专利名称:移动式混合电源的制作方法
技术领域:
本发明涉及电源,尤其是一种移动式混合电源,其提供风力、柴油和光伏发电。
背景技术:
随着计算机的发展以及其在商业、工业、化学和军事机械和设备中的用途越来越 关键,为了向在不能连接标准电网电源(在现场附近没有电网电源可用)的偏远地区使用 的上述设备进行供电而开发适用的发电方案变得绝对必要。迄今为止,化石燃料发电机用于为这些应用供电。但是,它们具有大量缺点,包括 很高的初始、维修和燃料成本。发电机是随着时间而会被腐蚀的机械设备。机械故障时常发生,因此,在极端天气 条件下,用于偏远地区的重要负载需要至少两个发电机,以尽量减少一个单元出现故障的 风险。此外,发电机无法每天24小时/每周7天无中断地工作。通常需要至少两个发电机 来确保每天24小时/每周7天的供电。当使用一个以上的发电机为场地供电时,必须安装 控制电路来管理和保护系统。还需要的是若干贮油罐,使总的初始成本相当高。发电机具有很高的维修和运营成本。发电机需要备用部件以及至少一个能进行维 修的技术人员长期存在。它们还与负载无关地每小时消耗几乎恒定数量的燃油。这意味在 任何时候,即使是在能耗极低的情况下,燃料成本仍相当大。化石燃料供能的发电机会造成环境污染。这种发电机很污染,因为其使用柴油和 每天24小时/每周7天地工作。此外,由于依赖化石燃料,这种发电机对燃料可用性有要 求。如果在现场附近没有燃料源,对发电机的依赖不可能多于几个星期。此外,由于需要恒 定的加油线路,即使在含有加油源的地方,建立连续的加油线路仍是相当昂贵的,因为这需 要卡车和人力资源不断地将燃料从油源送到发电机。化石燃料供能的发电机会产生大量噪音。由于这种发电机噪声极大,有可能会滋 扰职员和工人,尤其是在夜晚。由于化石燃料供能的发电机与重要负载不相容,因而可能不能够提供电子设备和 计算机所要求的平稳和干净的电力。此外,即使在现场安装两个单元(在负载由一个发电 机转到其它时总会有轻微的功率损耗),该种发电机也不能做成“不间断”。因此,有必要在 发电机和重要负载之间安装UPS (不间断电源),以确保即使发电机要停止一段时间或负载 要由一发电机转到另一个发电机时,将不会出现负载中断。对于重要的应用,必须使用冗余 的UPS系统,以确保负载的正常运行时间。所有上述的问题都会导致初始成本和维护成本 进一步增加。因此,期望的是有一种能解决上述问题的混合式电源。
发明内容
一种移动式混合电源,其可重构地设置在合法上路(Street-legal)尺寸的紧凑 型金属容器中,所述容器位于可由卡车拖行的液压拖车上。所述容器上设有定位销,以便使所述容器与拖车上的转动轴承对齐和密合。所述转动轴承使所述金属容器可自其初始位置 绕垂直中轴线+/-180。地转动。该系统结合了多种能量源,以便在多种应用中和条件下提 供优化操作。所述能量源包括风能、太阳能和化石燃料能量成分。当电网可用时,所述混合 电源可与电网连接,以便将能量售回电网。在进一步检视以下说明书和附图后,本发明的这些和其它的特征就会变得显而易 见。
图1所示为根据本发明的移动式混合电源的环境透视图。图2所示为根据本发明的移动式混合电源的顶视图。图3所示为根据本发明的移动式混合电源的局部分解侧视图,示出电源用的拖车 和容器。图4所示为图3的拖车和容器在相互连接时的侧视图。图5所示为根据本发明的移动式混合电源的后视图,示出收缩的液压支脚。图6所示为根据本发明的移动式混合电源的后视图,示出伸展的液压支脚。图7所示为根据本发明的移动式混合电源的拖车的旋转定位的顶视图。图8所示为根据本发明的移动式混合电源的风力发电机配置的第一阶段的后视 图。图9所示为根据本发明的移动式混合电源的风力发电机配置的第二阶段的后视 图。图10所示为根据本发明的移动式混合电源的风力发电机配置的最后阶段的后视 图。