流器的净掺杂浓度和厚度。因此,漂移层32通过形成基极层 321和势皇调制层322的叠层来形成,其中基极层321具有第一导电类型并且具有低于IX 1016cnf3的峰值净掺杂浓度,以及其中势皇调制层具有第一导电类型,具有在lX1016cm3与1 X 1019cnf3之间的范围中的净掺杂浓度,并且具有至少lnm但小于0.2 ym的层厚度。
[0029]备选地,包括基极层321和势皇调制层322的漂移层32可在用作衬底层1的高掺杂n 型4H-SiC衬底晶圆上外延生长。
[0030]此后,第二电极层36沉积在第二主侧34上,以形成第二电极层36与衬底层31之间的欧姆接触。沉积第二电极层36之后的装置在图8a中以与4H-SiC晶圆的第一主侧33垂直的垂直截面来示出。
[0031]作为得到按照第一实施例的功率半导体整流器的最终过程步骤,执行在势皇调制层322上形成第一电极层35的步骤,以形成第一电极层35与势皇调制层322之间的肖特基接触。[〇〇32]接下来描述有按照第二实施例的功率半导体整流器。图4a示出垂直截面,以及图 4b示出按照第二实施例的功率半导体整流器的水平截面,其中水平截面沿图4a中的线条 AA ’来截取。按照第二实施例的功率半导体整流器是双肖特基势皇高度(SBH)整流器。由于与按照第一实施例的功率半导体整流器的许多相似性,所以将主要描述第二实施例与第一实施例的差别。当相同参考标号用于不同实施例中的元件时,这在本描述中通篇意味着这些元件可具有相同或相似的物理性质。
[0033]与按照第一实施例的功率半导体整流器相似,按照第二实施例的功率半导体整流器是基于4H-SiC的功率半导体整流器。它包括4H-SiC晶圆,其具有第一主侧33以及与第一主侧33平行的第二主侧34。从第一主侧33到第二主侧34,4H-SiC晶圆包括势皇调制层422、 基极层421和衬底层31 (其与第一实施例中的衬底层31相同)。势皇调制层422与第一实施例中的势皇调制层322相似。它由具有在1 X 1016cnf3与1 X 1019cnf3之间的范围中、示范地在5 X 1016cnf3与1 X 1019cnf3之间的范围中以及进一步示范地在1 X 1017cnf3与5 X 1018cnf3之间的范围中的净掺杂浓度的n型4H-SiC来制成。与第一实施例相似,基极层421和势皇调制层422 形成按照第二实施例的功率半导体整流器中的漂移层42。[〇〇34]沿与第一主侧33垂直的方向的势皇调制层422的厚度和基极层421的厚度与第一实施例中的势皇调制层322的厚度和基极层321的厚度相同。[〇〇35]在4H-SiC晶圆的第一主侧33上,形成有第一电极层45,其与势皇调制层422直接接触,以形成第一电极层45与势皇调制层422之间的多个第一势皇肖特基接触段。如同第一实施例中一样,第一电极层45是金属层,例如钛(Ti)、钴(Co)、钽(Ta)、钨(W)、铂(Pt)、镍(Ni)、 钼(Mo)、钯(Pd)或者这些金属的任何组合。第一电极层45还能够包括硅化物或碳化物化合物,例如NiS1、TiC或TaC。第一电极层45还能够是金属层的叠层,例如Al/T1、Al/N1、Al/W、 八1^^^1/附/!^^1/^〇)1/?(1)1/1(:或41/^&(:,其中扩散势皇层(例如1&31吣能够在顶部A1与第一金属层之间形成。[〇〇36] 在第二实施例中,第一电极层45穿透势皇调制层422并且延伸到基极层421中,以形成条状电极段45&、4513、45〇,其在4^1(:晶圆内部,即在第一主侧33与第二主侧34之间相互平行地延伸。条状电极段45a、45b和45c与基极层421直接接触,以形成与基极层421的多个第二势皇肖特基接触段。第一势皇肖特基接触段全部具有相同的第一势皇高度,并且第二势皇肖特基接触段全部具有相同的第二势皇高度。由于基极层421和势皇调制层422中的不同掺杂浓度,第一势皇高度低于第二势皇高度。[〇〇37]沿与第一主侧33平行并且与条状电极段45a、34b和45c的纵轴垂直的横向方向,第一势皇肖特基接触段按照如下方式与第二势皇肖特基接触段进行交替:在每对两个相邻第二势皇肖特基接触段之间形成第一势皇肖特基接触段,并且在每对两个相邻第一势皇肖特基接触段之间形成第二势皇肖特基接触段。