一种基于变步长神经网络的潮流分析装置及方法

文档序号:7424081阅读:196来源:国知局

专利名称::一种基于变步长神经网络的潮流分析装置及方法
技术领域
:本发明属于电力系统潮流分析
技术领域
,特别涉及一种基于变步长神经网络的潮流分析装置及方法。
背景技术
:潮流分析是电力系统分析中最基本且最重要的一部分,在电力系统各方面都有巨大的实用价值,常规潮流分析的任务是根据给定的运行条件和网络结构确定整个系统的运行状态,如各母线上的电压、网络中的功率分布以及功率损耗等。由于电力系统规模庞大,潮流分析极其复杂,难度较大,寻找一种适应性强、计算速度快且收敛可靠的潮流分析方法一直是人们追求的目标。尽管已经提出了许多种面向实际问题的潮流分析方法,但它们都或多或少地都存在缺陷。例如,潮流计算的收敛速度是衡量潮流分析方法的重要指标,潮流分析的收敛阶数是决定潮流分析收敛速度的关键。前推回代分析法具有一阶收敛性,它以网络的电流或电压为己知注入量,因此迭代过程是线性方程,在迭代过程中系数矩阵是保持不变的,前推回代分析法具有极好的收敛可靠性和稳定性,但前推回代分析法主要适用辐射状的配电网络,适用范围有限。牛顿分析法具有二阶收敛性,它可以用于环状电力网络的潮流分析,但其在求解过程中涉及到雅克比矩阵的求解,求解过程复杂。而神经网络分析法具有可逼近任意非线性函数的能力,因此可以把它看作非线性系统的模型。神经网络可以处理例外及不正常的输入数据,它可以像人类一样准确地辨别物件而有电脑的速度,这一特点对于很多系统都很重要。控制系统中常用的神经网络结构是多层前向反向传播网络,它采用BP(反向传播)算法及其改进算法。由于这种算法在本质上是一种神经网络学习的数学模型,所以,有时也称为BP模型。BP算法是为了解决多层前向神经网络的权系数优化而提出来的,所以,BP算法也通常暗示着神经网络的拓扑结构是一种无反馈的多层前向网络,故而,有时也称无反馈多层前向网络为BP模型。BP模型含有输入层、输出层以及处于输入输出层之间的中间层。中间层有单层或多层,由于中间层和外界没有直接的联系,故也称为隐含层。隐含层中的神经元也称为隐单元。隐含层虽然和外界不连接,但是,它们的状态却影响着输入输出之间的关系。这也就是说,改变隐含层的权系数,可以改变整个多层神经网络的性能。BP网络的实现分为两个阶段,即学习训练阶段和识别检测阶段。在学习阶段向网络输入学习的样本数据,根据网络的初始设置权重、阈值以及传输函数对网络的输入数据进行分析计算,得出每一个神经元的输出,这个分析计算过程是从底层向上进行的;根据理想输出与最高层实际输出之间的误差决定是否对权重、阈值进行修改,这个修改过程是从高层向下进行的。分析计算和修改这两个过程反复进行,直到网络收敛为止,此为学习阶段。权重的学习就是不断的调整各个神经元的链接强度,使其能在最小二乘的意义上逼近所对应的理想输出。而识别阶段,就是通过已训练好的神经网络对给定的输入数据进行分析计算,然后给出相应的数据输出。BP算法分二步进行,即正向传播和反向传播,这两个过程的工作简述如下。(1)正向传播:输入的样本数据从输入层经过隐单元一层一层进行分析处理,输入的数据通过所有的隐含层之后,则传向输出层,在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出数据和期望输出数据进行比较,如果现行输出数据不等于期望输出数据,则进入反向传播过程。(2)反向传播反向传播时,把现行输出数据与期望输出数据间的误差信号按原来正向传播的通路反向传回,并对每个隐含层的各个神经元的权系数进行修改,以使误差信号趋向最小。由于BP网络收敛速度慢,且存在局部极值问题,于是改进的BP算法一一变步长BP算法应运而生。BP算法收敛速度较慢的一个重要原因是学习速率不好选择,学习速率选得太小,收敛速度太慢,学习速率选得太大,则有可能修正过头,导致震荡甚至发散。