图11所示为根据本发明的移动式混合电源的太阳能电池板配置的第一阶段的后 视图。图12所示为根据本发明的移动式混合电源的太阳能电池板配置的第二阶段的后 视图。图13所示为根据本发明的移动式混合电源的太阳能电池板配置的第三阶段的后 视图。图14所示为根据本发明的移动式混合电源的太阳能电池板配置的第四阶段的后 视图。图15所示为根据本发明的移动式混合电源的太阳能电池板配置的第五阶段的后 视图。图16所示为根据本发明的多个连接在一起的移动式混合电源的顶视图。图17所示为根据本发明的移动式混合电源的侧视图,示出各组件的结构。图18所示为根据本发明的移动式混合电源的后视图,其示出风能和太阳能组件 的液压结构。图19所示为根据本发明的移动式混合电源的风能和太阳能控制板的前视图。图20所示为根据本发明的移动式混合电源的电路的简图。在整个附图中,类似的参照字符表示相对应的功能部件。
具体实施例方式如图1-6所示,本发明为一种移动式混合电源100,其设置在紧凑型的,最好是金 属的容器中,其尺寸最好不超过H95” (241cm) XW163” (414cm) XD50” (127cm),以使该设备 在大部分司法辖区内皆可合法地在街道上使用。所述移动式混合电源100座落于可由卡车 拖行的液压拖车107上,以便于运输和布置。除了液压拖车,所述容器105可安装在任何适 用的移动平台上,诸如平板卡车、平板有轨电车、或任何其它移动支承平台上。所述移动式 混合电源100的容器105在厂内通过使用起重机而安装在拖车107上,所述起重机在将从 容器105延伸的销钉109与拖车107的指定转动轴承111对齐时,将容器105放在拖车107 上。如图7所示,转动轴承111使容器105可自其初始位置(与拖车107对齐的位置)绕 其垂直中轴线+/-180。地转动。如图20所示,多种能源可组合在一起,以在多种应用和条件下能最佳地发电。电 源可通过控制器/整流器1850来操纵和控制。所述能源可包括用风力发电机80来收集的 风能、用可展开的太阳能电池板结构82来收集的太阳能、如图17所示位于容器105内的化 石燃料燃烧型发电机84、储存于设置在容器105内的电池86中的能量、和可选择的在电网 可用时从电网收集的电能。燃料箱1855向发电机84供应柴油、汽油、生物柴油或其它的化 石燃料。此外,当电网可得时,移动式混合电源可以与电网连接,以便将能量售回电网。风能和太阳能始终被认为比化石燃料燃烧型发电机84和电网优先。化石燃料燃 烧型发电机84最好不要启动,除非电池电量耗尽并且电网没有连通。在将多余能量输送到 电网(如果连通的话)之前,最好以未用的能量将电池86充电。移动式混合电源100可自动地横向和纵向地跟踪太阳的方向,以优化能量收集。 风力发电机80还可绕其本身转动同时调节叶片间距以优化发电。太阳能电池板结构82和 风力发电机80可相互独立地移动。如图3-15和图20所示,在移动式混合电源100的设计 中可使用多种电子电路、机电和机械部件。示范性移动式混合电源100可提供10KW的总功率。该设备100可按比例扩充或 缩减,以提供较高或较低的发电量。此外,如图16所示,多个移动式混合电源100可通过电 力电缆1610连接在一起,以增大功率。电缆1610可连接到馈电终端1615,通过该终端,可 将在40KW的127V/220V与公用电网连接,或者向电网供电或者从电网取电。示范性的功 率输出配置包括 100/173V 50/60Hz、110/193V 50/60Hz、120/208V 60Hz、127/220V 60Hz、 220/380V 50/60Hz、230/400V 50/60Hz 以及 240/415V 50/60Hz。如使用示范性的 10KW 功 率能力,两个移动式混合电源100可提供20KW功率,三个移动式混合电源100可提供30KW 功率,等等。