光学传感器及其制造方法

文档序号:10689092阅读:612来源:国知局
光学传感器及其制造方法
【专利摘要】本发明的示范实施方式提供一种光学传感器及其制造方法,该光学传感器包括:基板;红外线感测薄膜晶体管,包括第一半导体层和带通滤波器,该第一半导体层形成在基板上并布置为通过接收红外光而工作,该带通滤波器形成在基板上并将尺寸形成且布置为使红外光通过;可见光感测薄膜晶体管,包括第二半导体层,该第二半导体层形成在基板上并布置为通过接收可见光而工作;以及开关薄膜晶体管,包括形成在基板上的第三半导体层,其中带通滤波器可以由被图案化以具有特征的金属材料形成,相邻的特征彼此间隔开预定周期从而使红外光通过并阻挡可见光。
【专利说明】
光学传感器及其制造方法
技术领域
[0001]本发明的实施方式总地涉及光学传感器及其制造。更具体地,本发明的实施方式涉及光学传感器以及用于该光学传感器的改进的制造工艺。
【背景技术】
[0002]作为目前最广泛使用的平板显示器之一,液晶显示器(IXD)包括形成有电极的两个显示面板和插置在这两个显示面板之间的液晶层。LCD通过施加信号到电极以使液晶层的液晶分子重新排列而控制被透射的光的量。
[0003]近来,已经进行了对于另外具有触摸感测功能或图像感测功能的液晶显示器的研究。为了实现触摸感测功能和图像感测功能,液晶显示器可以另外包括光学传感器,该光学传感器包括红外线感测薄膜晶体管、可见光感测薄膜晶体管和开关薄膜晶体管。
[0004]然而,如果红外线感测薄膜晶体管对除了红外线之外的可见光线等起反应,则会发生光学传感器的故障。
[0005]在本【背景技术】部分中公开的以上信息仅用于增强对本发明的背景的理解,因此它可以包含不形成在此国家中对于本领域普通技术人员来说是已知的现有技术的信息。

【发明内容】

[0006]本发明的实施方式提供光学传感器和制造方法,其能够通过提供仅使红外波长的光通过的滤色器而防止可见光线入射在红外线感测薄膜晶体管上。
[0007]此外,本发明的实施方式提供能够通过简化其制造工艺而降低制造成本的光学传感器和制造方法。
[0008]本发明的不范实施方式提供一种光学传感器,该光学传感器包括:基板;红外线感测薄膜晶体管,包括第一半导体层和带通滤波器,第一半导体层形成在基板上并布置为通过接收红外光而工作,带通滤波器形成在基板上并将尺寸形成且布置为使红外光通过;可见光感测薄膜晶体管,包括形成在基板上并布置为通过接收可见光而工作的第二半导体层;以及开关薄膜晶体管,包括形成在基板上的第三半导体层。带通滤波器可以包括被图案化以具有特征的金属材料,相邻的特征彼此间隔开预定周期从而使红外光通过并阻挡可见光。
[0009]金属层可以包括铝、钼、铜、金、银或者铬;所述特征可以是孔,孔可以被成形为圆形、多边形和狭缝中的至少一种;相邻的孔可以彼此间隔开约390nm至约460nmo
[0010]带通滤波器可以包括位于基板上的金属颗粒。
[0011]金属颗粒可以包括铝、钼、铜、金、银和铬中的一种;金属颗粒可以具有被成形为圆形、正方形和矩形中的至少一个的截面;相邻的金属颗粒可以彼此间隔开约390nm至约460nmo
[0012]第一半导体层可以包括非晶硅锗。
[0013]红外线感测薄膜晶体管可以包括:形成在第一半导体层上的第一欧姆接触层;第一源电极和第一漏电极,形成在第一欧姆接触层上;第二绝缘层,形成在第一源电极和第一漏电极上;接触孔,形成在第二绝缘层中以暴露带通滤波器;以及第一上栅电极,形成在第二绝缘层上以通过接触孔连接到带通滤波器。
[0014]第二半导体层和第三半导体层可以包括非晶硅。
[0015]可见光感测薄膜晶体管可以包括:形成在第二半导体层上的第二欧姆接触层;第二源电极和第二漏电极,形成在第二欧姆接触层上;第二绝缘层,形成在第二源电极和第二漏电极上;以及第二上栅电极,形成在第二绝缘层上。
[0016]开关薄膜晶体管可以包括:形成在基板上的下栅电极;第一绝缘层,形成在下栅电极上;第三欧姆接触层,形成在第三半导体层上;第三源电极和第三漏电极,形成在第三欧姆接触层上;第二绝缘层,形成在第三源电极和第三漏电极上;以及第三上栅电极,形成在第二绝缘层上。
