耦接到整流器系统的m2lc系统的制作方法
【专利摘要】一种系统。该系统是模块化多电平转换器系统,并包括多个串联连接的模块化多电平转换器单元。模块化多电平转换器单元中的至少一个是三电平模块化多电平转换器单元。多个串联连接的模块化多电平转换器单元通过DC总线耦接到整流器系统。
【专利说明】耦接到整流器系统的M2LC系统
[0001]相关申请交叉引用
[0002]本申请根据35U.S.C.§ 119(e)要求于2010年11月4日递交的美国临时专利申请N0.61/410,118的较早 申请日期:的权益。
【背景技术】
[0003]本申请公开了一般而言并且在各实施例中涉及耦接到整流器系统的模块化多电平转换器(M2LC)系统的发明。整流器系统对于12:系统的12:单元(0611)来说是外部的,并提供M2LC系统的DC链路电压。
[0004]传统的多相(例如,三相)拓扑与串联地放置的两端子单元的各种配置一起使用,以有效地提高每一个相的额定电压。两端子单元也称为子系统或子模块。例如,两端子单元与带有电流源逆变器(inverter)和电压源逆变器配置的桥式拓扑一起使用。图1示出了电流源逆变器中使用的传统的两端子单元,而图2示出了与绝缘栅双极晶体管(IGBT)电压源逆变器串联地使用的另一种传统的两端子单元。
[0005]如图1所示,在电流源逆变器中使用的两端子单元包括闸流晶体管,并且跨两个端子存在的电压可以通过控制向闸流晶体管的栅极施加的电压来控制。如图2所示,与IGBT电压源桥式逆变器串联地使用的两端子单元包括场效应晶体管和二极管,并且跨两个端子存在的电压可以通过控制向场效应晶体管的栅极施加的电压来控制。
[0006]这些桥式拓扑还与基于二极管的整流器和基于IGBT的整流器一起使用以提供它们的DC总线电压(或电流)。类似于上文所描述的各两端子逆变器单元,整流器的这些系统被串联地放置,以提高它们提供的逆变器的额定电压。整流器操作,以将AC源能量(例如,通常来自多相电力变压器的AC源能量)转换为DC电源。
[0007]基于二极管的整流器和/或基于IGBT的整流器还与级联H-桥式(CCH)中电压驱动拓扑一起使用。基于二极管的整流器允许通过系统的两象限功率流(power flow)(AC源到AC负载),基于IGBT的整流器允许通过系统的四象限功率流(AC源到AC负载和AC负载到AC源二者)。图3示出了基于二极管的整流器,图4示出了与传统的桥式和CCH拓扑一起使用的基于IGBT的整流器。在桥式拓扑的情况下,整流器被串联地放置,以逐步形成所需的DC链路电压。在CCH的情况下,这些整流器模块放置在各电力单元中,以便它们可以提供每一个两端子单元本地的DC电源。
[0008]发表了关于类似于桥式拓扑的简洁性但还拥有CCH拓扑的特征的拓扑(B卩,模块化多电平转换器(M2LC)拓扑)的许多论文。M2LC拓扑拥有CCH拓扑的优点,因为它是模块化的并由于冗余而能够提供高操作可用性。类似于上文所描述的串联闸流晶体管或IGBT桥式拓扑,使用两端子单元(子系统或子模块)的串联连接来配置M2LC拓扑,以提高额定电压或可用性。然而,与简单串联开关的标准桥式配置不同,可以独立地控制这些子模块以与CCH拓扑类似地产生至少两个或更多相异的电压电平。另外,还可以在使用和不使用多绕组变压器的常见的总线配置中应用M2LC拓扑。与M2LC不同,CCH需要使用包含向单元提供输入能量的各次级绕组的多绕组变压器。[0009]然而,与CCH不同,M2LC单元不独立地从隔离的电压源或次级绕组被供电。对于给定M2LC单元,在两个端子中的一个处的能量输出量取决于在两个端子中的另一个处的能量输入的量。