[〇〇38]如同第一实施例中一样,在4H-SiC晶圆的第二主侧34上,形成有第二电极层36,其形成与衬底层31的欧姆接触。[〇〇39]接下来将用图8a和图8b来描述用于制造按照第二实施例的功率半导体整流器的方法。首先,按照与用于按照上述第一实施例的功率半导体整流器的制造方法中相同的方式来制造如图8a中所示的结构。在下一个步骤中,条状沟槽451a、451b和451c通过干式或湿式蚀刻过程从其第一主侧33在4H-SiC晶圆中形成。沟槽451a、451b和451c穿透势皇调制层 322,以形成穿透的势皇调制层422,并且延伸到基极层421中,如图8b中所示。沟槽451a、 451b和451c离第一主侧33的深度示范地在0 ? lum与lOym之间的范围中,更示范地在0 ? 2um与 5mi之间的范围中,但是小于漂移层42的厚度。示范地,沟槽451a、451b和451c全部具有相同的深度。在下一个步骤中,如上所述的第一电极层45在图8b中所示结构的第一主侧33上形成,以得到如图4a中所示的按照第二实施例的功率半导体整流器。
[0040]图5a和图5b说明按照第三实施例的功率半导体整流器。其中,图5a示出垂直截面, 以及图5b示出按照第三实施例的功率半导体整流器的水平截面,其中水平截面沿图5a中的线条AA’来截取。[0041 ]按照第三实施例的功率半导体整流器是沟槽结势皇肖特基(JBS)整流器。由于与按照第二实施例的功率半导体整流器的许多相似性,所以将主要描述第三实施例与第二实施例的差别。[〇〇42]作为按照第二实施例的功率半导体整流器,按照第三实施例的功率半导体整流器是基于4H-SiC的功率半导体整流器。它包括4H-SiC晶圆,其具有第一主侧33以及与第一主侧33平行的第二主侧34。从第一主侧33到第二主侧34,4H-SiC晶圆包括势皇调制层422(其与第二实施例中的势皇调制层422相同)、基极层421(其与第二实施例中的基极层421相同) 以及衬底层31(其分别与第一和第二实施例中的衬底层31相同)。[〇〇43]如同第二实施例中一样,在4H-SiC晶圆的第一主侧33上,形成有第一电极层45,其与势皇调制层422直接接触,以形成第一电极层45与势皇调制层422之间的多个第一势皇肖特基接触段。第三实施例中的第一电极45与第二实施例中的第一电极45相同。[〇〇44] 如同第二实施例中一样,并且在第三实施例中,第一电极层45穿透势皇调制层422 并且延伸到基极层421中,以形成条状电极段45&、4513、45(:,其在纽-51(:晶圆内部(即在第一主侧33与第二主侧34之间)相互平行地延伸。条状电极段45a、45b和45c的侧壁与基极层421直接接触,以形成与基极层421的多个第二势皇肖特基接触段。第一势皇肖特基接触段全部具有相同的第一势皇高度,以及第二势皇肖特基接触段全部具有相同的第二势皇高度。如同第二实施例中一样,由于基极层421和势皇调制层422中的不同掺杂浓度,第一势皇高度低于第二势皇高度。
[0045]按照第三实施例的功率半导体整流器与按照第二实施例的功率半导体整流器不同,因为存在内埋于基极层421内部的p型发射极区57a、57b和57c,以便形成p型发射极区 57a、57b和57c分别与n型基极层421之间的多个pn结。发射极区57a、57b和57c分别与电极段 45a、45b和45c直接接触,以形成第一电极层45分别与发射极区57a、57b和57c之间的欧姆接触。发射极区57a、57b和57c是条状区域,其与条状电极段45a、45b和45c平行地延伸。[〇〇46]在与第一主侧33垂直的投影中,第一势皇肖特基接触段沿与第一主侧33平行并且与条状电极段45a、34b和45c的纵轴垂直的横向方向与pn结进行交替,使得在每对两个相邻 pn结之间定位有第一势皇肖特基接触段。[〇〇47]如同第一和第二实施例中一样,在4H_SiC晶圆的第二主侧34上,形成有第二电极层36,其形成与衬底层31的欧姆接触。[〇〇48]接下来将参照图8b和图8c来描述用于制造按照第三实施例的功率半导体整流器的方法。首先,按照与用于按照上述第二实施例的功率半导体整流器的制造方法中相同的方式来制造如图8b中所示的结构。作为下一个步骤,p型掺杂剂分别注入沟槽451a、451b和 451c的底部,以分别在沟槽451a、451b和451c的底部形成p型发射极区57a、57b和57c。