风力发电设备的操作方法及其操作方法

文档序号:7338228阅读:637来源:国知局
专利名称:风力发电设备的操作方法及其操作方法
技术领域
本发明涉及一种操作风轮机的方法,其中由馈入或供给单元馈送或供给转子电流的感应发电机的转子绕组通过风轮机的转子驱动,该感应发电机包括耦合到电压网的定子线圈;其中馈送或供给的转子电流的频率根据转子旋转频率而控制,并且在电网电压幅值发生预定变动量的情形下,馈送单元从转子绕组上电气解耦,本发明还涉及可以用这样的方法操作的风力发电设备。
风力发电设备易受由于阵风带来的一次能源可用性极大和短期波动的影响。为此,通常变速发电机被用于通过风力发电设备产生电能,因为当用这种发电机时,阵风的能量不会立即供给电网而是该能量能通过旋转速度的变动而储存在风力发电设备的离心质量中。以这种方式,与固定旋转速度的设备相比,该风力发电设备的机械负载能够被显著地减少,并且机械部分能被设计和制造的重量轻并减小了花费。感应发电机通常被用作变速发电机,其中它们的定子线圈直接耦合到电压网,并且它们的转子绕组受到风力发电设备的转子驱动,并且通过适当的变换器供给转子电流。其中,以转子旋转频率和转子电流频率之和恒等于电网频率的方式控制供给转子的电流的频率。为了馈送转子绕组,使用了耦合到电网的直接变换器以及具有通过感性和/或容性电抗耦合到其上的转子功率变换器和网侧电网变换器的中间电压电路变换器。
当使用直接变换器和使用中间电压电路变换器时,会产生这样的问题,即在由例如短路电路而在电网中引起的电源电压幅值的变动的时候,出现了在电网和定子线圈之间大的电压差。这些差值导致在直接耦合到电网的定子线圈中出现强电流。这些强电流由于感应发电机在电网频率幅值变动时常常处于全励磁状态而在定子线圈中产生,并且机械能一直由转子提供。在电源电压变动时出现于定子线圈的强电流在转子绕组中导致高感应电压,其能对馈送转子电流用的变换器造成损坏。当用中间电压电路变换器时,转子功率变换器的反向二极管会被由转子绕组中的感应电压而产生的高的电流完全地损坏。为此,在现有已知的用于操作带有感应发电机的风力发电设备的方法中,用于馈送转子电流的馈入单元在中间电路电压的变动时通常从转子绕组上解耦,尤其在由于短路引起电源电压的下降时,借此相应地防止由在转子绕组中感应的电压或电流导致的馈入单元或变换器的损坏。稳定电源电压后,为了感应发电机的励磁在现有已知方法中恢复转子电流的馈送并且该电流的馈送与电网重新同步。例如,在“Sienmens-Energietechnik5”(1983)第6卷第364-367页“Einsatx einer doppelt gespeisten Asynchronmaschinein der Groenβen Windenergieanlage Grovian”,描述了这种方法。上述文献关于从转子绕组上解耦交换器的公开在此明确地并入到本说明书中作为参考。在可以导致电源电压幅值下降到期望值的15%的电源电压下降和例如达到期望值的80%的电源电压的恢复之间的感应发电机的操作中断期通常仅仅数秒,因此由该中断引起的损耗基本上不会减小风力发电设备的总效率。
随着越来越多地利用可再生能源,例如风力发电设备,产生电能,出现了由于在例如由短路电路引起的电压下降之后,没有提供足够的电能以快速地稳定电源电压,而使得电源电压下降的周期显著增加的问题。
考虑到现有技术中的这些问题,本发明的一个目的是提供一种对操作风力发电设备的已知方法的改进,这种改进能够用作在电压下降之后稳定电源电压而不会危害到风力发电设备中的电气元件,也提供一种能够执行这种方法的风力发电设备。
关于方法方面,依靠对已知操作风力发电设备方法的改进而使得这个目的能够实现,其实质上的特征在于,在由电源电压幅值的变动而引起的馈入单元的解耦之后,只要转子线圈中的由这种变动产生的电流下降到预定值,就立即恢复转子电流的馈送。
这种改进涉及一种发现,即在电源电压下降时在转子绕组中感应出的高的电流,会在馈送转子电流的变换器的解耦(例如通过具有低阻抗的电阻短路转子绕组)之后在50至150msec内减小或逐渐消失,这使得在短时期之后即可恢复转子电流的馈送,而不会危害该变换器。此外考虑的事实是甚至当电源电压下降到期望值的15%的情形下,相位和过零点的可靠的检测也是可能的。风力发电设备到电网的受控的馈送操作能够在转子绕组中感应的电流减小后立即通过供给的转子电流的相应的幅值和相位控制重新恢复。因此,风力发电设备有助于电源电压的稳定,电源电压能够保持其大约15%的值500msec,这使得在转子绕组中的感应电流减小和/或逐渐消失之后可以持续超过300msec的期间。在此时间内,在电源电压再次升高并且导致转子绕组中感应的电流新的增加之前,风力发电设备能够有助于电源电压的稳定,该电流可能导致将馈入单元或变换器相应地从转子绕组新解耦以防止损坏的需要。