[0010]多个M2LC单元先前以传统的桥式配置来布置。例如,图5示出了具有以桥式配置布置的多个M2LC单元的M2LC系统。如图5所示,M2LC单元布置到两个或更多输出相模块中,每一个输出相模块包括多个串联连接的M2LC单兀,并且每一个输出相模块进一步布置到正的臂(或阀)和负的臂(或阀)中,其中,每一个臂(或阀)通过感应滤波器分隔。为简明起见,图5中未示出感应滤波器。每一个正的和负的输出相模块可以被视为极。这些相应的极的输出可以被用来为诸如(例如)马达之类的交流电负载供电。
[0011]虽然基于二极管的整流器和基于IGBT的整流器与各种桥式和CCH拓扑一起使用,但是,这样的整流器尚未与M2LC系统一起使用。因此,逻辑上得出:这样的整流器同样尚未被用于提供M2LC系统的DC总线,从而允许通过M2LC系统的两象限功率流(二极管),或通过在M2LC系统中简单地调换整流器的类型(二极管或IGBT)来允许通过M2LC系统的四象限功率流(二极管或IGBT)。此外,每一个两端子单元内的电能存储装置尚未被用在基于M2LC的系统中以利用此拓扑的冗余特征。
【专利附图】
【附图说明】
[0012]此处结合下列图示作为示例描述了本发明的各实施例,其中,相同附图标记表示相同或类似的元件。
[0013]图1示出了两端子单元;
[0014]图2示出了另一两端子单元;
[0015]图3示出了基于二极管的整流器;
[0016]图4示出了基于IGBT的整流器;
[0017]图5示出了 M2LC系统;
[0018]图6示出了根据各实施例的耦接到整流器系统的M2LC系统的简化表示;
[0019]图7示出了图6的M2LC系统和整流器系统的更详细的表示;
[0020]图8示出了图6的M2LC系统的两电平M2LC单元的各实施例;
[0021]图9示出了图6的M2LC系统的两电平M2LC单元的其他实施例;
[0022]图10示出了图6的M2LC系统的三电平M2LC单元的各实施例;
[0023]图11示出了图6的M2LC系统的三电平M2LC单元的其他实施例;
[0024]图12示出了将M2LC系统连接到其自身或其他整流器系统的DC链路系统的各实施例;以及
[0025]图13示出了具有并入到M2LC单元中的能量存储系统的M2LC系统的各实施例。【具体实施方式】
[0026]可以理解,本发明的图示和描述中的至少某些被简化,以说明相关的元件,以便对本发明有清楚的理解,同时为了清楚起见省略了所属领域的技术人员认识到也可以构成本发明的一部分的其他元件。然而,由于这样的元件已为大家所熟知,并且由于它们不会促进对本发明的更好的理解,此处没有提供对这样的元件的描述。[0027]图6示出了根据各实施例的耦接到整流器系统12的M2LC系统10的简化表示。图7示出了 M2LC系统10和整流器系统12的更详细的表示。M2LC系统10被配置为三相桥并且包括多个M2LC单元14,其中,M2LC单元14被布置为三个输出相模块。虽然在图7中示出了十八个M2LC单元14,但是,可以理解,M2LC系统10可以包括任意数量的M2LC单元14。当然,根据其他实施例,M2LC系统10可以以与图7所示出的不同的方式来配置。例如,取决于给定应用所需的负载相位的数量,M2LC系统可被配置成只由两个输出极组成或由四个或更多输出极组成。
[0028]对于图7所示出的M2LC系统10,多个M2LC单元14布置为输出相模块或臂。每一个输出相模块被进一步布置到正的臂(或阀)和负的臂(或阀)中,其中,每一个臂(或阀)被感应滤波器(为清楚起见,图7中未示出)分隔。每一个输出相模块可以被视为极的臂。另夕卜,虽然在图7中为了清楚起见未示出,但是,可以理解,每一个M2LC单元14还包括本地控制器,并且每一个本地控制器可以可通信地连接到M2LC系统10的更高层控制器(例如,集线控制器(hub controller))。
