并网型多回路低温余热发电系统的制作方法

文档序号:7361784阅读:168来源:国知局
并网型多回路低温余热发电系统的制作方法
【专利摘要】本发明公开了并网型多回路低温余热发电系统,通过有机郎肯循环方式将热量收集转换成机械能推动永磁同步发电机旋转产生交流电能,然后经过并网变流器并入大电网或者内部小电网或为独立负载供电。通过DSP浮点控制芯片TMS320F28335控制变流器的运行,通过上位机系统对整个系统进行实时监控和管理,处理系统中的故障问题,调节涡轮机的输出功率恒定。当电网故障时,仍能做出相应的处理。这种并网低温余热发电系统适合工厂废热、地热、太阳能等温度高于60℃的热源,具有动态调节速度快、能量传递效率高、能量可以双向流动、并网谐波电流小、功率因数高、发电机损耗小、效率高的特点,对余热的利用效率高的优点。
【专利说明】并网型多回路低温余热发电系统
【技术领域】
[0001]本发明涉及并网型多回路低温余热发电系统,属于电力电子变换器及控制技术、新能源及能源回收利用领域。
【背景技术】
[0002]近代工业文明的崛起和世界各国经济的发展都是以石化能源的利用为动力,然而地球上的石化能源是不可再生资源,随着近些年来人类的过渡开发和利用,这些能源逐渐枯竭,同时也带来了日益严重的环境问题。一方面,如何能找到一种新的清洁能源来代替石化能源,另一方面,如何提高现有能源的利用效率,成为各国新能源领域专家和科研技术人员研究的热点。我国地域辽阔,地热资源丰富,虽然现在,部分地热资源得到初步利用,但是由于温度低(小于200°C)、开发成本高,所以基本上只停留在直接利用层面(温泉等日常生活用),存在着能源利用效率低的缺点。与此同时,硫酸、水泥、玻璃、钢铁等制造工厂排放出大量废热、废气、废烟等余热资源丰富,大约占到工业总能耗量的20%。。根据余热载体的温度高低的不同,余热资源可以划分为三种形式:温度高于650°C的余热资源为高温余热,温度介于230°C -650°C之间的余热资源为中温余热,温度在230°C以下的余热资源为低温余热。目前,虽然高温(300°C以上)的余热已经得到利用,但是低温(200°C以下)的余热利用很少,且利用效率很低,这就使得一次能源的整体利用效率并不高。对于低温余热方面的回收利用,各国政府和能源公司投入了大量的人力和物力,旨在研发余热发电的新技术。“十二五”期间特别明确了节能减排的十项重点工程,其中余热余压资源的利用在节能改造工程中被重点提及。国家能源局编制的《2010热电联产发展规划及2020年远景目标》以及对容量大于1000KW余热电站实行无条件上网并给予优惠上网电价等一系列政策、措施的出台,为我国低温余热发电技术的研究和广泛应用提供了有利条件。
[0003]近几年直驱型永磁同步风力发电并网技术的飞速发展也给低温余热(地热)资源的利用提供了新的解决方案和技术支持。一方面,永磁同步电机以其控制简单、功率密度高、体积小的优点,逐渐在民用发电和驱动领域得到应用;另一方面,背靠背双PWM变流器拓扑结构的优点在风电并网得到了验证:这种变流器结构能量传递效率高、由于变流器将发电机与电网通过直流环节隔离开来,有利于低电压穿越技术和三相电网不对称运行的实现,而且能量可以双向流动,并网电流谐波小,功率因数高,同时发电机电流谐波小、功率因数高、效率高。
[0004]矢量控制技术在PWM变流器等电力电子变换中日益成熟,而且其静态误差小,动态响应速度快,谐波电流小的优点使其得到广泛应用,直取永磁同步风力发电机网侧控母线电压、机侧控有功功率的控制结构在背靠背双PWM变流器中广泛运用,并取得了很好的效果:机侧功率追踪容易实现,无功电流小,谐波畸变率低,转速适应范围宽;网侧电流谐波小,功率调节方便,功率因数高,能量可以双向流动。
[0005]DSP控制芯片不断更新换代,其计算速度和数据处理能力的提升,使高性能控制系统的实现成为可能。特别是TMS320F28335浮点型DSP芯片的出现,使得原本复杂的运算变得简单。

【发明内容】

[0006]本发明的目的在于对国内有机朗肯循环余热发电系统效率低的问题,提供一种高效的并网型多回路低温余热发电系统。