在使用多过一个的移动式混合电源100时,可设置冗余控制电子电路来控制系统 100。这意味着,如果N+1移动式混合电源100与消耗NxlOKW功率的负载连接在一起,则在 任何特定时间有任何一个移动式混合电源100故障时都不会使负载的工作中断。同样,在 连接消耗(N-l)xlOKW功率的负载时,就算两个移动式混合电源100同时故障都不会使系统 中断。冗余控制电子电路确保系统的可靠性随着负载减小而提高,从而能够在极重要的应 用,诸如石油工业运作、军事行动等等中供电。所述系统100提供接口电子电路,以致最多只需两人来配置、部署和操作移动式
6混合电源100。一旦移动式混合电源100在部署的现场定位,就可激活拖车107的液压支脚 500,以便坚固地抓住地面。如图19所示,多个键,最好是两个键,设置在容器的外表面上。第一键1902启动 风力发电机发电系统。第二键1904启动太阳能发电系统。第一和第二键1902和1904可 具有多个位置,包括“手动”和“自动”。
当键1902或1904转到位置“手动”或“自动”时,会启动空气压缩机。所述空气压 缩机通过气压罐87向容纳风力发电机80的主气压缸1960提供气压。压力控制电子电路 与气动压缩机连接,以保持恒定的压力。不断测量气压罐内的压力的压力计可用作为压力 控制电子电路的反馈输入,以便能维持恒定的压力。参照图8-10和18-19,其中设有与气压 系统连接的控制杆2000,通过响应于控制杆2000的升高运动的气压缸1960,所述气压系统 能手动地将风力发电机80提升到高于容器105约3英尺(1米)。这使得用户可将叶片78 拧到风力发电机80上。可以设置额外的控制电路,以致于当控制杆2000的同一“升高”部 份再被按压时,所述风力发电机通过气压缸I960能提升到高于地面25英尺(或以上,取决 于气压缸1960的容量),从而将风力发电机80置于气流中进行风能发电。通过自动模式电 子控制电路,键1902的“自动”模式启动对风轮高度的计算机控制。计算机1840(如图17 所示)然后监测风速,如果风速过大,就收回风力发电机80。应该明白,作为对气动控制的 取代或补充,系统100可使用液压传动(包括液压油容器、液压泵、液压阀和开关、液压油缸 或泵缸)、电气驱动等等,以便控制本文所述的各种机械系统。计算机具有显示器1842,以 呈现系统用户界面。可设置时延电子控制电路,以便风力发电机80只会在切换到自动模式 后约30秒(或一些其它的预定的延迟时间)之后才开始转动。如图11-15和图19所示,键1904的“手动”位置以及“开启前端”按钮2004可协 力地工作,发送信号到前端侧门1200的控制器。这导致铰接的前侧门1200开启和慢慢地 展开到水平位置。按钮“开启后端”2006会放开后保护门1202,其也会展开到水平位置。通 过控制缸体1980(在图18中示出)中的压力,控制杆2002可对太阳能电池板结构82的升 高或降低进行手动定位。如果键1904转到位置“自动”,计算机1840会控制缸体1980中 的压力(可用气动或液压传动装置来升高和降低太阳能电池板,正如上述的参照升高和降 低风力发电机的叙述那样),将太阳能电池板结构82向上提升到最高的位置,然后再将太 阳能电池板部署在理想位置,以便最优地收集太阳能。计算机1840通过不断地监测设置在 每一太阳能电池阵列的中心的小型太阳能跟踪器83的输出,独立地确定每一太阳能电池 区域的理想位置。然后,计算机1840会指令保护性的门1200和1202折回来,以保护容器 内部免于灰尘和风的影响。计算机1840自动地暂时提高太阳能电池板结构82中的前太阳 能电池阵列,以便安全地折回前侧门1200而不会碰到太阳能电池阵列。