[0029]M2LC系统10中使用的M2LC单元14可以是任何合适类型的两端子M2LC单元。例如,图8示出了具有两个端子的M2LC单元的两电平配置,图9示出了具有两个端子的M2LC单元的另一两电平配置,图10示出了具有两个端子的M2LC单元的三电平配置,图11示出了具有两个端子的M2LC单元的另一三电平配置。
[0030]图8所示出的M2LC单元包括两个开关设备(Ql和Q2)、两个二极管、电容器(Cl)和两个端子。利用图8所示出的配置,两个开关设备可以被控制,以便两个不同的电势中的一个(例如,零伏特或V)可以跨两个端子存在。例如,当开关设备Q2被导通时,在M2LC单元的两个端子之间存在零伏特。当开关设备Ql被导通时,在M2LC单元的两个端子之间存在电压V (存储电容器Cl上存在的电压)。可以理解,为了避免存储电容器Cl的短路以及可能从其产生的严重的损坏,当开关设备Q2导通时,开关设备Ql应该关断,而当开关设备Ql导通时,开关设备Q2应该关断。
[0031]图9所示出的M2LC单元包括三个开关设备(Q1、Q2和Q3)、三个二极管、两个电容器(Cl和C2)和两个端子。利用图9所示出的配置,可以选择性地控制三个开关设备Q1-Q3,以便两个不同的电势中的一个(例如,零伏特或V)可以跨M2LC单元的两个端子存在。例如,当开关设备Q2被导通(并且开关设备Ql和Q3关断)时,在M2LC单元的两个端子之间存在零伏特。此外,当开关设备Q2被导通时,电容器Cl和C2实体上是串联连接的(但不相对于两个输出端子)。当开关设备Ql和Q3两者被导通(并且开关设备Q2关断)时,在M2LC单元的两个端子之间存在电压V (存储电容器Cl和C2上存在的电压)。此外,当开关设备Ql和Q3两者被导通(并且开关设备Q2被关断)时,电容器Cl和C2相对于两个输出端子并联连接。可以理解,负载电流由图9的M2LC单元的电容器Cl和C2平均地分担。
[0032]图10所示出的三电平M2LC单元包括四个开关设备(Ql、Q2、Q3和Q4)、四个二极管、两个电容器(Cl和C2)和两个端子。可以理解,对于此布置,电容器Cl和C2通常相同。利用图10所示出的配置,可以控制四个开关设备,以便三个不同的电势中的一个(例如,零伏特、Va、Vc2或Va+VC2)可以跨M2LC单元的两个端子存在。由于两个电容器Cl和C2通常相同,因此,可以理解,电压Va和Vc2基本上相同,并且电压Va+VC2基本上与2Va或者2VC2相同。[0033]对于图10的M2LC单元,当开关设备Q2和Q3两者导通时,在M2LC单元的两个端子之间存在零伏特。当开关设备Ql和Q3两者导通时,在M2LC单元的两个端子之间存在电压Vci (存储电容器Cl上存在的电压)。当开关设备Q2和Q4两者导通时,在M2LC单元的两个端子之间存在电压Vc2 (存储电容器C2上存在的电压)。当开关设备Ql和Q4两者导通时,在M2LC单元的两个端子之间存在电压Va+Ve2。可以理解,对两个电压状态Va和Ve2的独立控制允许电容器Cl和C2上的电荷的平衡。
[0034]图11所示出的M2LC单元包括四个开关设备(Q1、Q2、Q3和Q4)、四个二极管、两个电容器(Cl和C2)和两个端子。利用图11所示出的配置,可以控制M2LC单元中的四个开关设备,以便三个不同的电势中的一个(零伏特,V和2V)可以跨两个端子存在。与图10所示出的M2LC单元的两个相同大小的存储电容器不同,M2LC单元的两个电容器的各自的大小彼此不相同。电容器Cl是存储电容器,电容器C2是所谓的“飞跨”(flying)电容器(电容器C2不传导基本输出电流)。