[0017]本发明的另一实施方式提供一种制造光学传感器的方法,该光学传感器包括具有第一半导体层和带通滤波器的红外线感测薄膜晶体管、具有第二半导体层的可见光薄膜晶体管、以及具有第三半导体层的开关薄膜晶体管,所述方法包括:通过在基板上形成特征的图案而形成带通滤波器,相邻的特征彼此间隔开等于或小于预定波长的距离;在基板上形成第一绝缘层;在基板上形成第二半导体层和第三半导体层;分别在第二半导体层和第三半导体层上形成第二欧姆接触层和第三欧姆接触层;以及在第一绝缘层上形成第一半导体层以及在第一半导体层上形成第一欧姆接触层。
[0018]形成带通滤波器可以包括:制备金属层;以及在金属层中形成多个孔。
[0019]在金属层中形成多个孔可以包括形成多个孔使得相邻的孔彼此间隔开约390nm至约460nm。
[0020]形成带通滤波器可以包括:在金属层上形成感光膜;通过经由光刻工艺选择性地图案化感光膜而形成感光膜图案;以及通过利用感光膜图案作为掩模选择性地图案化感光膜图案之下的金属层而形成多个孔。
[0021]形成带通滤波器可以包括:在金属层上形成抗蚀剂;通过用模制型辊压印抗蚀剂而形成抗蚀剂图案;以及通过利用抗蚀剂图案作为掩模选择性地图案化抗蚀剂图案之下的金属层而形成多个孔。
[0022]形成带通滤波器可以包括在基板上布置金属颗粒。
[0023]金属颗粒的布置可以包括布置金属颗粒使得相邻的金属颗粒之间的间隔为从约390nm 至约 460nm。
[0024]光学传感器的制造方法还可以包括:在第一欧姆接触层上形成第一源电极和第一漏电极、在第二欧姆接触层上形成第二源电极和第二漏电极、以及在第三欧姆接触层上形成第三源电极和第三漏电极;在第一源电极、第一漏电极、第二源电极、第二漏电极、第三源电极和第三漏电极上形成第二绝缘层;以及在第二绝缘层上分别形成对应于第一源电极和第一漏电极的第一上栅电极、对应于第二源电极和第二漏电极的第二上栅电极以及对应于第三源电极和第三漏电极的第三上栅电极。
[0025]根据本发明的示范实施方式,可以在用于感测红外线的薄膜晶体管的半导体层之下形成带通滤波器,使得光学传感器可以防止可见光线入射到其上,从而防止其故障。
[0026]根据本发明的示范实施方式,可以形成包括形成在金属层中的多个孔的带通滤波器并可以调整孔之间的间隔和孔的形状,或者可以通过在基板上布置金属颗粒而形成带通滤波器并可以调整相邻的金属颗粒之间的间隔和金属颗粒的形状,使得光学传感器可以进行比仅利用材料的性质的滤波器更准确的滤波。
[0027]根据本发明的示范实施方式,可以在相同的表面上形成带通滤波器和下栅电极,并可以用相同材料形成带通滤波器和下栅电极,使得光学传感器可以简化制造工艺并可以降低制造成本。
【附图说明】
[0028]图1是根据本发明的示范实施方式的光学传感器的平面图。
[0029]图2是根据本发明的示范实施方式的光学传感器的沿图1的线II1-1II’、111III”、III”-1II”’截取的截面图。
[0030]图3至图9是示出根据本发明的各种示范实施方式的光学传感器的带通滤波器的等距视图。
[0031]图1OA至图1OF是示出根据本发明的示范实施方式的光学传感器的制造方法的截面图。
[0032]附图标记说明
[0033]210:基板214:带通滤波器
[0034]221:栅线224:下栅电极
[0035]240:第二绝缘层242:第三绝缘层
[0036]250a:第一半导体层 250b:第二半导体层
[0037]250c:第三半导体层 260a:第一欧姆接触层
[0038]260b:第二欧姆接触层260c:第三欧姆接触层
[0039]273a:第一源电极 273b:第二源电极
[0040]273c:第三源电极 275a:第一漏电极[0041 ]275b:第二漏电极 275c:第三漏电极
[0042]280:第四绝缘层281:接触孔
[0043]294a:第一上栅电极 294b:第二上栅电极
[0044]294c:第三上栅电极
