分布式能量转换系统的制作方法

文档序号:7423629阅读:315来源:国知局
专利名称:分布式能量转换系统的制作方法
分布式能量转换系统相关申请的互相参引本申请要求于2007年12月21日提交的序列号为No. 61/008, 670、标题为 "Distributed Energy Conversion Systems”(分布式能量转换系统)的美国临时专利申 请和于2008年12月20日提交的序列号为No. 12/340,715、标题为"Distributed Energy ConversionSystems”(分布式能量转换系统)的美国专利申请的优先权,所述两个专利的 内容通过引证的方式被纳入本说明书。
背景技术
功率转换器被用于将电功率从一种形式转换为另一种,例如,将直流(DC)转换为 交流(AC),和反之。功率转换器在替代能源的发展中起到重要的作用,所述替代能源经常以 一种对于应用或者分配而言并不理想的形式来提供功率。例如,安装在建筑物顶部的光伏 (PV)板可以以一种相对低压的直流电的形式提供功率。该功率必须被转换为较高电压的交 流电,以供建筑物内照明使用或者家用电器使用,或者通过功率电网来分配给其他使用者。 作为另一实施例,外接充电式混合动力车(plug-in hybrid vehicle)可能需要将来自电网 的交流功率转换为电池中存储的直流功率。然后来自电池的直流功率需要被转换回交流功 率,以操作车辆驱动系统,或者如果该车辆还被用作非峰值能量存储装置则反馈能量至电 网。即使在基于传统电源的能量系统中,功率转换器在实施先进的能量管理、存储和转换技 术中也变得越来越重要。图24示出了用于传递太阳能至公用电网的一种现有技术光伏(PV)能量系统。该 光伏阵列的电压或者电流被检测,以在面板或者模块层级获得最大功率点跟踪。在太阳能 /功率转换系统中逆变器是一个关键部件,其控制光伏模块和负载——例如,蓄电池或者电 网——之间电的流动。传统的逆变器在较高的功率层级操作,通常是从1到几百千瓦峰值 (kffp)。在这些高功率层级上,逆变器通常需要散热器和风扇或者液体冷却以适应更高的热 耗散。风扇和/或液体冷却的增加降低了系统的可靠性。


图1示出了根据本专利公开文本的发明原理的能量转换器系统的一个实施方案。图2示出了根据本专利公开文本的发明原理的能量转换器系统的另一实施方案。图3示出了根据本专利公开文本的发明原理的能量转换器系统的又一实施方案。图4示出了根据本专利公开文本的发明原理的能量转换器系统的再一实施方案。图5示出了根据本专利公开文本的发明原理的带有并联组合的交流功率源的功 率合成电路系统的一个实施方案。图6示出了根据本专利公开文本的发明原理的带有串联组合的交流功率源的功 率合成电路系统的一个实施方案。图7示出了根据本专利公开文本的发明原理的带有并联组合的直流功率源的功 率合成电路系统的一个实施方案。
图8示出了根据本专利公开文本的发明原理的带有串联组合的直流功率源的功 率合成电路系统的一个实施方案。图9示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠(stack-up)的一个实施方案。图10示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠的另一实施方案。图11示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠的又一实施方案。图12示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠的再一实施方案。图13示出了根据本专利公开文本的发明原理的带有直流功率源的功率转换器层 叠的一个实施方案。图14示出了根据本专利公开文本的发明原理的带有直流功率源的功率转换器层 叠的另一实施方案。图15示出了根据本专利公开文本的发明原理的带有能量存储装置的功率转换器 层叠的一个实施方案。图16示出了根据本专利公开文本的发明原理的带有能量存储装置的功率转换器 层叠的又一实施方案。图17示出了根据本专利公开文本的发明原理的带有功率转换器和功率合成器的 功率转换器层叠的一个实施方案。图18示出了根据本专利公开文本的发明原理的带有功率转换器和功率合成器的 功率转换器层叠的另一实施方案。图19示出了根据本专利公开文本的发明原理的带有两个功率转换器和功率合成 器的功率转换器层叠的一个实施方案。图20示出了根据本专利公开文本的发明原理的带有直流功率源和功率合成器的 功率转换器层叠的一个实施方案。图21示出了根据本专利公开文本的发明原理的带有功率转换器和功率合成器的 功率转换器层叠的一个实施方案。图22示出了根据本专利公开文本的发明原理的带有能量存储装置和功率合成器 的功率转换器层叠的一个实施方案。图23示出了根据本专利公开文本的发明原理的逆变器系统的一个实施方案。图24示出了用于传递太阳能至公用电网的一种现有技术光伏(PV)能量系统。图25示出了根据本专利公开文本的发明原理的光伏(PV)能量系统的一个实施方案。图26-图29示出了根据本专利公开文本的发明原理的集成功率转换器布置的实 施方案。图30示出了根据本专利公开文本的发明原理的集成功率转换器的一个实施方案。图31示出了根据本专利公开文本的发明原理的收发器的一个实施方案。
5
图32示出了根据本专利公开文本的发明原理的逆变器系统的一个实施方案。图33是根据本专利公开文本的发明原理的适合用于实施图32所示的逆变器系统 的主要能流(main power path)的一个实施方案的示意图。图34示出了根据本专利公开文本的发明原理的光伏板的一个实施方案。图35示出了根据本专利公开文本的发明原理的光伏板的另一实施方案。
具体实施例方式本专利公开文本包含许多涉及能量转换系统的发明原理。这些系统包括带有功率 逆变器和/或功率整流器的分布式功率转换器。这些逆变器系统可在各种应用中使用,包 括但是不限于太阳能系统、风能系统、热能系统、各种蓄电池系统、燃料电池能量系统、不间 断电源、水电能量系统、数据中心系统、通信设施电源、电力和混合车辆、家用功率、汽车、卫 星、宇宙航空、消费应用等。图1示出了根据本专利公开文本的发明原理的能量转换器系统的一个实施方案。 图1的系统包括直流功率源部分10、第一功率转换器部分12、交流功率源部分14、第二功率 转换器部分16和能量存储部分18。下面的描述涉及图1的实施方案,以及涉及以下描述的其他实施方案。直流电源 可以是下列形式可充电的或者不可充电的电池,燃料电池,处于电池、多电池、面板、多面 板、模块、多模块或者电网层级的太阳能电池,或者其中任何其他的直流功率源,以及它们 的任何组合。太阳能电池可以是光伏电池,包括单晶的、多晶的、薄膜的等。交流电源可以 是电网、消费电子的形式,例如不间断电源(UPS)或者其中任何其他的交流功率源,以及它 们的任何组合。在任何配置中,任何交流电源、分配系统、部件等可以是单相的和/或多相 的。能量存储可以是下列形式可充电的或者不可充电的电池、电容器、电感器、其他电荷 存储装置和/或元件,或者它们的任何组合。交流功率合成器可依赖于例如功率转换器系 统的应用而合成串联或者并联组合的电源。交流功率合成器可以任何方式合成单个交流电 源的电压和/或电流和/或频率和/或相位,但是优选以建设性的方式或者高效率地合成。 交流功率合成可以是单相的和/或多相的。直流功率合成器可依赖于例如功率转换系统的 应用而合成以串联或者并联组合的电源。直流功率合成器可以任何方式合成单个直流电源 的电压和/或电流,但是优选以建设性的方式或者高效率地合成。再次参考图1,该系统可包括一个或多个功率合成器、一个或多个直流功率源、一 个或多个交流功率源,以及一个或多个能量存储器件。该能量转换器可将直流功率转换为 交流功率,和反之。该能量转换器可包括一个或多个例如高效率地将直流功率转换为一个 或多个交流功率源的逆变器。该能量转换器还可包括一个或多个例如高效率地将交流功率 转换为一个或多个直流功率源和/或供在能量存储器件中进行存储的整流器。每一个直流 功率合成器和交流功率合成器可以任何方式合成串联或者并联组合的功率,优选是有建设 性地和/或高效率地合成。对于直流功率合成,一个或多个直流功率源和/或能量存储器 件可以串联和/或并联组合地被合成,优选以建设性的方式合成。对于交流功率合成,一个 或多个交流功率源可以串联和/或并联组合地被合成,优选以建设性的方式合成。交流功 率合成可以是单相的和/或多相的。当直流功率源的功率是可得的和/或交流功率源需要能量时,能量可从一个或多个直流功率源传递通过一个或多个逆变器,以生成一个或多个交流电源。