发明内容针对现有技术存在的问题,本发明提供了一种在潮流分析中应用祌经网络变步长误差反向传播算法进行分析的装置和方法。back-propagation(简称变步长BP算法)。本发明将神经网络变步长BP算法与电力系统潮流分析相结合,基本思路是利用神经网络来描述和表达该系统,这是一层次型输入输出网络,其中的部分权值固定不变,其余权值可调。在此基础上,利用变步长误差反向传播算法,通过训练对可调权值进行调整,训练完成后的网络即可用于潮流分析,它与传统的收敛速度较慢的BP算法(收敛慢的主要原因是学习速率不好选择,学习速率选得太小,收敛太慢,若选得太大,则有可能修正过头,导致震荡甚至发散)相比有效地解决了收敛速度慢的问题。本发明为国家高技术研究发展计划("863"计划)课题成果。本发明的基于变步长神经网络的潮流分析装置,包括上位机和下位机,所述下位机由前置模块、A/D转换模块、DSP模块、单片机、显示与键盘操作单元模块、校正模块和通信模块组成,前置模块包括电压、功率传感器,电压和功率传感器与电力系统各节点相连,传感器的输出端与A/D转换模块相连,A/D转换模块与DSP数据处理模块和校正模块相连,DSP数据处理模块分别与显示与键盘模块、校正模块、单片机相连,校正模块与单片机相连,单片机与通信模块相连,通信模块与上位机相连。本发明的潮流分析装置工作过程是上位机装载神经网络控制程序,并通过采集的样本数据对神经网络进行训练,然后将训练结果数据(即神经网络各层中每个神经元的状态参数,主要是权值)通过通信模块传输给下位机(即DSP运算模块),并将数据保存在单片机的存储器中。前置模块中的电压功率传感器把感应、后的配电网的电压功率信号传送给A/D转换模块,A/D转换模块将采集到的电压功率模拟信号转换为系统能够识别的数字信号,作为DSP运算模块的输入,DSP模块依据已经训练好的神经网络对A/D转换模块处理好的数字信号进行分析运算,单片机完成对DSP模块的控制,琴后在液晶屏上显示DSP运算模块的潮流分析结果,并将结果储存在单片机的存储模块中。键盘用来输入系统的各种相关参数,包括各段线路的电阻及电抗值。通信模块将辨识结果传送到上位机。校正模块用于当潮流分析装置的潮流输出波动较大时对神经网络模块各层各分支的状态进行调整。本发明的分析方法采用基于神经网络变步长误差反向传播算法建立神经网络潮流分析模型,对电力系统进行潮流分析。假设所研究的电力系统中有w个节点,l个平衡节点,w个尸一g节点,w-l-战个尸-F节点。据此建立3层的网络结构输入层共2w-l个神经元,其中第1个神经元对应平衡节点,输入为平衡节点的电压,第2至m+l个神经元对应输入P-2节点的有功功率P,第m+2至2w+1个神经元对应输入i5-g节点的无功功率g,第2m+2至n+w个神经元对应尸-F节点的有功功率尸,第w+w+l至2"-l个神经元对应户-K节点的电压F;隐含层也包括2"_1个神经元,其中第一个神经元的输入即为输入层第一个神经元的输出,也即平衡节点的电压;输出层包括w+l个神经元,其中第1、2个神经元的输出为平衡节点的有功功率户和无功功率2,第3至w+2个神经元输出P-G节点的电压,第m+3至"+l个神经元输出P-r节点的无功功率g。该神经网络结构图见附图7。附图1中输入层节点/,隐含层节点/,输出层节点A:。^;"为输入节点z'与隐含节点/的连接权值,^^a为隐含节点J'与输出节点A:的连接权值;《(1)为隐含层的阈值,《2)为输出层的阈值;输出层的期望输出为《,实际输出为^;e为预先设定的总体误差;a为学习速率。神经元的激活函数采用sigmoid函数,艮P:X为单个样本输入数据,显然有:l+e平衡节点电压rz'=l尸一2节点^Z'-2,……,附+lP一Q节点Qz:w+2,…,2w+lP—F节点S/=2w+2,'..,w+m尸一F节点^/="+附+1,'.',2"—1隐含层第/个神经元的输出为A,则有:少l乂广2"-lS《"=2,…,2附+l/二2附+2,…,2w+l输出层第A个神经元的输出为A,则有:r「i/2m+lso*)2"—1"1,2A:=3,…,w+2A:=m+3,.-.,w+l且有:平衡节点有功功率户平衡节点无功功率g户一g节点电压F户一F节点无功功率G"1A:=2A:=附+3,…,W+l(1)(2)(3)(4)来对BP网络给定尸(/=1,2广.,户)组输入样本|_&1,..,^(2_1)」和输出样本进行训练,也即对网络的连接权值『,和^f进行学习和调整,以使该网络实现给定的输入输出映射关系。对第;组样本进行训练后的误差函数为五p,总体误差为^,贝U:』W+1/、2五=—2(6)假设经过第/次训练后,£(/)>e,隐含层到输入层的权值调整其中则需要对连接权值和阈值进行调整。