【具体实施方式】
[0045]在下文将参照附图更充分地描述本发明,附图中示出了本发明的示范实施方式。如本领域技术人员将认识到的,所描述的实施方式可以以各种不同的方式被修改,而都没有背离本发明的精神或范围。
[0046]在附图中,为了清晰,层、膜、面板、区域等的厚度被夸大。因此各个附图没有按比例。在整个说明书中,相同的附图标记表示相同的元件。将理解,当一元件诸如层、膜、区域、或基板被称为“在”另一元件“上”时,它可以直接在该另一元件“上”,或者也可以存在居间的元件。相反,当一元件被称为“直接在”另一元件“上”时,不存在居间的元件。
[0047]所有的数值都是大致的,并可以改变。具体材料和成分的所有示例将被认为是非限制的并且仅是示范性的。可以替代地使用其他适合的材料和成分。
[0048]首先,将参照附图描述根据本发明的示范实施方式的光学传感器。
[0049]图1是根据本发明的示范实施方式的光学传感器的平面图,图2是根据本发明的示范实施方式的光学传感器的沿图1的线ΙΙΙ-ΙΙΓ、ΙΙΓ-ΙΙΓ、ΙΙΓ-ΙΙΓ ’截取的截面图。
[0050]根据本发明的示范实施方式的光学传感器包括:基板210,由透明玻璃或者塑料材料制成;多个栅线221和多个数据线271,彼此交叉地形成在基板210上;开关薄膜晶体管SW,连接到栅线221和数据线271;以及红外线感测薄膜晶体管IR和可见光感测薄膜晶体管VIS,连接到开关薄膜晶体管SW。
[0051]栅线221和数据线271可以限定多个像素。一个开关薄膜晶体管SW和一个红外线感测薄膜晶体管IR可以形成为在一个像素中连接到彼此,一个开关薄膜晶体管SW和一个可见光感测薄膜晶体管VIS可以形成为在与其相邻的另一像素中连接到彼此。也就是,红外线感测薄膜晶体管IR和可见光感测薄膜晶体管VIS可以被设置在交替的像素中。
[0052]红外线感测薄膜晶体管IR包括形成在基板210上的带通滤波器214、形成在带通滤波器214上的第一半导体层250a、形成在第一半导体层250a上的第一欧姆接触层260a、形成在第一欧姆接触层260a上的第一源电极273a和第一漏电极275a、形成在第一源电极273a和第一漏电极275a上的第四绝缘层280以及形成在第四绝缘层280上的第一上栅电极294a。
[0053]带通滤波器214防止可见光线入射到第一半导体层250a。由于第一半导体层250a具有在可见光区以及红外区中的高量子效率,所以它受到可见光线影响,因此期望防止可见光线入射到第一半导体层250a。带通滤波器214可以通过在金属层中形成线性的或其他的图案而形成,使得特定波长的光可以被选择性地从其透射。具体地,所述图案可以将尺寸形成为且成形为使得红外波长的光可以选择性地从其通过。
[0054]根据本示范实施方式的带通滤波器214可以通过包括金属层中的多个孔而形成,或者可以通过在基板210上布置杆形金属颗粒或条形金属颗粒而形成。
[0055]第一半导体层250a可以由非晶硅锗(a-SiGe)形成。非晶硅锗(a-SiGe)是在红外区中具有高量子效率的材料。在这种情况下,第一半导体层250a可以由除了非晶硅锗(a-SiGe)之外的其他材料形成,此外它可以由在红外区中可具有高量子效率的任何材料形成。
[0056]第一源电极273a和第一漏电极275a彼此间隔开以形成沟道。第一欧姆接触层260a形成在第一半导体层250a上,除了沟道的区域之外。
[0057]红外线感测薄膜晶体管IR通过层叠在基板210上而形成,它还可以包括设置在带通滤波器214之下的第一绝缘层(未示出)和设置在带通滤波器214上的第二绝缘层240。
[0058]第一绝缘层(未示出)可以由硅氮化物(SiNx)形成,它可以用来改善基板210和带通滤波器214之间的附着。
[0059]第二绝缘层240可以由硅氮化物(SiNx)制成,它可以形成在带通滤波器214和第一半导体层250a之间使得两者之间的界面特性可以被改善。