例如,来自一个或 多个光伏电池的直流功率可被传递到一个或多个交流功率电网和/或消费电子器件。当交流功率源的功率是可得的和/或直流功率源需要能量和/或能量存储被需要 时,能量还可从一个或多个交流功率源经由一个或多个整流器传递到一个或多个直流功率 源。例如,来自一个或多个交流功率电网的功率可以被传递到一个或多个蓄电池和/或电 容器。可被一个或多个直流功率合成器合成的直流功率源的数目可以是1至H之间的任 何数字,其中H可以是任何正整数。直流功率合成器的数目可以是1至W之间的任何数字, 其中W可以是任何正整数。例如依赖于应用——优选当所有的直流电源具有已知和/或确 定电压和/或电流性质时的应用——直流功率合成器可不被要求是能量转换器系统的一部 分。这里可能有一个或多个整流器和/或逆变器被连接在直流功率源和交流功率源之间, 例如,以将能量从直流转换为交流,和反之。整流器的数目可以是0至J之间的任何数字, 其中J可以是任何正整数。逆变器的数目可以是0至K之间的任何数字,其中K可以是任 何正整数。可与交流功率合成器合成的交流功率源的数目可以是1至L之间的任何数字,其 中L可以是任何正整数。交流功率源和被连接至直流功率源的功率转换器之间的交流功率 合成器的数目可以是1至X之间的任何数字,其中X可以是任何正整数。交流功率源和被 连接至能量存储器件的功率转换器之间的交流功率合成器的数目可以是1至Y之间的任何 数字,其中Y可以是任何正整数。依赖于例如当所有的交流电源具有已知的和/或确定的 电压和/或电流和/或频率和/或相位性质时的应用,交流功率合成器可不被要求是能量 转换器系统的一部分。这里可能有一个或者多个整流器和/或逆变器被连接在交流功率源和能量存储 器件之间,例如,以将能量从直流转换为交流,和反之。整流器的数目可以是0至N之间的 任何数字,其中N可以是任何正整数。逆变器的数目可以是是0至M之间的任何数字,其中 M可以是任何正整数。可与直流功率合成器合成的能量存储器件的数目可以是1至P之间 的任何数字,其中P可以是任何正整数。能量存储器件上的直流功率合成器的数目可以是1 至Z之间的任何数字,其中Z可以是任何正整数。依赖于例如优选当所有的直流电源具有 已知的和/或确定的电压和/或电流性质时的应用,能量存储器件一侧的直流功率合成器 可不被要求是能量转换系统的一部分。图2示出了根据本专利公开文本的发明原理的另一能量转换器系统的一个实施 方案。图2的系统包括直流功率源20、第一功率转换器22、交流功率源24、第二功率转换器 26和能量存储器件28。能量转换器可将直流功率转换为交流功率,和反之。能量转换器可包括一个或多个逆变器,以例如高效率地将直流功率传递到一个或 多个交流功率源。能量转换器还可包括一个或多个整流器,以例如高效率地将交流功率传 递到一个或多个直流功率源和/或供在能量存储器件中进行存储。当直流功率源的功率是 可得的和/或交流功率源需要能量时,能量可从一个或多个直流功率源传递通过一个或多 个逆变器,以生成一个或多个交流电源。例如,来自一个或多个光伏电池的直流功率可被传 递到一个或多个交流功率电网和/或消费电子器件。当交流功率源的功率是可得的和/或直流功率源需要能量和/或能量存储被需要时,能量可经由一个或多个整流器从一个或多个交流功率源传递到一个或多个直流功率 源。例如,来自一个或多个交流功率电网的功率可以被传递到一个或多个蓄电池和/或电容器。图3示出了根据本专利公开文本的发明原理的又一能量转换器的一个实施方案。 图3的系统包括直流功率源30、功率转换器32和交流功率源34。能量转换器可以将直流 功率转换为交流功率,和反之。能量转换器可包括一个或多个例如高效率地将直流功率转换为一个或多个交流 功率源的逆变器。能量转换器还可包括一个或多个例如高效率地将交流功率转换为一个或 多个直流功率源和/或供在能量存储器件中进行存储的整流器。当直流功率源的功率是可得的和/或交流功率源需要能量时,能量可从一个或多 个直流功率源传递通过一个或多个逆变器,以生成一个或多个交流电源。例如,来自一个或 多个光伏电池的直流功率可传递到一个或多个交流功率电网和/或消费电子器件。当交流功率源的功率是可得的和/或直流功率源需要能量和/或能量存储被需 要时,能量可经由一个或多个整流器从一个或多个交流功率源传递到一个或多个直流功率 源。例如,来自一个或多个交流功率电网的功率可被传递,以为各种应用创建一个或多个直 流功率源。图4示出了根据本专利公开文本的发明原理的再一能量转换系统的一个实施方 案。图4的系统包括交流功率源36、功率转换器38和能量存储器件40。能量转换器可以 将直流功率转换为交流功率,和反之。能量转换器可包括一个或多个例如高效率地将直流功率转换为一个或多个交流 功率源的逆变器。该能量转换器还可包括一个或多个例如高效率地将交流电源转换为一个 或多个直流功率源和/或供在能量存储器件中进行存储的整流器。当能量存储器件的功率是可得的和/或交流功率源需要能量时,能量可从一个或 多个能量存储器件传递通过一个或多个逆变器,以生成一个或多个交流电源。例如,来自一 个或多个蓄电池或者电容器的直流功率可以被传递到一个或多个交流功率电网和/或消 费电子器件。当交流功率源的功率是可得的和/或直流功率源需要能量和/或能量存储被需 要时,能量可经由一个或多个整流器从一个或多个交流功率源传递到一个或多个直流功率 源。例如,来自一个或多个交流功率电网的功率可被传递到一个或多个蓄电池和/或电容
ο图5示出了根据本专利公开文本的发明原理的带有并联组合的交流功率源的功 率合成电路系统的一个实施方案。单个交流功率源42的并联组合可被安排,以使该单个交 流功率源的某些或者全部电流可以任何方式被合成,从而提供合成的交流功率源44,但是 优选以建设性的方式合成。交流功率源可以被相移和/或被调整,从而使一个或者某些或 者全部交流电流建设性地相加在一起。可以并联组合地合成的交流功率源的数目可以是从 1至N,其中N是任何正整数。图6示出了根据本专利公开文本的发明原理的带有串联组合的交流功率源的功 率合成电路系统的一个实施方案。单个交流功率源46的串联组合可被安排,以使某些或者 全部该单个交流功率源的电压可以任何方式被合成,从而提供合成的交流功率源48,但是优选以建设性的方式合成。交流功率源可以被相移和/或被调整,从而一个或者某些或者 全部交流电压建设性地相加在一起。可以串联组合地合成的交流功率源的数目可以是从1 至N,其中N是任何正整数。交流功率合成可以是单相的和/或多相的。图7示出了根据本专利公开文本的发明原理的带有并联组合的直流功率源的功 率合成电路系统的一个实施方案。单个直流功率源50的并联组合可被安排,以使某些或者 全部该单个直流功率源的电流可以任何方式被合成,从而提供合成的直流功率源52,但是 优选以建设性的方式合成。可以并联组合地合成的直流功率源的数目可以是从1至N,其中 N是任何正整数。图8示出了根据本专利公开文本的发明原理的带有串联组合的直流功率源的功 率合成电路系统的一个实施方案。单个直流功率源54的串联组合可被安排,以使某些或者 全部该单个直流功率源的电压可以任何方式被合成,从而提供合成的直流功率源56,但是 优选以建设性的方式合成。可以串联组合地合成的直流功率源的数目可以是从1至N,其中 N是任何正整数。图9示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠的一个实施方案。图9的实施方案包括1个交流功率源62、N个直流功率源58和M个能 量存储器件66。单一的交流功率源可被连接至一个或多个直流功率源和/或一个或者多个 能量存储器件。单一的交流功率源可包括功率合成电路系统,在该功率合成电路系统处,交 流功率可被相加,优选以建设性的方式相加。功率合成电路系统可提供一个并联和/或串 联组合,其中一个或者多个或者全部的功率转换器60输出的交流电流可被相加,优选以建 设性的方式相加。而且,功率转换器64的一个或多个或者全部交流输出的交流电压可被相 加,优选以建设性的方式相加。交流功率合成可是单相的和/或多相的。可以串联和/或并联组合地合成的直流功率源的数目可以是从1至N,其中N是任 何正整数。可以串联和/或并联组合地合成的能量存储器件的数目可以是从1至M,其中M 是任何正整数。N可以是小于、大于或者等于M。图10示出了根据本专利公开文本的发明原理的带有交流功率源的功率转换器层 叠的另一实施方案。图10的实施方案包括1个交流功率源72、N个直流功率源68和L个 能量存储器件76。单一的交流功率源可被连接至一个或多个直流功率源和/或一个或多个 能量存储器件。