在此期间内,数倍于设备额定值的电流能够馈送入电网或者导致电源电压下降的短路电路。
基本上,在考虑到预定的时间常数下能够完成转子电流馈送的恢复。从提高设备的安全性考虑,已经提出当转子电流作为两相或三相信号被检测到或整流电流作为单相信号被检测,并且检测到的电流下降到预定的值时,才恢复转子电流的馈送是特别有利的。电流互感器(例如电流补偿互感器)能用作检测该电流。
必须考虑在电源电压恢复时电源电压幅值会在少于1毫秒的时间内上升到期望值。因此,能够在转子中感应出DC电压和50HZ的AC电压,因而必须将转子绕组从馈入单元重新解耦,例如通过转子绕组的短路。发电机通过准短路转子绕组而部分地去激励。结果是DC分量减少了,并且取决于实际的转速,50HZ的AC分量是有效的。如果在电源电压下降(存在电网欠压)时,风力发电设备的速度处于次同步范围内,电源电压的恢复导致短路的引擎试图斜坡上升到电动机模式中的同步速。这意味着当电源电压恢复时风力发电设备能够获得电流。如果在电源电压下降时(电网欠压的存在),风力发电设备的速度处于过同步范围内,电源电压的恢复导致短路的发动机斜坡下降到发电机模式中的同步速。这意味着当电源电压恢复时风力发电设备能够供给电流。当转子电流的幅值在100至200msec后已经充分地下降之后,转子电流的馈送能够在根据本发明的方法的框架内在电源电压恢复时重新开始。
如上述所解释的,在本发明框架内的特别的优点是转子绕组被短路以从馈入或供给单元解耦,这使得在转子绕组中感应的电流能够十分迅速地减少。因此,可使用所谓的“撬杠(crow bar)”,其能通过低阻抗的电阻,尤其是阻抗,短路该转子绕组,并且减少发动机的激励。例如,撬杠能够以部分受控的B6桥的形式实现。当使用中间电压电路变换器时,转子电流变换器能够在电网变换器仍然连接到电网并提供视在功率时同时阻断。如上述所解释的,在此情形下,转子和起动器电流依靠电阻在50至150msec内减小。
在本发明的优选实施例中,设计控制装置以控制在转子绕组中感应的电流的幅值和/或相位。靠改变相位,感应发电机的有功功率和无功功率能够被彼此独立地控制。
以下,参考附图描述本发明使得读者明确本发明所必要的,但是在说明书中没有详细地解释的每一个节。在图中,

图1示出根据本发明的带有双馈感应发电机和在转子电路中带有变换器的风力发电设备的基本电路框图,图2示出一种典型的电源电压下降随时间的变化,以及图3示出图1所示的电路框图的细节。
根据图1,根据本发明的风轮机包括转子10,其关于基本上水平的转子轴可旋转地设置并通过齿轮箱20耦合到总体上由参考标号30标示的感应发电机。该感应发电机包括耦合到电网的定子线圈32以及通过齿轮箱20耦合到转子10的转子绕组34。
转子34的旋转频率由传感器40检测。转子电流通过总体上由参考标号50标示的变换器馈入到转子绕组。变换器50包括网侧电网变换器52以及通过DC电压电路56耦合到转子的转子侧转子变换器54。而且,提供一种形成为所谓的“撬杠(crow bar)”的短路元件60,其中转子34的绕组能够通过低阻抗的电阻被短路。传感器40检测转子34的旋转频率,该转子连接到转子侧的转子变换器54使得根据转子的旋转频率来控制馈入到转子绕组的电流的频率。而且,形成为低通滤波器的转子滤波器70连接在短路元件60和转子变换器54之间。此外,提供电网滤波器71在电网变换器52和该电网之间。而且,提供同步开关72使该风轮机与电网同步。
根据图2,电源电压的下降有三个阶段。在第一阶段,电源电压幅值在小于1毫秒的时间内快速下降到期望值的大约15%。在持续到3秒的第二阶段,电源电压幅值保持在该低值。最后,在持续50-150msec的第三阶段中,电源电压值恢复到期望值的大约80%或更多。