备选地,发射极区57a、57b和57c也能够通过将p型4H-SiC分别沉积到沟槽451a、451b和451c中, 来在沟槽451a、451b和451c的底部形成。作为下一个步骤,电极层从第一主侧33沉积到图8c 中所示的结构上,以得到如图5a中所示的按照第三实施例的功率半导体整流器。[〇〇49]图6a和图6b说明按照第四实施例的功率半导体整流器。其中,图6a示出垂直截面, 以及图5b示出按照第四实施例的功率半导体整流器的水平截面,其中水平截面沿图6a中的线条AA’来截取。
[0050]按照第四实施例的功率半导体整流器是沟槽结势皇肖特基(JBS)整流器。由于与按照第三实施例的功率半导体整流器的许多相似性,所以将主要描述与第三实施例的差别。[0051 ]作为按照第三实施例的功率半导体整流器,按照第三实施例的功率半导体整流器是基于4H-SiC的功率半导体整流器。它包括4H-SiC晶圆,其具有第一主侧33以及与第一主侧33平行的第二主侧34。从第一主侧33到第二主侧34,4H-SiC晶圆包括势皇调制层422(其与第二或第三实施例中的势皇调制层422相同)、基极层421(其与第二或第三实施例中的基极层421相同)以及衬底层31 (其分别与第一至第三实施例中的衬底层31相同)。[〇〇52]如同第二或第三实施例中一样,在4H_SiC晶圆的第一主侧33上,形成有第一电极层45,其与势皇调制层422直接接触,以形成第一电极层45与势皇调制层422之间的多个肖特基接触段。第三实施例中的第一电极45与第二或第三实施例中的第一电极45相同。[〇〇53]如同第二或第三实施例中一样,并且在第四实施例中,第一电极层45穿透势皇调制层422并且延伸到基极层421中,以形成条状电极段45&、4513、45(:,其在411-51(:晶圆内部 (即在第一主侧33与第二主侧34之间)相互平行地延伸。[〇〇54]作为按照第三实施例的功率半导体整流器,按照第四实施例的功率半导体整流器具有在漂移层42内部(即在第一主侧33与第二主侧34之间)所形成的p型发射极区67a、67b 和67c,以形成p型发射极区67a、67b和67c分别与n型基极层421之间的多个pn结。每个发射极区67a、67b或67c与相应电极段45a、45b或45c直接接触,以形成第一电极层45与相应发射极区67a、67b或67c之间的欧姆接触。按照第四实施例的功率半导体整流器与按照第三实施例的功率半导体整流器不同,因为p型发射极区67a、67b和67c与第一主侧33相邻地定位,并且将电极段45a、45b和45c与漂移层42分隔。因此,与第二和第三实施例形成对照,条状电极段45a、45b和45c的侧壁不是与基极层421直接接触,而是分别通过p型发射极区67a、67b和 67c与漂移层42分隔。[〇〇55] 发射极区67a、67b和67c是平行条状区域,其与条状电极段45a、45b和45c平行地延伸。在与条状电极段45a、45b和45c的主纵轴垂直的平面中,发射极区67a、67b和67c具有如图6a中所示的U形截面。[〇〇56]在与第一主侧33垂直的投影中,第一电极层45与势皇调制层422之间的肖特基接触段沿与第一主侧33平行并且与条状电极段45a、34b和45c的纵轴垂直的横向方向与发射极区67a、67b和67c之间的pn结进行交替,使得在每对两个相邻pn结之间定位有第一势皇肖特基接触段。[〇〇57]接下来描述有用于制造按照第四实施例的功率半导体整流器的方法。在这种方法中,首先采用如用于制造第二和第三实施例的方法中描述的过程步骤来形成如图8b中所示的结构。作为下一个步骤,发射极区67a、67b和67c分别与沟槽451a、451b和451c的底部和侧壁相邻地形成,以得到如图8d中所示的结构。发射极区67a、67b和67c通过将p型掺杂剂注入或扩散到底部并且分别注入或扩散到沟槽451a、451b和451c的侧壁中来形成,以得到如图 8d中所示的结构。备选地,发射极区可通过将p型4H-SiC材料分别沉积到沟槽451a、451b和 451c中以采用p型4H-SiC材料分别覆盖沟槽451a、451b和451〇的侧壁和底部来形成。在后一备选方法中,沟槽451a、451b和451c必须更宽和更深,以得到与其中通过注入或扩散p型掺杂剂来形成发射极区的情况中相同的电极段45a、45b、45c的尺寸。在下一个步骤中,第一电极层45形成到图8d中所示的结构上,以得到如图6a中所示按照第四实施例的功率半导体整流器。[〇〇58]图7a和图7b说明按照第五实施例的功率半导体整流器。其中,图7a示出垂直截面, 以及图7b示出按照第五实施例的功率半导体整流器的水平截面,其中水平截面沿图7a中的线条AA’来截取。