单一的交流功率源可包括功率合成电路系统,其中交流功率可被相加,优选 以建设性的方式相加。功率合成电路系统可提供一个并联和/或串联组合,其中功率转换 器70的一个或多个或者全部的输出交流电流可被相加,优选以建设性的方式相加。而且, 功率转换器74的一个或多个或者全部的输出交流电压可被相加,优选以建设性的方式相 加。交流功率合成可是单相的和/或多相的。可以串联和/或并联组合地合成的直流功率源的数目可以是从1至N,其中N是 任何正整数。直流功率源一侧的功率转换器的数目可以是从1到M,其中M是任何正整数。 能量存储一侧的功率转换器的数目可以是从1到K,其中K是任何正整数。可以串联和/或 并联组合地合成的能量存储器件的数目可以是从1至L,其中L是任何正整数。直流功率源 的数目可以是小于、大于或者等于它们被连接到的功率转换器的数目。功率存储器件的数 目可以是小于、大于或者等于它们被连接到的功率转换器的数目。图11示出了根据本公开文本的发明原理的带有交流功率源的功率转换器层叠的又一实施方案。图11的实施方案包括连接至N个直流功率源78的一个交流功率源82。交 流功率源可包括功率合成电路系统,在功率合成电路系统处交流功率可被相加,优选以建 设性的方式相加。功率合成电路系统可提供一个并联和/或串联的交流组合,其中功率转 换器80的一个或多个或者全部的输出交流电流可被相加,优选以建设性的方式相加。可以串联和/或并联组合地合成的直流功率源的数目可以是从1至N,其中N是任 何正整数。功率转换器的数目可以是从1至M,其中M是任何正整数。直流功率源的数目可 以是小于、大于或者等于它们被连接到的功率转换器的数目。图12示出了根据本公开文本的发明原理的带有交流功率源的功率转换器层叠的 再一实施方案。图12的实施方案包括连接至M个能量存储器件88的一个交流功率源84。 单一的交流功率源可包括功率合成电路系统,在该功率合成电路系统处,交流功率可被相 加,优选以建设性的方式相加。功率合成电路系统可提供一个并联和/或串联组合,其中功 率转换器86的一个或多个或者全部的输出交流电流可被相加,优选以建设性的方式相加。功率转换器的数目可以是从1至N,其中N是任何正整数。可以串联和/或并联组 合地合成的能量存储器件的数目可以是从1至M,其中M是任何正整数。能量存储器件的数 目可以是小于、大于或者等于它们被连接到的功率转换器的数目。图13示出了根据本公开文本的发明原理的带有直流功率源的功率转换器层叠的 一个实施方案。图13的实施方案包括1个直流功率源90、N+K个功率转换器92和96,M个 交流功率源94和L个能量存储器件98。单一的直流功率源可经由功率转换器被连接至一 个或多个交流功率源和/或一个或多个能量存储器件。单一的直流功率源可包括功率合成 电路系统,其中直流功率可被相加,优选以建设性的方式相加。功率合成电路系统可提供一 个并联和/或串联组合,其中功率转换器92的一个或者多个或者全部输出的直流电流可被 相加,优选以建设性的方式相加。直流功率源一侧的功率转换器的数目可以是从1至N,其中N是任何正整数。交流 功率源的数目可以是从1至M,其中M是任何正整数。能量存储一侧的功率转换器的数目可 以是从1至K,其中K可以是任何正整数。可以串联和/并联组合地合成的能量存储器件的 数目可以是从1至L,其中L是任何正整数。能量存储器件和/或交流功率源的数目可以是 小于、大于或者等于它们被连接到的功率转换器的数目。图14示出了根据本公开文本的发明原理的带有直流功率源的功率转换器层叠的 另一实施方案。图14的实施方案包括1个直流功率源100、N个功率转换器102和M个交 流功率源104。单一的直流功率源可经由功率转换器102被连接至一个或多个交流功率源。 单一的直流功率源可包括功率合成电路系统,在该功率合成电路系统处,直流功率可被相 加,优选以建设性的方式相加。功率合成电路系统可提供一个并联和/或串联组合,其中功 率转换器的一个或者多个或者全部输出的直流电流可被相加,优选以建设性的方式相加。功率转换器的数目可以是从1至N,其中N是任何正整数。交流功率源的数目可以 是从1至M,其中M是任何正整数。交流功率源的数目可以是小于、大于或者等于它们被连 接到的功率转换器的数目。图15示出了根据本专利公开文本的发明原理的带有能量存储器件的能量转换器 层叠的一个实施方案。图15的实施方案包括1个能量存储器件114、M+L个功率转换器108 和112、N个直流功率源106和K个交流功率源110。单一的能量存储器件可经由功率转换器被连接至一个或多个直流功率源和/或一个或多个交流功率源。单一的能量存储器件可 包括功率合成电路系统,在该功率合成电路系统处,直流功率可被相加,优选以建设性的方 式相加。功率合成电路系统可提供一个并联和/或串联组合,其中功率转换器的一个或者 多个或者全部输出的直流电流可被相加,优选以建设性的方式相加。直流功率源的数目可以是从1至N,其中N是任何正整数。直流功率源一侧的功率 转换器的数目可以是从1至M,其中M是任何正整数。交流功率源的数目可以是1至K,其 中K是任何正整数。能量存储器件一侧的功率转换器的数目可以是从1至L,其中L是任何 正整数。交流功率源和/或直流功率源的数目可以是小于、大于或者等于它们被连接到的 功率转换器的数目。图16示出了根据本公开文本的发明原理的带有能量存储器件的能量转换器层叠 的另一实施方案。图16的实施方案包括1个能量存储器件120、M个功率转换器118和N 个交流功率源116。单一的能量存储器件可经由功率转换器被连接至一个或多个交流功率 源。单一的能量存储器件可包括功率合成电路系统,在该功率合成电路系统处,直流功率可 被相加,优选以建设性的方式相加。功率合成电路系统可提供一个并联和/或串联的直流 组合,其中功率转换器的一个或者多个或者全部输出的直流电流可被相加,优选以建设性 的方式相加。交流功率源的数目可以是从1至N,其中N是任何正整数。功率转换器的数目可以 是从1至M,其中M是任何正整数。交流功率源的数目可以是小于、大于或者等于它们被连 接到的功率转换器的数目。图17示出了根据本公开文本的发明原理的带有功率转换器的功率转换器层叠的 一个实施方案。图17的实施方案包括功率转换器和功率合成器124、能量存储器件130、功 率转换器128、交流功率源126和直流功率源122。功率转换器和合成器可被连接至一个或 多个交流功率源和/或直流功率源和/或能量存储器件。直流功率源的数目可以是从1至N,其中N可以是任何正整数。交流功率源的数目 可以是从1至M,其中M可以是任何正整数。功率转换器的数目可以是从1至K,其中K可 以是任何正整数。能量存储器件的数目可以是从1至L,其中L是任何正整数。图18示出了根据本公开文本的发明原理的带有功率转换器和功率合成器的功率 转换器层叠的另一实施方案。图18的实施方案包括功率转换器和功率合成器138、能量存 储器件140、功率转换器134、交流功率源136和直流功率源132。功率转换器和合成器可被 连接至一个或多个交流功率源和/或直流功率源和/或能量存储器件。直流功率源的数目可以是从1至N,其中N可以是任何正整数。功率转换器的数目 可以是从1至M,其中M可以是任何正整数。交流功率源的数目可以是从1至K,其中K可 以是任何正整数。能量存储器件的数目可以是从1至L,其中L可以是任何正整数。图19示出了根据本专利公开文本的发明原理的带有两个功率转换器和功率合成 器的功率转换器层叠的一个实施方案。图19的实施方案包括直流功率源142、第一功率转 换器和功率合成器144、交流功率源146、第二功率转换器和功率合成器148,以及能量存储 器件150。直流功率源可被连接至第一功率转换器和功率合成器。交流功率源可被连接至 第一和第二功率转换器和功率合成器之间。能量存储器件可被连接至第二功率转换器和功 率合成器。
11