太阳能电池板结构 82的第二行电池板的展开然后由步进马达控制,直到所有电池板达到其最大的曝光率。一 旦完成,计算机会启动旋转马达60以将整个容器相对于太阳转到最佳的方向。该系统100 可以每10分钟(或任何其它的介于1分钟和24小时之间的预编程值)更新其横向和纵向 追踪,以便最优地收集太阳能。可以使用系统100只收集太阳能、只收集风能、或通过利用上述的键1902和1904 同时收集风能和太阳能。一旦键1902和1904位于“自动”位置,系统100会通过使用定位于风力发电机80上方的风速计1130读取风速和风向来不断地监测风速。计算机1840会根据在每一风速、 方向和强度不断地对要采取的动作过程作出决定。在强风的情况下,计算机1840会收回一 层太阳能电池板,同时保持风力发电运行在正常状态下。如果风力进一步增加,计算机1840为了安全操作,会展开太阳能电池板82,而风 力发电机80会缩回到较低的位置。在极端条件下,风力发电机会停止,而太阳能电池板82 将会自动地收回,并由侧门1200和1202覆盖。在计算机1840感测到60分钟(或由计算 机1840预先编程的任何其它时间值)的可接受天气条件后,电池板82会自动地重新展开。 本发明提供二维太阳能跟踪,以提高太阳能收集效率。移动式混合电源100可以预先组装,从而排除现场装配问题。该系统100可以控 制其形状,以便在当前的风速下优化发电。该系统100的结构可承受四级风暴/飓风。通 过风速计1130将风数据传输到计算机1840以及计算机1840的响应处理,系统100可以在 风暴时感测高风速(> 110km/h)和缩回风力发电机80和太阳能电池板82,同时还能够通 过电池86或由化石燃料驱动的发电机84来供电。系统100的机载计算机1840不断监控 所有的组件,并可以在异常情况下检测警报状况。在发生警报的情况下,短信文本信息和电 子邮件可以自动地发送给预定数目的人。与互联网的连接可通过可选择的双工通信设备来 实现,所述双工通信设备可安装在移动式混合电源的顶部。所述双工通信设备可以包括无 线微波链路、VSAT卫星连接、无线接入点(WAP)等等,以便实现与互联网的双向通信。当安 装此选项时,远程管理员就可以远程监测和控制系统100。软件还可以让管理员远程同时监 测和控制设置在不同地理区域的多个系统100。应该理解,本发明不限于上述的实施例,而是要包含任何及所有在以下权利要求 的范围内的实施例。
权利要求
一种移动式混合电源,其包括具有以液压启动的稳定支脚的移动平台;可转动地安装在所述移动平台的顶上的容器;可转动地设置在所述容器中的风能提取装置;用于分别使所述风能提取装置伸出和缩回所述容器的装置;设置在所述容器中的太阳能提取装置;用于分别使所述太阳能提取装置伸出和缩回所述容器的装置;设置在所述容器中的多个电池;设置在所述容器中的用燃料燃烧发电的发电机;以及用于管理由所述风能提取装置、太阳能提取装置、多个电池以及用燃料燃烧发电的发电机所产生电力的电源管理装置。
2.根据权利要求1所述的移动式混合电源,其特征在于所述容器的尺寸不超过约 241cm高、414cm宽以及127cm深,具有所述尺寸的容器在大多数司法辖区内都皆是可合法 上路的。
3.根据权利要求1所述的移动式混合电源,其特征在于所述可转动地安装的容器可 自其初始位置绕其垂直中轴线+/-180。地转动。
4.根据权利要求1所述的移动式混合电源,其特征在于进一步包括与所述太阳能提 取装置操作连接的太阳跟踪装置,所述太阳跟踪装置自动地横向和纵向地跟踪太阳,以便 优化能量收集。
5.根据权利要求1所述的移动式混合电源,其特征在于所述电源管理装置包括所述 移动式混合电源可用的不同发电装置的控制器/整流器。
6.根据权利要求1所述的移动式混合电源,其特征在于作为能量提供装置,所述风能 提取装置和太阳能提取装置比所述用燃料燃烧发电的发电机优先。