[0059]按照第五实施例的功率半导体整流器是结势皇肖特基(JBS)整流器。由于与按照第四实施例的功率半导体整流器的许多相似性,所以将主要描述第五实施例与第四实施例的差别。
[0060]作为按照第四实施例的功率半导体整流器,按照第五实施例的功率半导体整流器是基于4H-SiC的功率半导体整流器。它包括4H-SiC晶圆,其具有第一主侧33以及与第一主侧33平行的第二主侧34。从第一主侧33到第二主侧34,4H-SiC晶圆包括势皇调制层422(其与第二至第四实施例中的势皇调制层422相同)、基极层421(其与第二至第四实施例中的基极层421相同)以及衬底层31(其分别与第一至第四实施例中的衬底层31相同)。[〇〇611如同第四实施例中一样,在4H-SiC晶圆的第一主侧33上,形成有第一电极层35,其与势皇调制层422直接接触,以形成第一电极层35与势皇调制层422之间的多个肖特基接触段。第五实施例中的第一电极层35与第一实施例中的第一电极层35相同,以及与第四实施例的第一电极层45不同,因为它没有穿透势皇调制层422。
[0062]在按照第五实施例的功率半导体整流器中,形成有漂移层42内部的p型发射极区 77a、77b和77c,以形成p型发射极区77a、77b和77c分别与n型基极层421之间的多个pn结。发射极区77a、77b和77c与第一电极层45直接接触,以形成第一电极层45分别与发射极区77a、 77b和77c之间的欧姆接触。发射极区77a、77b和77c是平行条状区域,其具有与第二实施例中的条状电极段45a、45b和45c相同的几何结构。[〇〇63]在与第一主侧33垂直的投影中,肖特基接触段沿与第一主侧33平行并且与条状发射极区77a、77b和77c的纵轴垂直的横向方向与pn结进行交替,使得在每对两个相邻pn结之间定位肖特基接触段。
[0064]接下来描述用于制造按照第五实施例的功率半导体整流器的方法。首先,按照与用于制造按照上述第一实施例的功率半导体整流器的方法中相同的方式并且采用相同方法步骤来形成如图8a中所示的结构。作为下一个步骤,通过从第一主侧33有选择地将p型掺杂剂注入和/或扩散到漂移层32中,来在漂移层32中形成发射极区77a、77b和77c,以便穿透势皇调制层322并且延伸到基极层321中。备选地,首先如同用于制造按照第二实施例的功率半导体整流器的方法中一样来形成如图8b中所示的结构,并且可通过将p型4H-SiC材料沉积到这些沟槽中来填充沟槽451a、451b和451c。随后,在第一主侧上形成第一电极层35, 以得到如图7a中所示的按照第五实施例的功率半导体整流器。
[0065]本领域的技术人员将清楚地知道,上述实施例的修改是可能的,而没有背离如所附权利要求书所限定的本发明的思路。[〇〇66] 在上述实施例中使用4H-SiC作为漂移层32和42、衬底层31以及发射极区57a、57b、 57(3、67&、6713、67(3、773、7713、77(3的半导体材料。然而,可使用其他31(:多型,例如611-3比、 15R-SiC或3C-SiC。诸如族III氮化物化合物半导体材料(例如GaN、AlN或AlGaN)或硅(Si)的其他半导体材料也可用于本发明的功率半导体整流器中。不仅有可能使用一种单半导体材料,而且还可采用不同半导体材料的组合,例如硅和锗的组合。[〇〇67] 在上述第四实施例中,势皇调制层422在图6a中被示出与p型发射极区67a、67b和 67c直接接触。然而,在修改实施例中,势皇调制层422可与p型发射极区67a、67b和67c示范地间隔开50nm至100nm的距离。势皇调制层422可通过基极层421(其在4H-SiC晶圆的第一主侧33处形成与第一电极层45的肖特基接触)与p型发射极区67a、67b和67c分隔。