直流功率源的数目可以是从1至N,其中N可以是任何正整数。交流功率源的数 目可以是从1至M,其中M可以是任何正整数。能量存储器件的数目可以是从1至K,其中 K是任何正整数。图20示出了根据本公开文本的发明原理的带有直流功率源和功率合成器的功率 转换器层叠的一个实施方案。图20的实施方案包括可通过功率转换器154而被连接至能 量存储器件156的直流功率源和功率合成器152。功率转换器的数目可以是从1至M,其中 M可以是任何正整数。能量存储器件的数目可以是从1至K,其中K是任何正整数。图21示出了根据本公开文本的发明原理的带有功率转换器和功率合成器的功率 转换器层叠的一个实施方案。图21的实施方案包括功率转换器和功率合成器160、直流功 率源158和能量存储器件162。直流功率源的数目可以是从1至N,其中N可以是任何正整 数。能量存储器件的数目可以是从1至K,其中K可以是任何正整数。图22示出了根据本公开文本的发明原理的带有能量存储器件和功率合成器的功 率转换器层叠的一个实施方案。图22的实施方案包括可通过功率转换器166而被连接至 直流功率源164的能量存储器件和功率合成器168。直流功率源的数目可以是从1至N,其 中N可以是任何正整数。功率转换器的数目可以是从1至M,其中M是任何正整数。图23示出了根据本公开文本的发明原理的逆变器系统的一个实施方案。图23的 系统可被设计用来将来自任何类型的直流功率源170的直流功率转换为交流功率。交流功 率逆变器可以是单相的和/或多相的。它可能包括一个或多个功率控制172、一个或多个 功率转换器174、一个或多个功率电路系统和/或驱动器176、一个或多个滤波器178、一个 或多个模拟控制块180、一个或多个数字信号处理器(DSP) 182、一个或多个检测电路184、 一个或多个模数转换器(ADC) 186、一个或多个数模转换器(DAC) 188、一个或多个多路复用 器电路190、一个或多个收发器192、一个或多个能量存储器件194、一个或多个功率管理块 196,以及一个或多个保护电路198。功率控制块172可控制流经逆变器电路的功率。例如,它可被设计用来最大化逆 变器的功率转换效率。它还可包括最大功率点跟踪器(MPPT),以确保该逆变器操作从直流 功率源可得的最大功率。功率控制块还可被设计用来控制逆变器中的功率响应于环境的变 化,例如,温度和/或气压和/或湿度和/或光照和/或输入直流功率的可获取性等的变 化。功率控制块还可被设计用来适应其他操作因素,例如,在集成过程中的变化(不管是过 程间还是过程内的变化),和/或电压供应的变化。功率转换器174可将一个或多个直流输入电压和/或电流转换为一个或多个直流 输出电压和/或电流,优选以高的功率转换效率来转换。依赖于例如逆变器系统预期的特 定用途,功率转换器可被设计用来逐步升高(也就是说,升压)输入直流电压至较高的输出 直流电压和/或逐步降低(也就是说,降压)输入直流电压至较低的输出直流电压。功率 转换器电路还可被设计用来提供逐步升高和逐步降低(也就是说,降压-升压/升压-降 压)操作和/或用于从单一的输入(例如,如在回扫转换器中)来生成多个输出直流电压。 送至功率转换器的输入电压和来自功率转换器的输出电压可以是正或者负信号。依赖于例 如该逆变器系统预期的特定用途,输出电压相对于输入电压可以具有相同极性或者不同极 性。直流功率转换器电路可以是线性和/或开关式调节器的形式。例如,在开关式电压调 节器器中,脉冲宽度调制信号可被用来控制直流功率转换的一个或多个输出电压。
功率电路系统和/或驱动器块(功率驱动器电路)176可将一个或多个直流电压 和/或电流转换为一个或多个交流电压和/或电流,优选以高的功率转换效率和/或低的 总谐波失真(THD)来转换。例如,无源或有源滤波器可被包括在功率驱动器电路中,以减少 直流-交流功率转换中的谐波失真。例如,功率开关还可在功率驱动器电路中被实施,以驱 动高功率交流器件和/或以便抵抗高的输出电压。保护电路198可被包括,以保护逆变器系统和/或保护被连接至逆变器系统的任 何或者全部电路系统。该保护电路系统可限制该电路系统的电压和/或电流和/或温度, 例如,使免于超过某一范围,以保护它免受损坏。该保护电路系统可具有过电压保护性能和 /或欠电压保护性能,以限制它所保护的逆变器系统和/或电路系统的电压范围。该保护电 路系统还可具有过电流和/或欠电流保护性能,以限制它所保护的逆变器系统和/或电路 系统的电流范围。该保护电路系统还可具有温度过高和/或温度过低保护性能,以限制它 所保护的逆变器系统和/或电路系统的电流范围。滤波器块178可包括有源和/或无源电路系统。滤波器可被设计用来减少逆变器 系统中的总谐波失真。依赖于例如滤波器的预期使用目的,滤波器可以是低通、高通、带通 和/或带阻的。滤波器可被设计为只有无源元件,例如,电阻器和/或电容器和/或电感器, 或者滤波器可包括有源元件,例如运算放大器。模拟控制块180可被包括,以提供对功率转换器和/或驱动器电路系统的模拟控 制,优选用来提高功率转换效率。例如,该模拟控制可被设计作为直流_直流功率转换器和 /或直流_交流功率驱动电路系统的反馈回路,以用来动态地控制和最大化这些电路块的 功率转换效率。检测电路系统184可被包括,以检测逆变器系统中任何位置的电压和/或电流。例 如,该检测电路可被设计用来检测直流功率源和/或直流功率转换器的输出处的一个或多 个直流电压和/或电流。例如,检测电路还可被设计用来检测交流功率源和/或直流_交 流功率转换器和/或功率驱动器电路的输出处的一个或多个交流电压和/或电流。能量存储器件194可以是下列的形式可充电的或不可充电的电池、电感器、电容 器,其他电荷存储器件和/或元件,或者它们的任何组合。模拟/数字转换器(ADC) 186可被设计用来将一个或多个任何形式的模拟信号转 换为数字信号。送至DSP的数字信号可以用奈奎斯特采样、过采样或者任何其他采样方法, 或者它们的任何组合进行采样。数字/模拟转换器(DAC) 188可被设计用来将数字信号转换为任何形式的模拟信 号。送至DSP的数字信号可以用奈奎斯特采样、过采样或者任何其他采样方法,或者它们的 任何组合进行采样。数字信号处理器(DSP) 182可被设计和/或最优化,例如用于低功率操作和/或高 速操作。DSP核可包括用来将任何形式的模拟信号转换为数字信号的内部模拟/数字转换 器。依赖于例如逆变器系统预期的特定用途,DSP核可以是专用集成电路(ASIC)和/或现 场可编程门阵列的形式。数字信号处理器可被设计用来在例如时域和/或频域和/或空间 域和/或小波域和/或自相关域中处理数字信号。DSP块可以包括可读出/写入的随机存 取存储器(RAM)或者被预编程的只读存储器(ROM)或者电子可擦除的存储器(也就是,电 可擦只读存储器EEPR0M)。ROM和/或RAM所用类型可以是包括闪速存储器和/或非易失性存储器的任何类型的存储器。送至DSP的数字信号可用奈奎斯特采样、过采样或者任何 其他采样方法,或者这些方法的任何组合进行采样。DSP可被设计为包括一个或多个数字滤 波器,例如,有限冲激响应(FIR)滤波器和/或无限冲激响应(IIR)滤波器。例如,DSP核可被设计为逆变器实现最大功率点跟踪器(MPPT),以保证该逆变器 操作在和/或接近最大功率。例如,信号的脉冲宽度调制(PWM)可与DSP核一起实施,从而 为直流_直流功率转换器实施控制电路系统。例如,在直流_交流的功率转换器中,DSP可 被编程,以充当减少谐波失真的有源滤波器。DSP可被编程,以控制逆变器系统——例如直 流-交流功率转换电路——中的电路系统的开关。DSP还可被编程,从而为该功率控制电路 增加智能,例如,以找到最大功率点和/或将作为逆变器系统一部分的损坏的或效率低的 直流功率源旁路掉。多路复用器190可被设计,以在不同的数字和/或模拟输入电源之间进行选择。 多路复用器电路系统可被设计,以在不同的检测电路系统(例如)电压和/或电流检测和 /或任何其他数字和/或模拟信号之间进行选择。收发器192可被设计,以通过逆变器外部的电路系统——例如通过电源线和无线 链接——进行通信。例如,收发器可包括一个线路接口电路,以连接功率电网至收发器。例 如,收发器可包括一个或多个低噪声放大器(LNA),以通过低噪声系数和/或高增益来放大 接收信号。例如,收发器可包括自动增益控制(AGC),以自动控制收发器的增益。例如,收发 器可包括驱动器电路,以用来高增益和/或高效率地驱动传递的信号。例如,收发器可包括 一个缓冲器电路,以放大送至驱动器电路系统的信号。例如,收发器可包括一个或多个滤波 器,以滤除不需要的频率内容,也就是高频率噪声。收发器可包括其自己的ADC和DAC,用于 例如将模拟信号转换为数字信号,和反之。功率管理块196可被设计,以提供稳定的直流功率源至逆变器系统。功率管理块 可包括一个或多个开关或者电路系统,其控制、监控和/或分析(i)逆变器系统和/或它的 部件(例如,直流_直流和/或直流-交流功率转换电路系统)的功率转换操作,(ii)逆 变器和/或它的部件的操作特性,(iii)逆变器系统输出功率的特性(例如,电流、电压及 其瞬时特性),(iv) —个或多个电荷存储或者其他能量存储器件和/或供应到其中(经由, 例如逆变器系统)的电荷或能量,和/或(ν) —个或多个电荷存储或其他能量存储器件的 输出功率的特性(例如,电流、电压及其瞬时特性)。