7.根据权利要求1所述的移动式混合电源,其特征在于所述风能提取装置和太阳能 提取装置可相互独立地移动。
8.根据权利要求1所述的移动式混合电源,其特征在于多个移动式混合电源连接在 一起,从而提高装置的总功率输出。
9.根据权利要求8所述的移动式混合电源,其特征在于进一步包括用于在多个装置 的任一故障时调节装置的功率输出的冗余控制电子电路。
10.根据权利要求1所述的移动式混合电源,其特征在于进一步包括接口电子电路,以 致最多只需两人来配置、部署和操作所述移动式混合电源。
11.根据权利要求10所述的移动式混合电源,其特征在于所述接口电子电路包括多 个键,每一键分别启动各个的功率提取/发电模式。
12.根据权利要求11所述的移动式混合电源,其特征在于进一步包括与所述键操作 连接的机载计算机,其中所述多个键之一操作所述风能提取装置的第一和第二部署模式, 第一模式为手动式,允许操作员确定所述风能提取装置的部署高度;第二模式为自动式,允 许所述移动式混合电源的机载计算机确定所述风能提取装置的部署高度。
13.根据权利要求12所述的移动式混合电源,其特征在于在自动模式中,所述计算机 基于环境风速来确定安全的部署高度,如果风速太高,所述计算机会收回所述风能提取装置。
14.根据权利要求13所述的移动式混合电源,其特征在于进一步包括时延电子控制电 路,所述时延电子控制电路在被切换到自动模式时经过了预定的延迟时间后才启动所述风 能提取装置。
15.根据权利要求11所述的移动式混合电源,其特征在于所述多个键之一操作所述 太阳能提取装置的第一和第二部署模式,第一模式为手动式,允许操作员确定所述太阳能 提取装置的部署位置;第二模式为自动式,允许所述移动式混合电源的机载计算机确定所 述太阳能提取装置的部署位置。
16.根据权利要求15所述的移动式混合电源,其特征在于所述计算机基于环境风速 来确定所述太阳能提取装置的部署构型,所述计算机重新调整所述部署构型,以便保持安 全的工作高度和位置。
17.根据权利要求16所述的移动式混合电源,其特征在于在极端的气像环境条件下, 所述风能提取装置会停止,而所述太阳能提取装置会自动地缩回和被覆盖,在计算机感测 到预定时间的可接受天气条件后,所述的风能和太阳能提取装置会自动地重新部署。
18.根据权利要求17所述的移动式混合电源,其特征在于在太阳能和风能提取装置 停用时,由电池/燃料供能发电机来供电。
19.根据权利要求12所述的移动式混合电源,其特征在于进一步包括与所述计算机 操作连接的通信系统,所述计算机不断地监测所有部件、感测警报状况,并在发生警报时通 过通信系统来警报人员。
20.根据权利要求12所述的移动式混合电源,其特征在于进一步包括与所述计算机 操作连接的双工通信设备,所述双工通信设备便于所述移动式混合电源和远程位置的网络 通信,其中所述电源可进行远程管理。
全文摘要
一种移动式混合电源(100),其可重构地设置在合法上路尺寸的紧凑型金属容器(105)中,所述容器位于可由卡车拖行的液压拖车(107)上。所述容器上设有定位销(109),以便使所述容器与拖车(107)上的转动轴承(111)对齐和密合。所述转动轴承(111)使所述金属容器(105)可自其初始位置绕垂直中轴线±180度地转动。所述发电机(100)结合了多种能量源,以便在多种应用中和条件下提供优化操作。所述能量源包括风能、太阳能和化石燃料能量成分。当电网可用时,所述移动式混合电源(100)可与电网连接,以便将能量售回电网。
文档编号H02J15/00GK101878578SQ200880118655
公开日2010年11月3日 申请日期2008年9月26日 优先权日2007年9月28日
发明者安托万·萨阿卜 申请人:C技术国际有限公司;安托万·萨阿卜