[0035]可以控制图11的M2LC单元的开关设备Q1-Q4,以便电容器Cl上存在的电压是2V,这是电容器C2上可以存在的电压V的二倍。控制电容器C2上的电压,以便每一个开关设备上的电压不超过V。换句话说,控制电容器C2上的电压,以便每一个开关设备上的电压不超过电容器Cl上可以存在的电压的二分之一。为了实现这一点,C2被控制到电压值2V。M2LC单元被布置以便开关设备Ql是开关设备Q2的互补(complement),而开关设备Q3是开关设备Q4的互补。
[0036]当开关设备Q2和Q4两者导通时,在M2LC单元的两个端子之间存在零伏特。当开关设备Q3和Q4两者导通时,在M2LC单元的两个端子之间存在电压Ve2 (飞跨电容器C2上存在的电压“ν”)。当开关设备Ql和Q2两者导通时,在M2LC单元的两个端子之间存在等于电压H2的电压VC1_C2 (如果“2v”是Cl上的电压,“ν”是C2上的电压,则其也是“ν”)。当开关设备Ql和Q3两者导通时,在M2LC单元的两个端子之间存在电SVa (如果这是Cl上的电压,则其是“2v”)。以这种方式,图11的M2LC单元的输出电压特性基本上与图10的M2LC单元的输出电压特性相同,因为它通过用于产生“ν”的两个独立开关模式产生三个电压电平(例如,零伏特、“ν”伏特和“2v”伏特),但是,它使用传导在M2LC单元的输出端子处产生的基本输出电流的单个存储电容器Cl来这样做。电容器C2是电荷/泵电容器或所谓的飞跨电容器,其以开关设备Q1-Q4的开关频率操作并因此只看到与开关频率相关联的谐波电流。
[0037]返回到图7,整流器系统12包括多个串联连接的整流器16。虽然在图7中示出了三个整流器16,但是,可以理解,整流器系统12可以包括任意数量的串联连接的整流器16。整流器16可以是任何合适类型的整流器(例如,2象限、4象限、基于二极管的、基于IGBT的以及其组合)。例如,整流器16可以具体化为图3和图4所示出的整流器中的任何一个。根据各实施例,到这些整流器16的3相AC电源可以从多个次级绕组相移隔离变压器(为了清楚起见,在图7中未示出)提供。根据各实施例,整流器系统是可互换的整流器系统12,因为整流器16中的任何一个可以换成不同类型的整流器(例如,将2象限整流器换成4象限整流器),以满足给定应用的要求。
[0038]如图7所示,整流器系统12的一个端子(例如,串联连接的整流器16中的一个的一个端子)连接到M2LC系统10的正的DC总线18,整流器系统12的另一个端子(例如,串联连接的整流器16中的另一个的一个端子)连接到M2LC系统10的负的总线20。整流器系统12将适用的DC电压提供到M2LC系统10的相应的正的和负的DC总线18、20。取决于使用的整流器16的类型,两象限(二极管)或四象限(IGBT)功率可以在两象限或四象限模式下流过M2LC系统10。可以理解,根据各实施例,整流器系统12可以被配置以便,在制造期间或在整流器系统12在现场被置于M2LC系统10的操作中之后的任何时候,基于二极管的整流器可以容易地被基于IGBT的整流器替换,而基于IGBT的整流器可以容易地被替换。
[0039]图12示出了 DC链路系统30的各实施例。DC链路系统30包括源转换器、高电压DC链路以及负载转换器。DC链路系统30可以被用来通过高DC电压链路在长距离上传输功率。如图12所示,DC链路系统30可以将遥测(telemetry)系统与高电压DC链路一起使用,以在源和负载转换器之间实现通信而无需使用单独的信息链路。根据各实施例,源转换器可以被具体化为M2LC桥、基于二极管的整流器的串联连接、或基于IGBT的整流器的串联连接。根据各实施例,负载转换器可以包括两电平M2LC单元,三电平M2LC单元和/或其组合。例如,负载转换器可以包括图8-图11所示出的M2LC单元中的任一种。