调整公式为(/-+1)(7)卿一l)《)(/—1)");)(/—1):2X))(/-2),[)(/-2)]式中sgn(n)返回的是括号中的数字符号的整数,n为任意整数或任意公式,nX)时,函数值为l,『0时,函数值为0,nO时,函数值为-l输出层到隐含层的权值调整『/)(/)1)+《)(/-1)Dj,2)(/-1)(11)/I:(8)(9)(10)其中,力l"5《)(/-1),(2)(/-1)=2^)(/-2)"gn2)(/-2)]输出层的阈值调整《2)(0=^.f(12)(13)(14)2"—1隐含层的阈值调整《"(/X))(/)£&(/)*《2)(/)A.(l—A)(15)(16)戶l式中,D,为输入节点与隐含节点之间的调整系数,D^为隐含节点与输出节点之间的调整系数,/为训练次数。现给定尸0^1,2,…,P)组输入样本D^,..^^—d]『和输出样本[^,..,^("+1)了,上位机所装载的神经网络的学习训练过程如下步骤l:训练子程序开始;步骤2:初始化。在小随机值上初始化连接权值和阈值,给出各层节点数、学习速率"和预定误差"步骤3:输入训练样本集中的第一个样本[&,..^^—uf;步骤4:依据式(2)计算隐含层各个神经元的输出;步骤5:依据式(3)和步骤4的结果计算输出层各个神经元的实际输出;步骤6:依据式(5)和式(6)以及步骤5的结果计算实际误差五;步骤7:若£<6则跳转到步骤12;否则到步骤8;步骤8:依据公式(11)(12)(13)(14)调整输出层到隐含层的权值;步骤9:依据公式(15)调整输出层的阚值;步骤10:依据公式(7)(8)(9)(10)调整隐含层到输入层的权值;步骤ll:依据公式(16)调整隐含层的阈值;步骤12:依次输入训练样本集中的第p(2S;7S尸)个样本[>^,..,>^2—0]T,重复步骤4至步骤11,当/^尸转入步骤13;步骤13:记录权值和阈值,结束本次训练。P为总的样本数,该函数的流程图见附图8。经过网络训练后,得到效果最优的连接权值和阈值,也即得到了最佳的基于变步长BP算法的祌经网络潮流分析模型,可以用于电力系统现场数据的潮流分析。现假设现场采集到电力系统"个节点,l个平衡节点,w个尸-g节点,m个尸-r节点,需要对该电力系统进行潮流分析,使用训练后的网络模型,DSP中装载的潮流分析程序分析步骤如下步骤l:运算子程序开始;步骤2:初始化,子节点电压清零,线路传输功率及线路损耗清零,各段线路的电阻及电抗值录入;步骤3:采集现场数据信号,包括根节点的电压信号r,尸-0子节点的节点有功负荷尸与无功负荷g,P-F子节点的节点有功负荷P与节点电压F;步骤4:将采集到的模拟信号转换为系统能够识别的数字信号;步骤5:对应神经网络输入层各神经元,输入数字信号。第一个祌经元输入平衡节点电压,第2至w+l个祌经元对应输入尸-g节点的有功功率P,第w+2至2附+l个神经元对应输入P-g节点的无功功率g,第2w+2至"+m个神经元对应F-F节点的有功功率尸,第w+w+l至2"-l个神经元对应尸-K节点的电压F;步骤6:DSP模块调用上位机训练好的祌经网络,选择最佳连接权值与阈值,对输入数据进行分析运算;步骤7:分析运算结束,输出分析运算结果。第l、2个神经元的输出为平衡节点的有功功率^和无功功率2,第3至/+2个祌经元输出尸-^节点的电压,第附+3至"+l个神经元输出户-F节点的无功功率2;步骤8:通信模块将分析运算结果传送给上位机,并在显示器上显示;步骤9:将所有分析运算信息保存在单片机的存储模块中;步骤10:程序结束。该函数的流程图见附图9。该潮流分析装置装配在对象子系统地区控制室中,它是根据前置模块采集的配电系统的实时节点电压及功率信号进行潮流分析的,该潮流分析装置的优点在于硬件上增加了一个校正模块,由于实际电力系统的各项参数并不一直保持恒定,所以上位机通过起始数据训练所得的神经网络的各项参数可能会给实际的电力系统潮流计算带来误差,因此在DSP数据计算模块之后设置校正模块,用于在系统异样(潮流计算结果变化率超过给定限值)时,对神经网络各层支路的状态进行调整,以保证该潮流计算系统计算的准确性。软件上采用的是神经网络变步长误差反向传播算法,神经网络的算法比传统的潮流计算方法有着更广泛的使用范围,且变步长误差反向传播算法与定步长误差反向传播算法相比在收敛速度方面有着不可比拟的优越性。