[〇〇68]同样,在上述第五实施例中,势皇调制层422在图7a中被示出与p型发射极区77a、 77b和77c直接接触。然而,势皇调制层422可与p型发射极区77a、77b和77c示范地间隔开 50nm至100nm的距离。势皇调制层422可通过基极层421(其在4H-SiC晶圆的第一主侧33处形成与第一电极层35的肖特基接触)与p型发射极区77a、77b和77c分隔。[〇〇69]在所有上述实施例中,势皇调制层322、422可或者具有均质掺杂浓度,或者可具有分级掺杂分布或者任何其他掺杂分布,只要净掺杂浓度处于1 x 1016cm 3与1 X 1019cnf3之间的范围中。
[0070]在按照本发明的第二至第四实施例的上述功率半导体整流器中,电极段45a、45b 和45c描述为条状并且相互平行。然而,其他几何结构和结构是可能的。例如,电极段可形成投影到与第一主侧33平行的平面中的孤岛图案、网格结构或蜂窝结构。同样的情况适用于按照第三至第五实施例的功率半导体整流器中的发射极区57a、57b、57c、67a、67b、67c、 77&、7713、77(:。相应地,在用于制造这种功率半导体整流器的方法中形成代替沟槽的孔可以是必要的。
[0071]上述实施例采用特定导电类型来解释。可能转换上述实施例中的半导体层的导电类型,使得描述为P型层的所有层可以是n型层,而描述为n型层的所有层可以是p型层。例如,在修改的第三实施例中,衬底层31以及包括基极层421和势皇调制层422的漂移层42可以是P型层,以及发射极区57a、57b、57c可以是n型层,只要所有发射极区具有与同一功率半导体整流器中的衬底层和漂移层不同的另一种导电类型。
[0072]应当注意,术语“包括”并不排除其他元件或步骤,并且不定冠词“一”或“一个”并不排除多个。也可组合与不同实施例结合描述的元件。
[0073]参考标号列表1衬底层2漂移层3第一主侧4第二主侧5第一金属接触层6第二金属接触层7发射极区31衬底层32漂移层33第一主侧34第二主侧35第一电极层36第二电极层 42 漂移层 45a条状电极段 45b条状电极段 45c条状电极段 67a发射极区 67b发射极区 67c发射极区 57a发射极区 57b发射极区 57c发射极区 77a发射极区 77b发射极区 77c发射极区 321基极层 322势皇调制层421基极层 422势皇调制层 451a沟槽 451b沟槽 451c沟槽。
【主权项】
1.一种功率半导体整流器,包括:漂移层(32;42),具有第一导电类型;以及电极层(35;45),形成与所述漂移层(32;42)的肖特基接触,其中所述漂移层(32;42)包括具有低于1 X 1016cnf3的峰值净掺杂浓度的基极层(321; 421),其特征在于,所述漂移层(32;42)包括势皇调制层(322),所述势皇调制层(322)与所述 电极层(35 ;45)直接接触,以形成所述肖特基接触的至少一部分,其中所述势皇调制层 (322;422)的净掺杂浓度处于1\1016(:1^3与1\1019〇^3之间的范围中,所述势皇调制层(322;422)沿与所述电极层(35;45)与所述势皇调制层(322;422)之间 的界面垂直的方向具有至少lnm但小于0.2 ym的层厚度。2.如权利要求1所述的功率半导体整流器,其中,所述基极层(321 ;421)具有处于8 X 1014cnf3与6 X 1015cnf3之间的范围中的峰值净掺杂浓度。3.如权利要求1所述的功率半导体整流器,其中,所述势皇调制层(322;422)的所述净 掺杂浓度处于5 X 1016cnf3与1 X 1019cnf3之间的范围中。4.如权利要求3所述的功率半导体整流器,其中,所述势皇调制层(322;422)的所述净 掺杂浓度处于1 X 1017cnf3与5 X 1018cnf3之间的范围中。5.如权利要求1所述的功率半导体整流器,其中,所述电极层(45)穿透所述势皇调制层 (422)以便与所述基极层(421)直接接触,以及其中所述电极层(45)与所述基极层(421)之间的所述接触是第一势皇肖特基接触,并 且所述电极层(45)与所述势皇调制层(422)之间的所述接触是第二势皇肖特基接触,所述 第一势皇肖特基接触的所述肖特基势皇高度比所述第二势皇肖特基接触的所述肖特基势 皇高度要高。