[0060]可见光感测薄膜晶体管VIS包括形成在基板210上的第二半导体层250b、形成在第二半导体层250b上的第二欧姆接触层260b、形成在第二欧姆接触层260b上的第二源电极273b和第二漏电极275b、形成在第二源电极273b和第二漏电极275b上的第四绝缘层280以及形成在第四绝缘层280上的第二上栅电极294b。
[0061]第二半导体层250b可以由非晶硅(a-Si)形成。因为非晶硅(a-Si)是在可见光区中具有高量子效率的材料,所以即使红外光与可见光区的光一起入射到其上,它仍然在可见光区中具有高灵敏度。在这种情况下,第二半导体层250b可以由除了非晶硅(a-Si)之外的其他材料形成,此外可以由在可见光区中可具有高量子效率的任何材料形成。
[0062]第二源电极273b和第二漏电极275b彼此间隔开以形成沟道。第二欧姆接触层260b形成在第二半导体层250b上,除了沟道的区域之外。
[0063]开关薄膜晶体管SW包括形成在基板210上的第三半导体层250c、形成在第三半导体层250c上的第三欧姆接触层260c、形成在第三欧姆接触层260c上的第三源电极273c和第三漏电极275c、形成在第三源电极273c和第三漏电极275c上的第四绝缘层280、以及形成在第四绝缘层280上的第三上栅电极294c。
[0064]第三半导体层250c可以由非晶娃(a-Si)形成。
[0065]第三源电极273c和第三漏电极275c彼此间隔开以形成沟道。第三欧姆接触层260c形成在第三半导体层250c上,除了沟道的区域之外。
[0066]第三源电极273c连接到数据线271以从数据线271接收数据电压。
[0067]在开关薄膜晶体管SW连接到红外线感测薄膜晶体管IR的像素中,第三漏电极275c连接到第一源电极273a。在开关薄膜晶体管SW连接到可见光感测薄膜晶体管VIS的像素中,第三漏电极275c也连接到第二源电极273b。
[0068]开关薄膜晶体管SW还可以包括形成在基板210上并设置在第三半导体层250c之下的下栅电极224以及形成在下栅电极224上的第二绝缘层240。
[0069]接触孔可以形成在第二绝缘层240和第四绝缘层280中以暴露下栅电极224。在这种情况下,第三上栅电极294c通过一个这样的接触孔连接到下栅电极224。
[0070]接着,将参照图3至图9描述根据本发明的示范实施方式的光学传感器的带通滤波器214。根据本示范实施方式的带通滤波器214可以通过在金属层中形成特征(feature)的图案诸如孔、材料颗粒或者其他均一性变化而形成,使得特定波长的光可以通过其被选择性地透射,从而可以利用表面等离子体激元现象(surface Plasmon phenomenon)来过滤光。
[0071]表面等离子体激元现象指的是当光入射到具有纳米尺度的周期性图案的金属表面上时,通过特定波长的光与金属表面的自由电子之间的谐振而形成等离子体激元。能够形成等离子体激元的特定波长的入射光透射穿过孔,但是其余的入射光从金属表面反射。
[0072]带通滤波器214可以通过基于等离子体激元特性调整线性图案的图案周期而仅透射预定光,使得红外区中的光可以被分离。
[0073]图3是示出根据本发明的示范实施方式的光学传感器的带通滤波器214的图。根据本示范实施方式的带通滤波器214可以通过在金属层中包括多个孔而形成。金属层可以由铝、钼、铜、金、银、铬等形成,但是不限于此。
[0074]被透射的光的波长为线性图案的间隔的约1.7倍至约2倍。因此,根据本示范实施方式的光学传感器可以形成为使得相邻的孔之间的间隔为约390nm至约460nm。这允许孔图案反射可见光谱中的光并透射约780nm的红外频率的光。
[0075]此外,如图4至图6所示,形成在金属层中的多个孔可以具有各种形状,诸如四边形、多边形、狭缝等。
[0076]图7是示出根据本发明的另一示范实施方式的光学传感器的带通滤波器的图。根据本示范实施方式的带通滤波器214可以通过在基板210上布置杆形金属颗粒或者条形金属颗粒而形成。金属颗粒可以是铝、钼、铜、金、银、铬等,但是不限于此。此外,金属颗粒可以为各种形状,诸如如图7中所示的正方形、或者分别如图8和图9中所示的圆形和矩形。