在第一阶段中的电源电压下降过程中,变换器50,尤其是转子侧的转子变换器54,必须受到保护以防止受到转子绕组中的感应电流的损坏。因此,根据本发明的实施例在风力发电设备中提供应急单元。该应急单元能够被操作以从转子绕组34上电气解耦馈入单元,该馈入单元也就是变换器50。为此,该应急单元包括短路元件60。因此,在紧急情况下,例如,在电网电压下降存在时,在第一阶段中转子绕组通过短路元件60被短路,并且转子变换器54被阻断。在50至150msec的时间内在转子绕组中的感应电流逐渐消失之后,通过转子测转子变换器54的转子电流的馈送由断开该短路元件(“撬杠”)和释放该转子电流变换器得以继续。为此,根据本发明的实施例的风力发电设备包括在解耦后释放转子电流馈入的释放装置。当在转子绕组34中产生的并且触发变换器50从转子绕组解耦的电流已经下降到期望值时,该释放装置释放该馈入的转子电流。然后,继续转子电流的馈送。在本发明的实施例中,释放装置包含于短路元件60中。在第三阶段中当电源电压恢复时,如果需要可以实现从转子绕组上重新解耦变换器,从而在电源电压的恢复期间防止由于转子绕组中的感应电流对变换器造成的损坏。
如图3所示,短路元件60(“撬杠”)能够作为B6桥而实现。在这种情况下,经过整流的转子电流的逐渐消失能够通过B6桥中的电流互感器电阻62而完成。当变换器50中的中间电路电压由于极高的转子电流而超过预定值时,形成为B6桥的撬杠被激活。然后,执行与电网的短路电路同样情形的过程。当由于短期的电网欠压在转子中出现极高的电流时,轮机真正的作用就像电网的短路电路的情形。当电流下降至预定值时,B6桥的晶闸管变成阻断,并且转子绕组34的短路也被终止。然后继续转子电流的馈入。因此,晶闸管形成了本发明实施例中的释放装置。
权利要求
1.操作风轮机的方法,其中由馈入单元馈送转子电流的感应发电机的转子绕组通过风轮机转子驱动,该感应发电机包含耦合到电压电网的定子线圈;其中根据转子旋转频率来控制馈入的转子电流的频率,并且在电网电压幅值发生预定变动的情形下,上述馈入单元从转子绕组上电气解耦,其特征在于在由电网电压幅值的变动引起解耦之后,当由于该变动而在转子绕组中产生的电流下降到预定的值时,恢复馈入转子电流。
2.如权利要求1所述的方法,其特征在于转子电流通过耦合到电网电压的变换器馈入,尤其是通过具有转子侧转子电流变换器和电网侧电网变换器的中间DC电压变换器。
3.如权利要求2所述的方法,其特征在于在解耦期间内,电网变换器保持耦合到电网并且转子电流变换器被阻断。
4.如上述任何一项权利要求所述的方法,其特征在于在解耦期间,转子绕组被短路。
5.实施如上述任何一项权利要求所述方法的风轮机,其包括转子,其带有至少一个转子叶片,该转子关于基本垂直的转子轴可旋转地安置;感应发电机,其转子绕组耦合到转子并且其定子线圈能够耦合到电压电网;馈入单元,用于馈送电流到转子绕组中;控制单元,用于根据转子旋转频率控制馈入电流的频率,以及应急单元,在电网电压幅值变动的情形下,操作该应急单元以将馈入单元从转子绕组上解耦,其特征在于应急单元包括释放装置,该释放装置用于在解耦后,当由于触发该解耦的电网电压幅值的改变而在转子绕组中产生的电流下降到预定值时,释放转子电流的馈入。
6.如权利要求5所述的风轮机,其特征在于转子通过齿轮机构耦合到转子绕组。
7.如权利要求5或6之一所述的风轮机,其特征在于馈入单元包括耦合到电网电压的变换器。
8.如权利要求7所述的风轮机,其特征在于该变换器是带有转子侧转子电流变换器和电网侧电网变换器的中间DC电压变换器。
9.如权利要求5至8中任何一项所述的风轮机,其特征在于应急单元包括撬杠,用于短路该转子绕组。
10.如权利要求5至9中任何一项所述的风轮机,其特征在于控制单元适于控制馈入到转子绕组的电流的幅值状态和/或相位状态。
全文摘要
本发明涉及一种操作风轮机的方法,其中,由馈入单元馈送转子电流的感应发电机的转子绕组通过风轮机的转子驱动,该感应发电机包括耦合到电压网的定子线圈;其中馈入的转子电流的频率根据转子旋转频率而控制,在电网电压幅值的预定变动的情况下,馈入单元从转子绕组上电气解耦,并且当由该变动在转子绕组中产生的电流下降到预定的值时,在由电网电压幅值的变动引起的解耦之后继续转子电流的馈入。
文档编号H02P9/42GK1669212SQ03816848
公开日2005年9月14日 申请日期2003年7月17日 优先权日2002年7月17日
发明者A·比克尔, W·杨森, H·吕策 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1