[0040]在操作中,DC链路系统30的高电压DC链路像电流源那样运转,并且高电压DC链路上的故障使由源或负载(或者两者)所提供的能量流动,但是,不会使由每一个两端子M2LC单元中的分布式能量存储器所提供的能量流动。因此,可以理解,可以使用标准AC保护断路器来从AC侧的故障去除能量,并且没有高电流故障电流从M2LC单元的存储电容器流向故障。此外,由于每一个M2LC单元是个体电压源,所以DC链路电感的高位值将不会在此电感和M2LC单元的单元电容之间产生谐振。因此,可以使用非常长的距离的高压线缆,同时由于间隔考虑对控制所产生的电感没有特定限制。
[0041]可以理解,有许多应用可以使用图12的DC链路系统30来控制并在AC源和负载之间传输功率。负载可以是诸如马达或发电机之类的机械原动机(prime mover)或者可以是现有的多相AC电源系统。DC链路系统30特别适用于这样的应用:其中源和负载之间的距离大(需要高电压DC以降低传输成本),并且应用需要高可用性(添加冗余两端子M2LC单元以提高可用性的能力)。
[0042]例如,DC链路系统30特别适用于下列应用:
[0043].风力发电应用,其中,每一个涡轮机的外壳(pod)可以包括M2LC逆变器,并且风电场中的所有外壳可以通过单个高电压DC链路连接。这些系统一般将在源和负载两侧使用M2LC逆变器。
[0044].潮汐发电应用,其中,大量的发电机浸在海面下面的固定位置或可移动位置中,以便从驱动泵/发电机的水流或潮汐前端变化直接提取潮汐能。类似于风力发电应用,这些发电机可以通过单个DC链路来链接到主M2LC逆变器。这些应用一般将在源和负载两侧使用M2LC逆变器。
[0045].潜水泵应用,其中,与泵马达一起的M2LC逆变器与供应功率的中心平台有较长距离。在这些应用中,源可以包括通过多绕组相移变压器馈电的两象限整流器,而非M2LC单元系统。
[0046].ID和FD火力发电应用或核电站发电重新计算泵应用,其可以使用从单个DC链路馈电的多个马达/风扇或马达/泵,单个DC链路可以通过下列各项来供电:(I)通过多绕组相移变压器来馈电的两象限整流器或四象限整流器,或(2)通过(通常)单个三相源来馈电的M2LC逆变器。
[0047]?船舶推进系统应用,其可以包括供电M2LC逆变器的单个高频AC发电机,M2LC逆变器供电高电压/高功率DC链路,该链路可以用于各种主驱动器或推进器应用,其中,每一个驱动器或推进器也可以是AC或高频AC机器。
[0048]图13示出了 M2LC系统40的各实施例。M2LC系统40可以类似于上文所描述的M2LC系统10,和/或类似于DC链路系统30的源侧转换器和/或负载侧转换器,但是,不同之处在于,M2LC系统40的M2LC单元14中的一个或多个耦接到电能存储系统。能量存储系统是通常存在于“传统的” M2LC单元中的任何电能存储设备(例如,电容器)的补充,并可以被控制以便从M2LC单元的DC和/或AC连接吸收能量和/或向它们提供能量。根据各实施例,能量存储系统包括多个能量存储子系统42,并且M2LC系统40中所包括的M2LC单元14中的任何一个或全部可以耦接到对应的能量存储子系统42和/或与其集成在一起。能量存储子系统42中的每一个可以包括一个或多个诸如(例如)电池之类的能量存储设备。如图13所示,可以利用每一个M2LC单元14本地的电池存储器和DC-DC转换器来配置M2LC单元14中的任何一个或全部。虽然图13中的分解图所示出的M2LC单元14是两电平M2LC单元,但是,可以理解,图13的M2LC系统40可以包括两电平M2LC单元,三电平M2LC单元和/或其组合。例如,M2LC系统40可以包括图8-图11所示出的M2LC单元中的任一种。虽然在图13中能量存储系统被示为耦接到“负载侧”模块化多电平转换器系统,但是,可以理解,根据其他实施例,能量存储系统耦接到“源”侧模块化多电平转换器系统。