根据本发明原理,上面描述的部件可以以不同的组合被利用,并且依赖于应用,在 一些实施方案中不同的部件可被包括或者省略。例如当最大功率点跟踪器(MPPT)被包括 作为系统的一部分时,功率控制可被包括,但是,例如当来自直流功率源的功率是固定的和 /或当交流负载可被调制以操作在最大输出功率时,功率控制可被排除。作为另一实施例, 当直流电压和/或电流是足够用来直接转换为交流电压和/或电流时,直流功率转换可不 被包括作为逆变器的一部分。例如,当逆变器系统的总谐波失真不需要被抑制和/或当外 部部件的数目可被最小化以降低系统成本时,滤波器可不被包括作为逆变器系统的一部 分。例如,当来自模拟控制的反馈是不需要的和/或当直流_直流和直流_交流功率转换 器不需要被动态地控制和/或当这些电路块的功率转换效率不需要被最大化时,模拟控制 块可不被包括。例如,当数字处理不是逆变器系统所需要的和/或当逆变器系统的需求是简单的降低成本和/或当对数字信号处理器(DSP)要求的运算可以用其他内部和/或外部电路系 统来再现时,数字信号处理器可不被包括作为逆变器系统的一部分。例如,当最大功率点跟 踪器不需要直流和/或交流和/或不需要对交流负载进行监控时,检测电路系统可不被包 括作为逆变器系统的一部分。例如,当模拟和/或数字信号的复用不需要时,多路复用器系 统可不被包括作为逆变器系统的一部分。例如,当任何种类的数据传递都是不需要时,收发 器电路系统可不被包括。例如,当任何种类的能量存储是不需要时,能量存储器件可不被包 括作为逆变器系统的一部分。例如,当任何种类的功率管理和/或功率控制和/或功率调 节都是不需要时,功率管理部件可不被包括。例如,当该逆变器系统具有外部连接的保护电 路和/或保护电路的电压和/或电流和/或温度可以从外部控制时,保护电路系统可不被 包括作为逆变器系统的一部分。图25示出了根据本专利公开文本的发明原理的光伏(PV)能量系统的一个实施方 案。图25的系统可包括一个或多个太阳能电池202和/或太阳能面板202和/或模块和 /或太阳能电网的PV阵列、一个或多个集成功率转换器206、一个或多个远程监控和/或记 录计算机208、一个或多个交流配电盘210、一个或多个功率线数据接口 212、一个或多个仪 表214和/或交流配线。光伏功率转换可在电池和/或多电池和/或面板和/或多面板和/或模块和/或 多模块和/或电网层级被执行。在一些实施方案中,集成功率转换器,包括所有的无源部件,可完全在单一的集成 电路(IC)(或者“芯片”)上制造。在另一实施方案中,可优选在集成电路外部安置最大的 无源部件,如电感器、变压器和电容器。在一些其他实施方案中,集成功率转换器可被制造 在多个集成电路上,例如,在多芯片模块(MCM)上——在这种情况下,各种关键的有源和无 源部件可作为半导体器件的剩余部分被安置在相同的芯片上和/或在单独的芯片上和/或 芯片外,例如,在封装内部或者封装外部的一个普通的基底上。例如,集成功率转换器可被设计用来降低太阳能转换系统的成本和/或提高功率 转换的效率和/或提高系统的可靠性和/或提高诊断和维护。通过将逆变器系统的一个或 多个功能集成在一个集成电路上,一个集成功率转换器能够在更加宽松的规范下实施这些 功能。在例如电池层级,远程监控/记录计算机208可记录太阳能转换系统的功率输出。 例如,它可被设计用来监控单个太阳能电池的遮光效果和监控哪个太阳能电池和/或太阳 能电池组未操作和/或操作效率低。交流配电盘210可被设计用来将主电子线路和/或电源分割为各种电子电路。交 流配电盘可包括一个或多个保险丝(fuse)和/或一个或多个电路断路器(breaker)和/ 或一个或多个主开关。功率线数据接口 212可被设计用来在至远程监控/记录计算机的功率线上进行通 信。功率线数据接口可包括与远程监控/记录计算机通信的无线电连接。功率线数据接口 还可被设计用来接收关键数据。图25的系统可通过例如降低外部部件的数目和/或磁性部件的数目来降低太阳 能系统的成本。例如,一个集成功率转换器的实施可被设计用来,例如减少或者除去直流配 线和/或线缆问题和/或减少或者除去电缆线架或导线管和/或减少或者除去直流保险丝和/或连接器。由于减少了或没有直流配线,故不需要直流冲击电压保护和/或接线盒和/ 或接地故障探测和/或保护器件。由于没有直流配线,则安装这样的系统不需要直流培训 禾口 /或认证。由于逆变器功能分布在集成功率转换器的实施中,每个单个集成功率转换器的功 率驱动能力和电压可被降低。降低集成功率转换器的功率驱动和电压驱动规格可降低单个 集成功率转换器的成本。较低功率驱动中需要较少或者不需要阻流二极管,和/或需要较 少或者不需要旁路二极管。在集成功率转换器的较低电压处,集成功率转换器可在标准高 压CMOS工艺中被设计,且可被设计用来增加太阳能系统的功率转换效率。在高压CMOS工艺中和/或在较低功率下将一个或多个逆变器功能集成,可降低系 统的噪声和/或提高电磁干扰和/或提高局部的最大功率点跟踪器(MPPT)。由于逆变器 集成在芯片上,可将太阳能系统的组装工艺变得非常简单以减少与系统相关的组装成本。 单个逆变器可被设计和封装,以使其比较容易集成到太阳能系统组件中。在面板和/或模 块层级的太阳能系统的封装可被实施,以使额外的面板和/或模块可很容易地被增加或者 移除。集成功率转换器的实施可被设计为实现其中全部阵列的功率未丢失的自适应解列 (adaptive islanding),和/或实现可靠性的提高和/或电网的可靠性和/或部件的可靠 性的改善——因为电压和功率定标低。它还可被设计为使用自然负载分配和/或有源谐波 控制来自动解析交叉循环电流,和/或被设计为实现先进控制算法的更容易实施。根据本专利公开文本的发明原理的分布式逆变器系统可被设计,以使其最优化以 便降低系统成本和/或提高系统性能和/或提高可靠性和/或便于集成和/或诊断和维护。 例如,诊断和/或维护可通过降低接地故障探测和/或除去逆变器护罩的需要和/或增加 远程探测故障电路系统的能力和/或自动探测故障和/或坏的逆变器而被改善。与传统的逆变器系统相比,根据本专利公开文本的发明原理的分布式逆变器方法 可被最优化,通过例如减少或者完全除去下列部件来减少系统成本外部的和/或定制的 成品部件和/或高成本部件(例如变压器)和/或直流配线和/或直流电缆线架和/或导 线管和/或保险丝和/或过电流保护电路系统和/或必需的支撑物和/或直流连接器和/ 或直流浪涌保护电路和/或接线盒和/或阻流二极管和/或高负荷电子设备。由于标准交流侧配线通常是比较便宜的和/或需要很少或者不需要专业的直流 培训和认证,所以可实现其他成本节约优势。通过自然集成和/或PV模块的替换和/或旁 路二极管和/或对PV结构的小到大尺寸区域的遮蔽的适应性和/或用于装运和/或处理 和/或安装模块化堆叠阵列的设备数量的减少,可实现额外的成本节约。例如,通过减少或者除去由于在光伏系统上的遮蔽而带来的损失,根据本公开文 本的发明原理的分布式逆变器方法可被优化,以达到更高的能量输出和/或增加的能量提 取和/或增加的能量转换效率。增加能量提取和/或增加能量转换效率的方法可包括但不 限于单个输入直流电源的局部最大功率点跟踪器的实施。图26-图29示出了根据本专利公开文本的发明原理的集成功率转换器布置的实 施方案。集成功率转换器可在电池和/或多电池和/或面板和/或多面板和/或模块和/ 或多模块和/或电网层级上被安装。如图26所示,在电池层级,每个电池218可有一个或多个集成功率转换器216。如图27所示,在多电池层级,电池的每一个子集222可有一个或多个集成功率转换器220。对于每一个子集,电池的数目可是两个或多个,但是,当每个子集中电池的数目是 2、4、6、8、9或者12的倍数时,会有额外的优势。如图28所示,在面板层级,每一个面板226上可有一个集成功率转换器224。替代 地,如图29所示,每一个面板230上可有多个集成功率转换器228。在多面板层级,面板的每个子集可有一个或多个集成功率转换器。子集中面板的 数目可以是两个或多个。在模块层级,每一个模块可有一个或多个集成功率转换器。在多 模块层级,模块的每一个子集中可有一个或多个集成功率转换器。子集中的模块的数目可 以是两个或多个。在电网层级,每一个电网的集成功率转换器的数目可以是一个或多个。在多电池、面板、多面板、模块、多模块和电网层级,集成功率转换器可被放置,使 得它们可以例如降低交流配线的数量。每个单一的面板可有一个或多个集成功率转换器。 集成功率转换器可例如为了便于集成而密集安置,或者它们可分开更远放置,例如每一个 在一个特别的太阳能电池上。