[0077]在这种情况下,被透射的光的波长为线性图案的间隔的约1.7倍至约2倍。因此,根据本示范实施方式的光学传感器可以使相邻的金属颗粒之间的间隔形成为约390nm至约460nm,使得它可以反射可见光范围内的光并透射红外范围内(例如,约780nm)的光。
[0078]结果,通过在用于感测红外线的薄膜晶体管的半导体层之下形成带通滤波器214,根据本示范实施方式的光学传感器可以防止可见光线入射到其上,从而防止其故障。
[0079]此外,通过形成具有形成在金属层中的多个孔的带通滤波器214以及通过调整孔之间的间隔和孔的形状,或者通过在基板210上布置由金属颗粒形成的带通滤波器214以及通过调整相邻的金属颗粒之间的间隔和金属颗粒的形状,根据本示范实施方式的光学传感器可以进行比仅仅利用材料性质的滤波器更准确的滤波。
[0080]接着,将参照附图描述根据本发明的示范实施方式的光学传感器的制造方法。
[0081]图1OA至图1OF是示出根据本发明的示范实施方式的光学传感器的制造方法的截面图。
[0082]首先,如图1OA所示,第一绝缘层(未示出)、带通滤波器214和下栅电极224形成在由诸如透明玻璃或者塑料的材料制成的基板210上。
[0083]第一绝缘层(未示出)可以由氟化锂(LiF)、硅氮化物(SiNx)等形成,它用于改善基板210和带通滤波器214之间的附着。
[0084]接下来,形成带通滤波器214和下栅电极224。
[0085]带通滤波器214是防止可见光线入射到其他部件上的层,如上所述。根据本示范实施方式,带通滤波器214可以通过在金属层中形成线性图案而形成,使得特定波长的光可以被选择性地从其透射,也就是,使得仅红外波长的光可以从其穿过。
[0086]在这种情况下,带通滤波器214的线性图案可以通过在金属层中形成多个孔或者在基板210上布置金属颗粒而形成。金属层或者金属颗粒可以是铝、钼、铜、金、银、铬等。形成在金属层中的相邻的孔之间的间隔和/或形成在基板210上的相邻的金属颗粒之间的间隔可以为约390nm至约460nm。
[0087]多个孔可以通过如下形成在带通滤波器214中:在金属层上形成预定感光膜之后,通过经由光刻工艺的选择性图案化而形成感光膜图案,然后利用该感光膜图案作为掩模选择性地图案化感光膜图案之下的金属层。
[0088]或者,多个孔可以通过如下形成在带通滤波器214中:在金属层上形成预定抗蚀剂、用模制型辊压印此抗蚀剂层而形成抗蚀剂图案、然后利用抗蚀剂图案作为掩模选择性地图案化预定的抗蚀剂图案之下的金属层。
[0089]下栅电极224可以由与带通滤波器214相同的导电材料形成,并且它可以通过与带通滤波器214相同的掩模被图案化。
[0090]这样,通过在相同的表面上形成带通滤波器214和下栅电极224以及通过用相同的材料形成带通滤波器214和下栅电极224,根据本示范实施方式的光学传感器可以简化制造工艺并可以降低制造成本。
[0091]此外,通过形成包括形成在金属层中的多个孔的带通滤波器214以及通过调整孔之间的间隔和孔的形状,或者通过在基板210上布置由金属颗粒形成的带通滤波器214以及通过调整相邻的金属颗粒之间的间隔和金属颗粒的形状,根据本示范实施方式的光学传感器可以进行比仅仅使用材料的性质的滤波器更准确的滤波。
[0092]如图1OB所示,第二绝缘层240形成在基板210的形成有第一绝缘层(未示出)、带通滤波器214和下栅电极224的前表面上。第二半导体层250b和第二欧姆接触层260b层叠并形成在基板210上,第三半导体层250c和第三欧姆接触层260c层叠并形成在下栅电极224上。
[0093]第二半导体层250b和第三半导体层250c可以由相同的材料例如非晶娃(a_Si)形成。非晶硅(a-Si)是在可见光区中具有高量子效率的材料,即使红外光与可见光一起入射到其上,该材料也在可见光区中具有高灵敏度。或者,第二半导体层250b和第三半导体层250c可以由除了非晶硅(a-Si)之外的其他材料形成,具体地,它们可以由在可见光谱中具有高量子效率的任何材料形成。