[0049]许多电机械能系统(例如,马达或发电机应用)需要或可以利用能量存储系统。在马达应用的情况下,可以使用能量存储系统来在源功率损失期间提供重要的穿越(ridethru)。在发电机应用的情况下,可以使用能量存储系统来在机械能损失(例如,在风电场应用中风的损失)期间提供连续的电能。
[0050]根据各实施例,通过配置带有电池存储器的M2LC单元,可以通过在M2LC单元自身内或邻近M2LC单元自身 分布电池存储器以及相关联的功率处理,可以消除与单个电池存储系统相关联的单个故障点。这可以通过对于M2LC单元和M2LC系统40来应用旁路和冗余特征来完成。
[0051]对于图13中的分解图所示出的M2LC单元14,DC-DC转换器是当来自DC源/负载或AC马达/发电机的额外电能或机械能可用时能够将充电电流从M2LC电容器(通常较高的电压)传输到合适的电池(通常较低的电压)的双向功率转换设备。相反,当需要来自DC源/负载或AC马达/发电机的电能或机械能时,此同一 DC-DC转换器将递送能量(来自电池的放电电流)。虽然为了简洁起见未示出,但是,可以理解,此DC-DC转换器可以具有将在本地进行或来自中心枢纽控制的用以允许至少下列三个操作模式的相关联的控制:
[0052].利用对于充电或放电电流的限流控制,对各M2LC电容器的稳压;
[0053].利用M2LC电容器的电压限制控制,使充电或放电电流的电流稳定;以及
[0054]?利用上文所描述的电流和电压限制,使充电或放电能量的功率稳定。
[0055]与每一个M2LC单元相关联的电池可以基于任何合适的技术。例如,根据各实施例,电池可以基于钥;氧化还原液流(Vanadium Redox Flow)技术,其中,每一个M2LC单元将包含电极和膜堆(membrane stack),其中通过一组大中心电解槽具有实际体积(bulk)电存储能量,这些电解槽通过管道向M2LC单元/电池膜提供+和-钒离子。[0056]类似地,根据各实施例,图7的M2LC系统10中所包括的M2LC单元14、图12所示出的源或负载M2LC转换器或图12的DC链路系统30中的任何一个或全部可以耦接到上文所描述的能量存储系统和/或与其集成在一起。
[0057]在上面的描述中,没有任何内容旨在将本发明限制到任何特定材料、几何形状或元件的朝向。许多部件/朝向替换被预见到落在本发明的范围内,并且对所属领域的技术人员将是清楚的。此处所描述的各实施例只是作为示例来呈现的,不应该被用来限制本发明的范围。
[0058]虽然在本申请中本发明是通过特定实施例来描述的,但是,那些精通本技术的普通人员,根据此处的教导,能够在不偏离所主张发明的精神或超过其范围的情况下生成额外的实施例和修改。相应地,应该理解,此处的附图和描述只用于促进对本发明的理解,并不应该解释为限制其范围。
【权利要求】
1.一种模块化多电平转换器系统,包括: 多个串联连接的模块化多电平转换器单元,其中,模块化多电平转换器单元中的至少一个模块化多电平转换器单元是三电平模块化多电平转换器单元,并且其中,多个串联连接的模块化多电平转换器单元通过DC总线耦接到整流器系统。
2.根据权利要求1所述的系统,其中,至少一个其他模块化多电平转换器系统耦接到整流器系统。