在任何实施方案中,多个逆变器可被放置在单一的机壳(housing)中、在多个机 壳中、不在机壳中,等等。在某些实施方案中,机壳可以是一个分立的部件,而在另外的实施 方案中,机壳可以是一些其他系统部件的一部分。例如,在图29的实施方案中,多个集成功 率转换器228可被放置在一个被直接附接至面板230的普通的机壳中,或者与面板分立放 置,例如,放置在支撑面板的架子上。替代地,集成功率转换器可被安置在分立的机壳中,或 者较小组的集成功率转换器可被安置在多个机壳中,或者直接被安装在面板上和/或与面 板分开等。在又一些实施方案中,或者更多的集成功率转换器可被安置在一些其他系统部 件中,例如面板上的密封件中。图30示出了根据本专利公开文本的发明原理的集成功率转换器的一个实施方 案。尽管图30的实施方案在光伏系统的情境下示出,但其可被任何其他类型的直流功率源 利用。图30的系统可包括下列部件的一些或者全部控制器232、遮蔽旁路控制234、功 率调节转换器236、功率电路系统和驱动器238、无源滤波器240、模拟控制回路242、收发 器电路244、能量存储调节246、功率调节248、功率开关250、电压参考回路252、启动电路 254、多路复用器256、检测电路系统258、模数转换器260、时钟发生电路262、外部晶振264 和/或能量存储器件266。控制器232可包括带有数字信号处理器(DSP)、微控制器等的任何逻辑(电路), 且为了例如低功率操作和/或高速度操作,而可被设计和/或最优化。该控制器可实施任 一或者全部下列功能最大功率点跟踪、有源滤波、高负荷控制(HD control)、功率因数控 制、波形产生、最优化、开关控制、配置管理、关机控制、启动控制和/或遮蔽旁路控制。DSP核可包括用来将任何形式的模拟信号转换为数字信号的内部模拟/数字转换 器。依赖于例如逆变器系统预期的特定用途,DSP核可以是专用集成电路(ASIC)和/或现 场可编程门阵列的形式。数字信号处理可被包括,用来处理例如时域和/或频域和/或空间 域和/或小波域和/或自相关域中的数字信号。送至DSP的数字信号可用奈奎斯特采样、 过采样或者它们的任何组合进行采样。DSP可被设计为包括数字滤波器,例如,有限冲激响 应(FIR)滤波器和/或无限冲激响应(IIR)滤波器。例如,DSP核可被设计为逆变器实现 大功率点跟踪器(MPPT),以保证该逆变器
17操作在和/或接近最大功率。例如,信号的脉冲宽度调制(PWM)可与DSP核一起实施,从而 为直流_直流功率转换器实施控制电路系统。例如,在直流_交流的功率转换器中,DSP可 被编程,以充当减少谐波失真的有源滤波器。DSP可被编程,以控制逆变器系统——例如直 流-交流功率转换电路——中的电路系统的开关。DSP还可被编程,以为该功率控制电路增 加智能,例如,以找到最大功率点和/或将作为逆变器系统一部分的损坏的或者效率低的 直流功率源旁路掉。控制器提供的附加功能可包括高负荷控制、功率因数控制、波形产生、最优化、配 置管理、关机控制等。遮蔽旁路控制234可被设计用来控制流经太阳能逆变器电路的功率,例如,当从 该块被连接至的光伏电池的功率是可得时。遮蔽旁路控制电路系统还可被设计,从而例如 当光伏电池或者电池的光照低时,连接至它的一个或多个或所有光伏电池可以被禁用。遮 蔽旁路控制电路系统可被设计为将作为太阳能逆变器系统的一部分的损坏的或者效率低 的光伏电池旁路掉。遮蔽旁路控制块可被设计,以使逆变器的功率转换效率可最大化。最大功率点跟踪器(MPPT)可被设计为遮蔽旁路控制的一部分,例如,以确保该逆 变器操作在最大功率。遮蔽旁路控制还可被设计用来控制逆变器中的功率响应于环境的变 化,例如,湿度和/或气压和/或湿度和/或光照和/或输入直流功率的可获取性的变化。 遮蔽旁路控制电路系统可被设计用来考虑其他因素,例如,在集成过程中的变化(不管是 过程间还是过程内的变化)和/或电压供应的变化。功率调节转换器236可被设计用来将直流电压转换为一个或多个直流电压,优选 以高的功率转换效率转换。依赖于例如逆变器预期的特定用途,该功率调节转换器可被设 计用来逐步升高(也就是说,升压)输入直流电压至较高的输出直流电压和/或逐步降低 (也就是说,降压)输入直流电压至较低的输出直流电压。功率调节转换器电路还可被设计 用来进行逐步升高和逐步降低(也就是说,降压-升压/升压-降压)操作和/或被设计用 于从单一的输入(例如,如在回扫转换器中)来生成多个输出直流电压。送至功率转换器 的输入电压和来自功率转换器的输出电压可以是正或者负信号。依赖于例如该逆变器系统 预期的特定用途,输出直流电压相对于输入直流电压可以具有相同的或者不同的极性。直 流功率调节转换器电路可以是线性和开关式调节器的形式。例如,在开关式电压调节器中, 脉冲宽度调制信号可被用来控制直流功率转换的一个或多个输出电压。功率电路系统和驱动器238可被设计用来将一个或多个直流电压转换为一个或 多个交流电压,优选以高的功率转换效率转换。功率驱动器电路可被设计用来生成交流信 号,例如优选以高的功率转换效率和/或低的总谐波失真(TDH)来生成交流信号。例如,无 源或者有源滤波器可在功率驱动器电路中被设计,以减少直流_交流功率转换中的谐波失 真。例如,功率开关还可在功率驱动器电路中被实施,以驱动高功率交流器件和/或使能抵 抗高的输出电压。滤波器240可被设计为有源的或无源的。滤波器可被设计用来减少逆变器系统中 的总谐波失真(TDH)。依赖于例如滤波器的预期使用目的,滤波器可以是低通、高通、带通 和/或带阻的。该滤波器可被设计为只有无源元件,例如,电阻器和/或电容器和/或电感 器,或者该滤波器可包括有源元件,例如运算放大器。模拟控制回路242可被设计用来控制功率电路和驱动器电路系统。它可被设计用来提供功率转换器和/或驱动器电路系统的模拟控制,优选是为了提高逆变器系统的功率 转换效率。例如,模拟控制回路可被设计作为直流_直流功率转换器和/或直流_交流驱 动电路系统的反馈电路,用来动态地控制和最大化这些电路块的功率转换效率。替代地,该 控制回路可以以数字或者混合信号的形式被实施,其可以与控制块232分立或者与控制块 232集成。收发器电路244例如可被设计用来经由功率线路与监控单元进行通信。收发器 可被设计用来例如操作在高效率和低功率。收发器可被设计,以通过逆变器外部的电路系 统——例如通过电源线和无线电连接——进行通信。收发器可包括一个线路接口电路,以 例如连接功率电网至收发器。收发器可包括一个或多个低噪声放大器(LNA),例如以通过低 噪声系数和/或高增益来放大接收信号。例如,收发器可包括自动增益控制(AGC),以自动 控制收发器的增益。例如,收发器可包括驱动器电路,以用来高增益和/或效率地驱动传递 的信号。例如,收发器可包括一个缓冲器电路,以放大送至驱动器电路系统的信号。例如, 收发器可包括一个或多个滤波器,以滤除不需要的频率内容,也就是高频率噪声。例如,收 发器可包括其自己的ADC和DAC,用于将模拟信号转换为数字信号和反之。能量存储调节246可被设计用来使该系统能够在能量存储器件中存储能量。功率调节248可包括如下功能,其控制、监控和/或分析(i)逆变器系统和/或它 的部件(例如,直流_直流和/或直流-交流功率转换电路系统)的功率转换操作,(ii)逆 变器和/或它的部件的操作特性,(iii)逆变器系统输出功率的特性(例如,电流、电压及 其瞬时特性),(iv) —个或多个能量存储器件的存储操作和/或供应(经由,例如逆变器系 统)到其中的能量,和/或(v) —个或多个能量存储器件的输出功率的特性(例如,电流、 电压及其瞬时特性)。功率开关块250可包括一个或多个功率开关,以用来将功率从太阳能电池转换到 功率电网。电压参考电路252可被设计用来控制传送至功率电网和/或功率调节电路的电压。启动电路254可被设计用来启动该集成功率转换器——在有足够的太阳能或者其 他能量来给系统上电时。多路复用器256可被设计用来在不同的数字或者模拟输入电源之间进行挑选。多 路复用器电路系统可被设计用来在不同的检测电路系统(例如)电压和/或电流检测和/ 或任何其他的数字和/或模拟信号之间进行选择。检测电路系统258A-F可被设计用来检测逆变器系统中的电压和/或电流。该检 测电路可被设计用来在例如直流功率源和/或直流功率转换器的输出中检测一个或多个 直流电压和/或电流。检测电路还可被设计用来在例如交流功率源和/或直流_交流功率 转换器和/或功率驱动器电路的输出中检测一个或多个交流电压和/或电流。时钟发生电路262可被设计用来为集成功率转换器,尤其为收发器电路生成一个 或多个时钟。晶振264可包括一个内部的或者外部的晶振,以为时钟发生电路系统生成输入时钟。能量存储块266可包括一个或多个可被设计用来存储来自逆变器系统的能量的