图1为本发明的系统框图2为本发明一个实施例装置中校正模块电路原理图3为本发明一个实施例封装芯片6014A电路原理图4为本发明一个实施例通信模块电路原理图5为本发明一个实施例显示模块电路原理图6为本发明一个实施例键盘操作单元模块电路原理图7为本发明一个实施例神经网络结构示意图8为本发明一个实施例训练方法流程图9为本发明一个实施例分析方法流程图。具体实施例方式本发明的硬件装置包括由前置模块(电压功率传感器)、A/D转换模块、DSP模块、单片机、显示与键盘操作单元模块、校正模块、通信模块组成的下位机和上位机。其中A/D转换模块、DSP模块和单片机三部分封装在6014A—个芯片中,传感器、6014A芯片(A/D转换模块、DSP模块和单片机)、通信模块、上位机顺次连接,系统框图见附图l。前置模块中的电压传感器和功率传感器采集电力系统各节点的实时电压和功率信号,并将其输入给芯片上的A/D转换模块进行采样,A/D转换模块将由前置模块输入的电力系统电压及功率模拟信号转换为DSP模块能够处理的数字信号。电压传感器选用PT204A,功率传感器选用S481A。校正模块是由五个8位数据寄存器74LS373及三个由555定时器组成的多谐振荡器实现的时钟信号源组成的,555定时器的5号引脚通过电容接地起到稳定电压的的作用。寄存器74LS373的引脚3、4、7、8、13、14、17、18用来输入A/D转换模块(或DSP数据处理模块)的输出数字信号,当74LS373的引脚11(555定时器输出的时钟信号的逻辑组合输入)为高电平时,74LS373输入端的信号存入74LS373寄存器中,而74LS373的引脚1(555定时器输出的时钟信号的逻辑组合输入)为低电平时,把74LS373所存数据传输给单片机,进而传给上位机实现对神经网络各层参数的修正,电路图见附图2。A/D转换模块、DSP模块和单片机三部分封装在芯片6014A中。A/D转换模块负责将前置模块集到的电力系统电压、功率的模拟信号转换为DSP模块能够处理的数字信号。DSP模块与单片机通过串口相连。当A/D转换模块向DSP模块输入数据时,DSP模块调用己经训练好的神经网络对输入数据进行分析运算,单片机与DSP模块进行通信,将DSP模块的潮流分析结果(各子节点电压,各段线路的传输功率及线路损耗)显示在上位机上。芯片6014A中,单片机实现控制功能,DSP完成信息的分析及处理,电路图见附图3。芯片6014A的15、16、17、18、27、28号引脚输入由电压功率传感器检测到的电力系统的电压及功率模拟信号作为A/D转换模块的输入,芯片6014A的29、30、33号引脚用于输入时钟信号,72号引脚作为CAN1总线发送引脚,73号引脚作为CAN1总线接收引脚,54、58、61、62、63、66、67、68、69号引脚与键盘相连。所述的通信模块选用驱动芯片MAX232。计算机串行接口采用RS232协议。MAX232的引脚ll、12和芯片6014A的引脚41、42相连,完成单片机与上位机的通信。232插口通过232电缆与上位机串口相连。电路见附图4。LCD显示模块与单片机相连,选用驱动芯片PIC18F242。PIC18F242的引脚7、14、15、16、27、28分别与芯片6014A的引脚1、79、78、80、21、22相连。液晶显示模块选用芯片1062,用米显示电路运算结果。电路见附图4。键盘操作单元模块用于输入系统的各种相关参数。键盘操作单元模块的引脚4、5分别与6014A的引脚20、19连接。电路见附图6。采用本发明的电力系统潮流分析装置依据前述方法对XX地区电力系统进行潮流分析该地区电力系统20节点19支路的配电子系统。支路和节点数据见表1-1和卜2。其中子节点的有功及无功负荷是由功率传感器测得的,支路的电阻电抗及线路长度的信息是服务器录入的。<table>tableseeoriginaldocumentpage12</column></row><table><table>tableseeoriginaldocumentpage13</column></row><table>经过该电力系统潮流分析装置分析运算后可得根节点的有功及无功分别为105.035172kw,42.454709kvar,各节点电压、线路传输功率和线路损耗分别见表1-3和表1-4。