[0094]第二欧姆接触层260b和第三欧姆接触层260c可以由相同的材料形成。
[0095]如图1OC所示,第一半导体层250a和第一欧姆接触层260a形成在带通滤波器214上。第一半导体层250a可以由诸如非晶硅锗(a-SiGe)的材料形成。非晶硅锗(a-SiGe)对于红外线具有高灵敏度,因为它是在红外光谱中具有高量子效率的材料。第一半导体层250a可以由除了非晶硅锗(a-SiGe)之外的其他材料形成,例如可以由在红外光谱中具有高量子效率的任何材料形成。
[0096]如图1OD所示,第一源电极273a和第一漏电极275a形成在第一欧姆接触层260a上,第二源电极273b和第二漏电极275b形成在第二欧姆接触层260b上,第三源电极273c和第三漏电极275c形成在第三欧姆接触层260c上。
[0097]第一源电极273a和第一漏电极275a彼此间隔开以形成沟道,第二源电极273b和第二漏电极275b彼此间隔开以形成沟道,第三源电极273c和第三漏电极275c分别彼此间隔开以形成沟道。在这种情况下,第一欧姆接触层260a、第二欧姆接触层260b、第三欧姆接触层260c从对应于它们各自的沟道的区域去除。
[0098]如图1OE所示,第四绝缘层280形成在基板210的形成有第一源电极273a、第一漏电极275a、第二源电极273b、第二漏电极275b、第三源电极273c以及第三漏电极275c的前表面上。
[0099]接着,接触孔281形成在第二绝缘层240和第四绝缘层280中以暴露带通滤波器214。
[0100]如图1OF所示,第一上栅电极294a形成在第四绝缘层280上以对应于第一源电极273a和第一漏电极275a,第二上栅电极294b形成在第四绝缘层280上以对应于第二源电极273b和第二漏电极275b,第三上栅电极294c形成在第四绝缘层280上以对应于第三源电极273c和第三漏电极275c。
[0101]第一上栅电极294a通过接触孔281连接到带通滤波器214。
[0102]虽然已经结合目前被认为是可行的示范实施方式描述了本发明,但是将理解,本发明不限于所公开的实施方式,而是相反的,旨在涵盖包括在权利要求书的精神和范围内的各种变型和等同布置。以上描述的和其他的实施方式的各种特征可以以任何方式混合和搭配,以产生与本发明一致的另一些实施方式。
[0103]本申请要求于2015年4月9日在韩国知识产权局提交的韩国专利申请N0.10-2015-0050426的优先权及其权益,其全部内容通过引用结合于此。
【主权项】
1.一种光学传感器,包括: 基板; 红外线感测薄膜晶体管,包括第一半导体层和带通滤波器,所述第一半导体层形成在所述基板上并布置为通过接收红外光而工作,所述带通滤波器形成在所述基板上并将尺寸形成且布置为使所述红外光通过; 可见光感测薄膜晶体管,包括第二半导体层,该第二半导体层形成在所述基板上并布置为通过接收可见光而工作;以及 开关薄膜晶体管,包括形成在所述基板上的第三半导体层, 其中所述带通滤波器包括被图案化而具有特征的金属材料,相邻的特征彼此间隔开预定周期以阻挡可见光。2.如权利要求1所述的光学传感器,其中 所述特征包括形成在金属层中的孔,该金属层是所述金属材料的层。3.如权利要求2所述的光学传感器,其中 所述金属层包括铝、钼、铜、金、银或者铬, 所述孔被成形为圆形、多边形和狭缝中的至少一种, 相邻的孔彼此间隔开390nm至460nm。4.如权利要求1所述的光学传感器,其中 所述带通滤波器包括位于所述基板上的金属颗粒。5.如权利要求4所述的光学传感器,其中 所述金属颗粒包括铝、钼、铜、金、银和铬中的一种, 所述金属颗粒具有被成形为圆形、正方形和矩形中的至少一种的截面, 相邻的金属颗粒彼此间隔开390nm至460nm。6.如权利要求1所述的光学传感器,其中 所述第一半导体层包括非晶硅锗。7.