19能量存储器件。它可以是下列形式可充电的或者不可充电的电池、电容器、其他电荷存储 器件和/或元件和/或电感器,或者它们的组合。模拟/数字转换器(ADC) 260可被设计用来将任何形式的模拟信号转换为数字信 号。送至DSP的数字信号可用奈奎斯特采样、过采样,或者任何其他采样方法,或者用这些 方法的任何组合进行采样。接地故障中断(GFI)电路可被包括,以通过响应于接地故障条件而探测和/或关 闭该系统、与远程监控站的通信、和/或采用其他适当的动作来提供保护。图31示出了根据本公开文本的发明原理的收发器的一个实施方案。图31的系统 包括下列的一些或者全部线路接口电路268、低噪声放大器270、自动增益控制272、驱动 器电路274、缓冲器电路276、一个或多个滤波器278、模数转换器280、数模转换器282、预测 量与控制284、输入/输出多路复用器286,和/或处理器的接口电路288。线路接口电路268可被设计用来连接功率电网至收发器。低噪声放大器(LNA)270 可被设计为以例如低噪声系数和/或高增益操作。自动增益控制(AGC) 272可被设计用来 自动控制接收器的增益。驱动器电路274可被设计用来以例如高增益和/或高效率驱动传 递的信号至功率电网。缓冲器电路276可被设计用来预放大将要送至驱动器电路系统的信 号。滤波器278A和278B可被设计用来滤除不需要的频率内容,例如,高频率噪声。模拟 /数字转换器280可被设计用来在高的、适中或者低的速度下以高的、适中或者低的分辨率 来操作。例如,它可被设计用来使低功率消散。数字/模拟转换器282可被设计用来在高 的、适中或者低的速度下以高的、适中或者低的分辨率来操作。例如,它可被设计用来使低 功率消散。预测量与控制和输入/输出多路复用器284可在接收模式和/或发送模式和/ 或空闲模式之间进行选择。接口电路288可连接收发器至任何以及所有类型的处理器。该 接口可以是串联的或者并联的或者这两者的组合。图32示出了根据本公开文本的发明原理的逆变器系统的实施方案。直流功率在 终端292和294被施加至系统。图32的实施方案在太阳能面板290的情境下被示出,但是 它可被其他直流功率源如燃料电池、蓄电池、电容器等所利用。在本实施例中,主要能流贯 穿一系列形成直流-直流转换器306的部件。直流-直流转换器将直流功率从相对低电压 和高电流(其是具有结晶电池(crystalline cell)的光伏板和一些其他直流电源的特性) 变换为相对较高电压和较低电流的适合于转换为一种能够很容易地被分布至本地用户和/ 或通过功率电网等传递给远程用户的形式的交流功率。在其他实施方案中,例如,基于薄膜 光伏电池的系统,直流功率可以较高电压生成,因而除去或者减少了电压升压、预调整等的 需要或者使用。在本实施方案中,直流-直流转换器显示为两个级升压式预调整器和推挽 式主级。然而,在另一实施方案中,直流-直流转换器可使用任何合适的单一或者多级布置 而被实施。又一次参考图32,零纹波输入滤波器296——例如一个无源滤波器——可被用来 减少高频纹波以提高效率。依赖于具体实施,零纹波滤波器的益处可能不抵其额外的成本。预调整器298使系统可根据较宽范围的输入电压来操作,以容纳来自不同制造者 的光伏板。预调整器还可促进先进控制回路的实施,如以下讨论的,以减少输入纹波。例如, 预调整器可作为带有软开关的高频(HF)升压级被实施,以获取高效率和使尺寸紧凑。在本 实施方案中,预调整器提供一个适量的初始电压升压给下一个级。但是,其他预调整器级,例如降压转换器、降压_升压转换器、推挽式转换器等可被用作预调整器级。推挽式级300连同变压器302和整流器304 —起提供大部分的电压升压。推挽式 级的使用可促进整个系统通过单一的集成电路而被实施,因为这两个功率开关的驱动器都 关联同一共用电压。来自整流器级304的输出可被施加至一个提供一个高压直流总线给直 流_交流逆变器级312的直流链电容器CDC。逆变器级312包括高压输出桥308,其在本实施方案中被实施为一个提供单相交 流功率的简单的半桥,但是也可实施多相实施方案。无源输出滤波器310平滑交流输出的 波形之后,该交流输出被施加至中线和线路输出终端L和N的负载或者电网。第一(输入)脉冲宽度调制控制器314控制预调整器296响应于各种检测输入。 在图32的实施方案中,电压传感器316和320以及电流传感器318分别提供预调整器的全 部输入电压和电流和输出电压的测量。但是,第一脉冲宽度调制控制器可响应于更少或更 多的检测输入而操作。例如,任何这些检测输入可被忽略和/或其他检测输入可被包括,例 如,直流链电容器的电压,或者沿着功率路径上任何其他点测量到的电流。在一个实施方案中,第一 PWM控制器314通过控制预调整器296而实施一个内部 控制回路(被箭头315概念性地示出),以在输入终端292和294保持恒定电压。这可以减 少或者消除输入纹波,从而减少电容器C1的尺寸以及除去零纹波滤波器。本质上,内部控 制回路可将能量存储功能从输入电容器C1转换至直流链电容器CDe。能量存储用于交流输 出频率处的逐个循环的功率平衡。也就是,功率优选从直流电源以恒定速率被抽取,然而瞬 时的交流功率输出以两倍于交流线路功率在零和某一最大值之间波动。为了防止这些交流功率的波动返回直流功率源,去耦电容器被用来在交流线路循 环的最小值(或者“谷”)中存储能量,以及在交流线路循环的峰值释放能量。这通常通过 使用大的电解电容C1来完成。然而,内部控制循环将能量存储移至直流链电容器CDe,其中 能量以大电压波动的形式在电容器上被存储和释放。这与其中直流链电压被调整至恒定值 的传统的系统相反。调整一个恒定直流输入电压可提供多种优势。首先,减少输入波形中的波纹提高 了一些直流功率源——例如光伏板,其遭受与波纹相关的电阻损耗——的效率。其次,将能 量存储移至直流链电容器可除去对输入电解电容器——其是昂贵、笨重且具有短寿命的不 可靠部件——的需要。相反,能量可以以更高电压的形式存储在直流链电容器——其比较 便宜、更可靠、具有更长的寿命且可占据较小的空间——上。另外,直流链电容器自身的尺 寸也被减小。最大功率点跟踪器(MPPT)电路344形成了一个外部控制回路,以保持分别由电压 和电流传感器316和318检测到的平均输入电压和电流在最佳点,从而最大化从直流功率 源可得到的输出功率,在本实施例中,所述功率源是光伏板。第二(推挽)PWM控制器324响应于由电压传感器326检测到的直流链电压而控制 所述推挽级。直流链电压控制器322提供反馈信号,该反馈信号与参考信号REF比较且被 施加至第二 PWM控制器324。直流链电压控制器322可操作在不同的模式下。在一种模式 中,它可简单地传送瞬时直流链电压至PWM电路,从而导致直流链电压被调整至一个恒定 值。但是,如果连同上面讨论的输入纹波减少回路一起使用,直流链电压控制器322可滤除 交流纹波,从而第二 PWM回路只调整直流链电压的长期直流值(例如,均方根值)。也就是,直流链电容器上的交流纹波随直流基准电压而动,该直流基准电压响应于直流链电压控制 器而上下滑动。这可以是非常有用的,例如,用于控制下面所讨论的交流输出功率的失真。第三(输出)PWM控制器330控制半桥308中的4个开关,以提供正弦曲线的交 流输出波形。一个非DQ、非坐标旋转数字计算(non-cordic)极坐标形式的数字锁相环 (DPLL) 332帮助使输出PWM与交流功率线路同步。全部的交流输出由电网电流控制回路336 监控和控制,所述电网电流控制回路336响应于来自MPPT电路、直流链电压控制器、DPLL和 输出电压和/或电流的输出调整第三PWM控制器330。谐波失真减轻电路338进一步响应 于被电压和电流传感器340和342分别检测到的输出电压和电流波形,通过求和电路334 调整输出PWM,来除去或者减少失真。来自谐波失真减轻电路338的输出信号也可被施加在直流链电压控制器上,以最 优化直流链电压。大体上,优选的是最小化直流链电压以增加总体效率。但是,如果直流链 电容器上的电压偏移的波谷降得太低,可导致交流输出的过度失真。因而,直流链电压控制 器可使直流链电容器上的直流基准电压上下滑动,以使交流波谷的底保持在最小点,同时 仍保持失真在一个可接受的水平,如减轻谐波失真电路所指示的。图33是根据本专利公开文本的发明原理的适合用来实施图32的逆变器系统的 主要能流的实施方案的一个示意图。