1-3节点电压表<table>tableseeoriginaldocumentpage13</column></row><table>1-4各支路传输功率及线路损耗<table>tableseeoriginaldocumentpage14</column></row><table>实验结果表明,此潮流分析装置精度可达0.001p.u,而普通的潮流分析装置的精度为0.005p.u;此潮流分析装置的收敛时间小于100ms,而普通的潮流分析装置的收敛时间为lm左右。权利要求1、一种基于变步长神经网络的潮流分析装置,包括上位机和下位机,其特征在于下位机由前置模块、A/D转换模块、DSP数据处理模块、单片机、显示与键盘操作单元模块、校正模块和通信模块组成,前置模块包括电压、功率传感器,电压和功率传感器与电力系统各节点相连,传感器的输出端与A/D转换模块相连,A/D转换模块与DSP数据处理模块和校正模块相连,DSP数据处理模块分别与显示与键盘模块、校正模块、单片机相连,校正模块与单片机相连,单片机与通信模块相连,通信模块与上位机相连。2、采用权利要求1所述的基于变步长神经网络的潮流分析装置进行潮流分析的方法,其特征在于所述潮流分析的步骤如下-步骤l:运算子程序开始;步骤2:初始化,子节点电压清零,线路传输功率及线路损耗清零,各段线路的电阻及电抗值录入;步骤3:采集现场数据信号,包括根节点的电压信号r,尸一g子节点的节点有功负荷尸与无功负荷g,P—r子节点的节点有功负荷P与节点电压K;步骤4:将采集到的模拟信号转换为系统能够识别的数字信号;步骤5:对应神经网络输入层各神经元,输入数字信号,第一个神经元输入平衡节点电压,第2至m+l个神经元对应输入户一5节点的有功功率尸,第w+2至2/n+l个神经元对应输入尸"g节点的无功功率2,第2w+2至"+w个神经元对应户—r节点的有功功率P,第W+W+l至2"-l个神经元对应i^K节点的电压r;步骤6:DSP模块调用上位机训练好的神经网络,选择最佳连接权值与阈值,对输入数据进行分析运算;步骤7:分析运算结束,输出分析运算结果,第l、2个神经元的输出为平衡节点的有功功率户和无功功率g,第3至w+2个神经元输出i,-《节点的电压,第m+3至w+l个祌经元输出尸一K节点的无功功率0;步骤8:通信模块将分析运算结果传送给上位机,并在显示器上显示;步骤9:将所有分析运算信息保存在单片机的存储模块中;步骤10:程序结束。3、如权利要求2所述的基于变步长神经网络的潮流分析装置进行潮流分析的方法,其特征在于步骤6所述神经网络的学习训练步骤如下步骤l:训练子程序开始;步骤2:初始化,在小随机值上初始化连接权值和阈值,给出各层节点数、学习速率a和预定误差e;步骤3:输入训练样本集中的第一个样本[^,…月(2"-dI;步骤4:计算隐含层各个神经元的输出;步骤5:计算输出层各个神经元的实际输出;步骤6:计算实际误差五;步骤7:若£<6,则跳转到步骤12;否则到步骤8;步骤8:调整输出层到隐含层的权值;步骤9:调整输出层的阈值;步骤10:调整隐含层到输入层的权值;步骤ll:调整隐含层的阈值;步骤12:依次输入训练样本集中的第/7(2S/^P)个样本[^1,..,>^2_0]7\重复步骤4至步骤11,当p〉P转入步骤13;步骤13:记录权值和阚值,结束本次训练。全文摘要一种基于变步长神经网络的潮流分析装置及方法,包括上位机和下位机,下位机由前置模块、A/D转换模块、DSP数据处理模块、单片机、显示与键盘操作单元模块、校正模块和通信模块组成,电压和功率传感器与电力系统各节点相连,传感器的输出端与A/D转换模块相连,A/D转换模块与DSP数据处理模块和校正模块相连,DSP数据处理模块分别与显示与键盘模块、校正模块、单片机相连,校正模块与单片机相连,单片机与通信模块相连,通信模块与上位机相连。本发明采用基于神经网络变步长误差反向传播算法建立神经网络潮流分析模型,对电力系统进行潮流分析。保证了潮流计算系统计算的准确性,且变步长误差反向传播算法在收敛速度方面有着不可比拟的优越性。文档编号H02J3/00GK101540504SQ200910011360公开日2009年9月23日申请日期2009年4月30日优先权日2009年4月30日发明者孙秋野,超巴,张化光,李小兰,李钟旭,珺杨,杨东升申请人:东北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1