3.根据权利要求1所述的系统,其中,整流器系统包括多个串联连接的整流器。
4.根据权利要求1所述的系统,其中,整流器系统是可互换的整流器系统。
5.根据权利要求1所述的系统,其中,整流器系统包括至少一个基于二极管的整流器。
6.根据权利要求1所述的系统,其中,整流器系统包括至少一个基于绝缘栅双极晶体管的整流器。
7.根据权利要求1所述的系统,还包括:耦接到模块化多电平转换器系统中的一个或多个模块化多电平转换器系统的补充且可控的电能存储系统。
8.根据权利要求7所 述的系统,其中,所述一个或多个模块化多电平转换器系统中的模块化多电平转换器单元中的至少一个模块化多电平转换器单元包括: 电池存储设备;以及 耦接到电池存储设备的DC到DC转换器。
9.根据权利要求7所述的系统,其中,能量存储系统包括多个能量存储子系统,其中: 多个能量存储子系统中的第一能量存储子系统耦接到第一串联连接的模块化多电平转换器单元;以及 多个能量存储子系统中的第二能量存储子系统耦接到第二串联连接的模块化多电平转换器单元。
10.根据权利要求9所述的系统,其中,多个能量存储子系统中的第一能量存储子系统包括: 电池存储设备;以及 耦接到电池存储设备的DC到DC转换器。
11.根据权利要求1所述的系统,还包括:耦接到多个串联连接的模块化多电平转换器单元的遥测系统。
12.—种模块化多电平转换器系统,包括: 多个串联连接的模块化多电平转换器单元;以及 耦接到模块化多电平转换器单元中的一个或多个模块化多电平转换器单元的补充且可控的电能存储系统,其中,电能存储系统被配置成: 从下列各项中的至少一项接收能量: 模块化多电平转换器系统的AC端子;以及 模块化多电平转换器系统的DC总线;并且 向下列各项中的至少一项提供能量: 模块化多电平转换器系统的AC端子;以及 模块化多电平转换器系统的DC总线。
13.根据权利要求12所述的系统,其中,模块化多电平转换器单元中的至少一个模块化多电平转换器单元是两电平模块化多电平转换器单元。
14.根据权利要求12所述的系统,其中,模块化多电平转换器单元中的至少一个模块化多电平转换器单元是三电平模块化多电平转换器单元。
15.根据权利要求12所述的系统,其中,模块化多电平转换器单元中的至少一个模块化多电平转换器单元包括: 电池存储设备;以及 耦接到电池存储设备的DC到DC转换器。
16.根据权利要求12所述的系统,其中,能量存储系统包括多个能量存储子系统,其中: 多个能量存储子系统中的第一能量存储子系统耦接到多个串联连接的模块化多电平转换器单元中的第一模块化多电平转换器单元;以及 多个能量存储子系统中的第二能量存储子系统耦接到多个串联连接的模块化多电平转换器单元中的第二模块化多电平转换器单元。
17.根据权利要求16所述的系统,其中,多个能量存储子系统中的第一能量存储子系统包括: 电池存储设备;以及 耦接到电池存储设备的DC到DC转换器。
18.根据权利要求12所述的系统,其中,模块化多电平转换器系统耦接到一个或多个其他模块化多电平转换器系统。
19.根据权利要求18所述的系统,其中,电能存储系统还被配置成: 从一个或多个其他模块化多电平转换器系统接收能量;以及 将能量提供到一个或多个其他模块化多电平转换器系统。
20.根据权利要求18所述的系统,还包括:耦接到模块化多电平转换器系统中的至少两个模块化多电平转换器系统的遥测系统。
【文档编号】H02M7/06GK103444066SQ201180060037
【公开日】2013年12月11日 申请日期:2011年11月4日 优先权日:2010年11月4日
【发明者】M·F·艾洛, D·M·克雷默, K·S·伯顿 申请人:柯蒂斯-赖特机电公司