如权利要求1所述的光学传感器,其中所述红外线感测薄膜晶体管包括: 第一欧姆接触层,形成在所述第一半导体层上; 第一源电极和第一漏电极,形成在所述第一欧姆接触层上; 第二绝缘层,形成在所述第一源电极和所述第一漏电极上; 接触孔,形成在所述第二绝缘层中以暴露所述带通滤波器;和 第一上栅电极,形成在所述第二绝缘层上以通过所述接触孔连接到所述带通滤波器。8.如权利要求1所述的光学传感器,其中 所述第二半导体层和所述第三半导体层包括非晶硅。9.如权利要求1所述的光学传感器,其中所述可见光感测薄膜晶体管包括: 第二欧姆接触层,形成在所述第二半导体层上; 第二源电极和第二漏电极,形成在所述第二欧姆接触层上; 第二绝缘层,形成在所述第二源电极和所述第二漏电极上;和 第二上栅电极,形成在所述第二绝缘层上。10.如权利要求1所述的光学传感器,其中所述开关薄膜晶体管包括: 下栅电极,形成在所述基板上; 第一绝缘层,形成在所述下栅电极上; 第三欧姆接触层,形成在所述第三半导体层上; 第三源电极和第三漏电极,形成在所述第三欧姆接触层上; 第二绝缘层,形成在所述第三源电极和所述第三漏电极上;和 第三上栅电极,形成在所述第二绝缘层上。11.一种制造光学传感器的方法,所述光学传感器包括具有第一半导体层和带通滤波器的红外线感测薄膜晶体管、具有第二半导体层的可见光薄膜晶体管以及具有第三半导体层的开关薄膜晶体管,所述方法包括: 通过在基板上形成特征的图案而形成所述带通滤波器,相邻的特征彼此间隔开等于或小于预定波长的距离; 在所述基板上形成第一绝缘层; 在所述基板上形成所述第二半导体层和所述第三半导体层; 分别在所述第二半导体层和所述第三半导体层上形成第二欧姆接触层和第三欧姆接触层;以及 在所述第一绝缘层上形成所述第一半导体层以及在所述第一半导体层上形成第一欧姆接触层。12.如权利要求11所述的方法,其中形成所述带通滤波器还包括: 提供金属层;和 在所述金属层中形成多个孔。13.如权利要求12所述的方法,其中在所述金属层中形成多个孔包括: 形成所述多个孔使得相邻的孔彼此间隔开390nm至460nm。14.如权利要求12所述的方法,其中形成所述带通滤波器还包括: 在所述金属层上形成感光膜; 通过经由光刻工艺选择性地图案化所述感光膜而形成感光膜图案;以及通过利用所述感光膜图案作为掩模选择性地图案化所述感光膜图案之下的所述金属层而形成所述多个孔。15.如权利要求12所述的方法,其中形成所述带通滤波器还包括: 在所述金属层上形成抗蚀剂; 通过用模制型辊压印所述抗蚀剂而形成抗蚀剂图案;以及 通过利用所述抗蚀剂图案作为掩模选择性地图案化所述抗蚀剂图案之下的所述金属层而形成所述多个孔。16.如权利要求11所述的方法,其中形成所述带通滤波器还包括: 在所述基板上布置金属颗粒。17.如权利要求16所述的方法,其中布置所述金属颗粒包括: 布置所述金属颗粒使得相邻的金属颗粒之间的间隔为从390nm至460nm。18.如权利要求11所述的方法,还包括: 在所述第一欧姆接触层上形成第一源电极和第一漏电极、在所述第二欧姆接触层上形成第二源电极和第二漏电极、以及在所述第三欧姆接触层上形成第三源电极和第三漏电极; 在所述第一源电极、所述第一漏电极、所述第二源电极、所述第二漏电极、所述第三源电极和所述第三漏电极上形成第二绝缘层;以及 在所述第二绝缘层上分别形成对应于所述第一源电极和所述第一漏电极的第一上栅电极、对应于所述第二源电极和所述第二漏电极的第二上栅电极以及对应于所述第三源电极和所述第三漏电极的第三上栅电极。
【文档编号】H01L27/146GK106057841SQ201610217594
【公开日】2016年10月26日
【申请日】2016年4月8日 公开号201610217594.0, CN 106057841 A, CN 106057841A, CN 201610217594, CN-A-106057841, CN106057841 A, CN106057841A, CN201610217594, CN201610217594.0
【发明人】吕伦钟, 孙正河, 李周炯
【申请人】三星显示有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1