[0007]为了实现以上目的,本发明采用以下技术方案:包括蒸发器、膨胀机、冷凝器、工质泵、永磁同步发电机、机侧电抗器1、机侧电抗器I1、机侧变流器1、机侧变流器I1、直流母线1、直流母线I1、网侧变流器1、网侧变流器I1、LCL滤波器1、LCL滤波器I1、隔离变压器、电网、断路器1、断路器I1、出气调节阀、储气罐以及上位机管理系统;冷凝器的输出端通过工质泵连接到蒸发器;所述膨胀机拥有与蒸发器连接的膨胀机进口以及与冷凝器连接的膨胀机的出口 ;永磁同步发电机卧式安装时膨胀机被安装在前轴伸或后轴伸,立式安装时膨胀机被安装在上方,膨胀机固定在发电机轴伸上驱动转子旋转;永磁同步发电机设有两套三相绕组,绕组经过两组机侧电抗器I和机侧电抗器II,连接到机侧变流器I和机侧变流器II,经过直流母线I和直流母线II连接到网侧变流器I和网侧变流器II,经过LCL滤波器I和LCL滤波器I1、断路器I和断路器II及三相隔离变压器接入电网;永磁同步发电机在膨胀机的拖动下发出交流电能,经过机侧变流器I和机侧变流器II变换成直流电能,然后经过网侧变流器I和网侧变流器II转换成与电网同频率、同幅值的交流电能,并入电力系统大电网、并入工厂内部的小电网或为独立负载提供电能。
[0008]永磁同步发电机采用膨胀机驱动,以高压介质蒸汽为动力。
[0009]所述永磁同步发电机卧式安装时膨胀机被安装在前轴伸或后轴伸,立式安装时膨胀机被安装在上方,直接用轴伸处的对称双平键传递能量,驱动发电机转子旋转,对外输出电能。
[0010]所述永磁同步发电机可选定一套、两套或多套独立三相绕组,通过背靠背双PWM变流器形成单个、两个或多个电能传输回路,经隔离变压器并入电网。所述永磁同步发电机可以由感应发电机、电励磁同步发电机、永磁直流无刷发电机、开关磁阻发电机代替。
[0011]所述机侧变流器I和机侧变流器II采用基于转矩电流转速比最大的功率追踪控制方式或转子磁链定向的转速电流双闭环的矢量控制方式;网侧变流器I和网侧变流器II采用基于电压定向电压电流双闭环矢量控制策略,通过锁相环获取电网相位和频率信息。
[0012]所述机侧变流器I和机侧变流器II与网侧变流器I和网侧变流器II之间通过CAN通信获取对方当前时刻的状态、故障信息。
[0013]所述储气罐存储相等气压的低沸点介质蒸汽,通过所述上位机系统根据需要实时调节出气调节阀,使膨胀机的输出功率维持恒定。
[0014]本发明与现有技术相比,具有如下优点:对于工厂余热、地质能、太阳能等低温热源,通过本系统收集转换成与电网同频率、同幅值的交流电能,既可以并入电力系统大电网,也可以并入工厂内部的小电网或者换成其他独立负载需要的频率和电压,具有很强的抗干扰和低电压穿越能力。永磁同步发电机采用互补独立双绕组结构不仅能提高发电机的功率密度,减小发电机的体积,而且能消除高次谐波对转子发热的影响。由于采用背靠背双PWM变流器并网结构,变流器控制软件采用网侧控母线的双闭环矢量控制、机侧采用最大功率追踪捕获涡轮机的最大功率,因此能量传递效率高达95%以上,能量可以双向流动,机侧电流谐波小,发电机效率高,网侧谐波电流小,畸变率低,功率因数高的特点。由于变流系统采用并列的背靠背双PWM结构,所以容错能力强,当一台变流器故障时,另一台变流器仍能继续运行,方便维护。由于采用了上位机管理系统,对系统进行实时监测,所以能维持涡轮机的转速基本恒定,维持涡轮机的输出功率最大,同时因为可以将涡轮机的功率、转矩信息传递给变流器,所以变流器的最大功率追踪容易实现。由于采用了背靠背双PWM全功率变换器,将永磁同步发电机与电网分开,有利于低电压穿越和电网不对称故障运行的实现。
【专利附图】

【附图说明】
[0015]图1并网型多回路低温余热发电系统结构总图;
图2并网型多回路低温余热发电并网系统图;
图中:蒸发器1、膨胀机2、冷凝器3、工质泵4、永磁同步发电机5、机侧电抗器I 6、机侧电抗器II 7、机侧变流器I 8、机侧变流器II 9、直流母线I 10、直流母线II 11、网侧变流器I 12、网侧变流器II 13、LCL滤波器I 14、LCL滤波器II 15、隔离变压器16、电网17、断路器
I18、断路器II 19、进气调节阀20、储气罐21、出气调节阀22。
【具体实施方式】
[0016]下面结合附图和【具体实施方式】对本发明的内容做进一步详细说明。
[0017]实施例:请参阅图1和图2所示,并网型多回路低温余热发电系统,包括蒸发器
1、膨胀机2、冷凝器3、工质泵4、永磁同步发电机5、机侧电抗器I 6、机侧电抗器II 7、机侧变流器I 8、机侧变流器II 9、直流母线I 10、直流母线II 11、网侧变流器I 12、网侧变流器