6.如权利要求5所述的功率半导体整流器,其中,所述漂移层(32)具有第一主侧(33)以 及与所述第一主侧(33)平行的第二主侧,其中所述第一势皇肖特基接触包括多个第一势皇 肖特基接触段,其中所述第二肖特基接触包括多个第二势皇肖特基接触段,并且其中所述 第一势皇肖特基接触段沿与所述第一主侧(33)平行的至少一个横向方向与所述第二势皇 肖特基接触段进行交替。7.如权利要求6所述的功率半导体整流器,其中,所述第一势皇肖特基接触段形成网格 或蜂窝结构。8.如权利要求1至7中的任一项所述的功率半导体整流器,所述功率半导体整流器包括 多个发射极区(57a,57b,57c; 67a,67b,67c; 77a,77b,77c ),其中:每个发射极区(57&,5713,57(:;67&,6713,67(3;77&,7713,77(3)具有与所述第一导电类型不 同的第二导电类型,所述电极层(35;45)形成与所述发射极区(57&,5713,57(3;67&,6713,67(3;77&,7713,77(3) 的每一个的欧姆接触,以及每个发射极区(57a,57b,57c;67a,67b,67c;77a,77b,77c)形成与所述基极层(421)的 pn结。9.如权利要求1至7中的任一项所述的功率半导体整流器,其中,所述漂移层(32;42)由 碳化硅或硅来制成。10.—种用于制造功率半导体整流器的方法,所述方法包括下列步骤:通过形成基极层(321;421)和势皇调制层(322;422)的叠层来形成漂移层(32;42)的步 骤,其中所述基极层(321 ;421)具有第一导电类型并且具有低于IX 1016Cnf3的峰值净掺杂 浓度,以及其中所述势皇调制层(322;422)具有所述第一导电类型,具有处于lX1016cnf3与 1 X 1019cnf3之间的范围中的净掺杂浓度,并且具有至少lnm但小于0.2mi的层厚度;以及在所述势皇调制层(322;422)上形成电极层(35;45),以形成与所述势皇调制层(322; 422)的肖特基接触的步骤。11.如权利要求10所述的用于制造功率半导体整流器的方法,所述方法包括在形成所 述电极层的步骤之前将至少一个沟槽(451a,451b,451c)或孔形成到所述漂移层(42)中的 步骤,所述沟槽(451a,451b,451c)或孔穿透所述势皇调制层(422)并且延伸到所述基极层 (421)中。12.如权利要求11所述的用于制造功率半导体整流器的方法,所述方法包括在形成所 述电极层(45)的步骤之前至少在所述至少一个沟槽(451a,451b,451c)或孔的底部形成发 射极区(57a,57b,57c; 67a,67b,67c; 77a,77b,77c)的步骤,其中所述发射极区(57a,57b, 57c;67a,67b,67C;77a,77b,77c)具有与所述第一导电类型不同的第二导电类型,并且形成 与所述漂移层(42)的pn结,以及其中所述电极层(45)形成与所述发射极区(57a,57b,57c; 67a,67b,67c; 77a,77b,77c)的欧姆接触。13.如权利要求12所述的用于制造功率半导体整流器的方法,其中,所述发射极区 (57a,57b,57c; 67a,67b,67c; 77a,77b,77c)通过将所述第二导电类型的半导体层沉积到所 述至少一个沟槽(451a,451b,451c)或孔中来形成。14.如权利要求12所述的用于制造功率半导体整流器的方法,其中,所述发射极区 (57a,57b,57c; 67a,67b,67c; 77a,77b,77c)通过至少在所述至少一个沟槽(451a,451b, 451c)或孔的底部将所述第二导电类型的掺杂剂注入所述漂移层(42)中来形成。15.如权利要求11所述的用于制造功率半导体整流器的方法,其中,所述电极层(45)在 所述至少一个沟槽(451a,451b,451c)或孔中形成,以形成与所述基极层(421)的肖特基接 触。
【文档编号】H01L21/329GK105977289SQ201610135132
【公开日】2016年9月28日
【申请日】2016年3月10日
【发明人】R.米纳米沙瓦, A.米海拉, V.森德拉穆斯
【申请人】Abb 技术有限公司