来自直流功率源346的功率被施加在电容器C1处的 系统上,所述电容器C1可以是大的能量存储电容器,或者如果使用了输入纹波减少控制回 路,则可以是一个较小的电容器,用于阻止高频开关瞬态被反馈至直流功率源。电感器L1、 三极管Q1和二极管D1形成了由输入PWM控制器控制的预调整升压转换器。来自升压转换器的输出出现在电容器C2两端,取决于具体实施,所述电容器C2提 供高频滤波和/或能量存储。所述推挽级包括晶体三极管Q2和Q3,所述晶体三极管Q2和 Q3响应于推挽PWM控制器而交替地驱动分离核心的变压器T1、T2。变压器具有一个合适的 匝数比,以在直流链电容器CDC两端生成高压直流总线,从而足够流入输出桥。取决于具体 实施,变压器还可在逆变器系统的输入和输出之间提供电流隔离。整流器可包括图33中示 出的无源二极管D2-D5,有源同步整流器,或者任何其他合适的布置。高压(HV)输出桥中的晶体三极管Q4-Q7由输出PWM控制器控制,以产生交流输 出——其在被施加至负载或功率电网之前由电网滤波器348过滤。例如,图33的实施方案的优势是其易于制作为集成功率转换器,例如,利用单一 的集成电路(IC)。由于大多数功率开关关联共同的电源连接,对于这些开关,绝缘的驱动器 是不需要的。在整个结构的单片电路实施方案中,在输出半桥中的高侧开关和它们相应的 低侧开关之间可有介电绝缘。在系统的不同部分之间还可以有绝缘。例如,安置在一部分 中的检测电路系统可将信息转至另一部分的处理电路系统,该另一部分的处理电路系统响 应于接收自第一部分的信息而执行控制和/或通信和/或其他功能。取决于特定应用和功 率处理需求,包括功率电子器件、无源部件和控制电路系统(智能)的所有的部件均可直接 在IC芯片上制造。在另一实施方案中,优选的是将最大的无源部件,例如电感器、变压器和 电容器安置在芯片外部。在又一个实施方案中,图33的系统可被实施为多芯片方案。图34示出了根据本专利公开文本的发明原理的光伏板的一个实施方案。该面板 包括排列在第一绝缘层或者层356上的光伏电池350、352、354等。每一个光伏电池被耦合 至相应的被作为单一的集成功率转换器的逆变器362、364、366等中的一个。在本实施方案中,每一个逆变器芯片上的直流输入COM和AC输出L和N的触点(例如,结合区)被 排列在逆变器的相同一侧。来自多个逆变器的交流输出被连接在一起,形成第一绝缘层356 和第二绝缘层358之间的交流配电(或者集电)总线。交流输出可以是单相的和/或多相 的。封装层360可以在逆变器上形成,以使免遭受环境元件和/或额外的结构完整性的影 响。图35示出了根据本公开文本的发明原理的光伏板的又一实施方案。在图35的实 施方案中,每一个逆变器374被连接在一串光伏电池368、370、372 (而不是单个的电池)等 上。在本实施方案中,仅有一个绝缘层376将光伏电池从逆变器或这些逆变器分隔开。交 流输出L和N的终端相对于直流输入VPN和COM被排列在集成功率转换器的相对一侧。交 流输出在引线380和382被提供,该交流输出可与面板上的其他逆变器的输出(如果有的 话)合成,和/或直接连接至负载或者功率分配电网。交流输出可以是单相的和/或多相 的。封装层378可以在逆变器上形成,以提供保护以使免遭环境因素和/或额外的结构完 整性的影响。图34和图35的实施方案中,依赖于实施方案或者应用,额外的基线可被增加 至交流分配总线。图34和35的面板可进一步包括安置在光伏电池上的玻璃超衬底 (superstrate)上,以为整个面板提供一个刚性结构。替代地,绝缘层的一个或者这两个可 为面板提供结构基础,可以是刚性的或者柔性的。出于图解这些部件的整体布置这一目的,图34和35提供未按比例尺或者比例绘 出的准分解横截面视图。图中示出的空间可以不是真实地被实施的和/或可被密封剂、绝 缘体、粘合剂等填充。图34和图35示出的实施方案阐明了图26-图29中示出的面板的一 些可能的实施细节,但是图26-图29的面板以及图34和图35中的实施方案都不限于这些 细节。上面已经参考一些特定的示例性实施方案对本公开文本的发明原理进行了描述, 但是在不背离本发明概念的情况下,这些实施方案可在排列和细节上进行修改。所述改变 和修改被认为落在下列的权利要求的范围内。例如,已经在光伏太阳能功率系统的语境中阐明了上面描述的一些实施方案。但 是,本发明原理还可应用在其他类型的直流功率源的系统中。因此,根据本发明原理的能量 转换系统的一个实施方案包括一个或多个直流功率源和两个或多个将来自功率源的直流 功率转换为交流功率的逆变器。在一些实施方案中,来自两个或多个逆变器的交流功率可 被合并,以提供一个单一的交流输出。例如,一个或多个直流功率电池可包括一个或多个燃 料电池、一个或多个光伏电池、一个或多个电容器——例如大的电解质电容器,或者它们的 组合。在该系统中,例如,每一个逆变器可被耦合至直流功率电池中的单一的一个,或者每 一个逆变器可被耦合至单串直流功率电池等等。该系统可被安排,以使部件是单一紧凑组 件的一部分,或者是实体上分布的。
权利要求
一个模块,包括一个或多个光伏电池;和两个或多个逆变器。
2.如权利要求1的模块,其中所述逆变器中的每一个被耦合,以接收来自所述光伏电 池中的单个光伏电池的功率。
3.如权利要求1的模块,其中所述逆变器中的每一个被耦合,以接收来自所述光伏电 池中的单串光伏电池的功率。
4.如权利要求1的模块,其中所述逆变器中的每一个被耦合,以接收来自所述光伏电 池的一个子集的功率。
5.如权利要求1的模块,其中两个或多个所述逆变器被包括在一个机壳中。
6.如权利要求1的模块,其中 所述模块包括一个层;所述光伏电池被排列在该层的第一侧;以及 所述逆变器被排列在该层的第二侧。
7.如权利要求6的模块,其中该层包括一个绝缘层。
8.如权利要求1的模块,其中每一个逆变器包括一个或多个集成电路,所述集成电路 包括功率电子器件,用于将来自一个或多个所述光伏电池的直流功率转换为交流功率;和 处理电路系统,用于控制功率电子器件。
9.如权利要求1的模块,其中该逆变器被耦合在一起,以提供单个交流输出。
10.一个集成电路,包括功率电子器件,用于将直流输入功率转换为交流输出功率;和 处理电路系统,用于控制功率电子器件。
11.如权利要求10的集成电路,其中所述处理电路系统可使交流输出功率与交流功率 分配系统同步。
12.如权利要求10的集成电路,其中所述功率电子器件包括一个或多个开关,所述开 关被安排作为直流_直流转换器。
13.如权利要求10的集成电路,其中所述处理电路系统包括用于执行下列功能中的一 个或多个的电路系统最大功率点跟踪、有源滤波、高频控制、功率因数控制、波形生成、最 优化、开关控制、配置管理、关机控制、启动控制、遮蔽旁路控制、检测、通信、接地故障处理。
14.如权利要求10的集成电路,其中所述功率电子器件包括一个或多个低侧开关和一 个或多个高侧开关。
15.如权利要求14的集成电路,还包括在所述一个或多个低侧开关和所述一个或多个 高侧开关之间的绝缘。
16.如权利要求10的集成电路,其中所述集成电路包括与第二部分绝缘的第一部分;和 信息从所述第一部分传送至所述第二部分。
17.一个能量转换系统,包括 一个或多个直流功率源;和两个或多个逆变器,用于将来自功率源的直流功率转换为交流功率。
18.如权利要求17的系统,其中来自所述的两个或多个逆变器的交流功率被合成,以 提供单个交流输出。
19.如权利要求17的系统,其中一个或多个直流功率源包括下列中的一个或多个燃 料电池、光伏电池,和/或能量储存电容器。
20.如权利要求17的系统,其中所述逆变器中的每一个被耦合至单个直流功率源。
21.如权利要求17的系统,其中所述逆变器中的每一个被耦合至所述直流功率源中的单串直流功率源。
全文摘要
分布式能量转换系统可包括一个或多个直流功率源和两个或者多个将来自功率源的直流功率转换为交流功率的逆变器。来自两个或多个逆变器的交流功率可被合成,以提供单个交流输出。一个模块可包括一个或多个光伏电池和两个或多个逆变器。集成电路可包括功率电子器件,其用于将直流输入功率转换为交流功率,以及处理电路系统,其用于控制功率电子器件。交流输出功率可与交流功率分配系统同步。
文档编号H02M7/00GK101946394SQ200880127151
公开日2011年1月12日 申请日期2008年12月21日 优先权日2007年12月21日
发明者K·玛雅拉姆, R·奈克纳威尔, T·S·菲耶泽, T·T·乐 申请人:阿祖雷科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1