II13、LCL滤波器I 14、LCL滤波器II 15、隔离变压器16、电网17、断路器I 18、断路器II 19、出气调节阀20、储气罐21以及上位机管理系统;冷凝器3的输出端通过工质泵4连接到蒸发器I ;所述膨胀机2拥有与蒸发器I连接的膨胀机2进口以及与冷凝器3连接的膨胀机2的出口 ;永磁同步发电机5卧式安装时膨胀机2被安装在前轴伸或后轴伸,立式安装时膨胀机2被安装在上方,直接用轴伸处的对称双平键传递能量,驱动发电机转子旋转,对外输出电能;永磁同步发电机5设有两套三相绕组,绕组经过两组机侧电抗器I 6和机侧电抗器
II7,连接到机侧变流器I 8和机侧变流器II 9,经过直流母线I 10和直流母线II 11连接到网侧变流器I 12和网侧变流器II 13,经过LCL滤波器I 14和LCL滤波器II 15、断路器I 18和断路器II 19及三相隔离变压器16接入电网17;永磁同步发电机5在膨胀机2的拖动下发出交流电能,经过机侧变流器I 8和机侧变流器II 9变换成直流电能,然后经过网侧变流器I 12和网侧变流器II 13转换成与电网同频率、同幅值的交流电能,并入电力系统大电网、并入工厂内部的小电网或为独立负载提供电能。
[0018]本实施例工作过程如下:工厂的废热或地热等低温热源,温度在60°以上以热水的形式进入蒸发器后加热低沸点的介质,液态低沸点介质在受热后变成气态,经管道推动膨胀机2旋转,同时带动永磁同步发电机5与膨胀机2 —起旋转,推动完膨胀机2的气态介质经管道回到冷凝器3,在冷水带走气态介质的热量后,气态介质变成液态,液态介质再工质泵4的压力下回到蒸发器I中继续循环。同时永磁同步发电机5在膨胀机2的拖动下,产生交流电能,经过所述永磁同步发电机5采用背靠背双PWM变流器结构,经隔离变压器16并入电力系统大电网、并入工厂内部的小电网或为独立负载提供电能。[0019]上位机管理系统完成对系统状态及相关参数的实时监测,从机侧变流器I 6和机侧变流器II 7的控制器获取当前时刻发电机的转速,并根据实时检测到的热源温度及流量、工质泵4的压力、发电机的转速等信息计算出膨胀机2的输出功率(或输出转矩)反馈给机侧变流器6 I和机侧变流器II 7,以便机侧变流器I 6和机侧变流器II 7及时调整输出功率,跟踪膨胀机2的最大功率。机侧变流器I 8和机侧变流器II 9采用基于转矩电流转速比最大的功率追踪控制方式。采用电压电流双闭环控制策略,同时,上位机通过调节流量、压力等参数,使得膨胀机机2的转速维持在高速高效区域,并使其基本稳定。机侧变流器I 8和机侧变流器II 9与网侧变流器I 12和网侧变流器II 13之间通过CAN通信获取对方当前时刻的状态信息。
[0020]直流环节加能量卸放电路,在电网17电压跌落时,低温余热发电变流系统能维持一段时间与电网电压连接不解列,而且向电网电压提供一定的无功功率帮助电网17恢复。
[0021]上位机管理系统通过检测计算出膨胀机2的实时输出数据,当膨胀机的实时输出功率超过设定很多时,所述储气罐21存储相等气压的低沸点介质蒸汽,通过所述上位机系统根据需要实时调节出气调节阀20,使得涡轮机的输出功率维持恒定。
[0022]上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含与本案的专利范围中。
【权利要求】
1.并网型多回路低温余热发电系统,其特征在于:包括蒸发器(I)、膨胀机(2)、冷凝器(3)、工质泵(4)、永磁同步发电机(5)、机侧电抗器I (6)、机侧电抗器II (7)、机侧变流器I⑶、机侧变流器II (9)、直流母线I (10)、直流母线II (11)、网侧变流器I (12)、网侧变流器II (13)、LCL滤波器I (14)、LCL滤波器II (15)、隔离变压器(16)、电网(17)、断路器I(18)、断路器II (19)、出气调节阀(20)、储气罐(21)以及上位机管理系统;冷凝器(3)的输出端通过工质泵(4)连接到蒸发器(I);所述膨胀机(2)拥有与蒸发器(I)连接的膨胀机⑵进口以及与冷凝器⑶连接的膨胀机⑵的出口 ;永磁同步发电机(5)在膨胀机(2)的拖动下发出交流电能,经过机侧变流器I (8)和机侧变流器II (9)变换成直流电能,然后经过网侧变流器I (12)和网侧变流器II (13)转换成与电网同频率、同幅值的交流电能,并入电力系统大电网、并入工厂内部的 小电网或为独立负载提供电能。
2.根据权利要求1所述并网型多回路低温余热发电系统,其特征在于:永磁同步发电机(5)卧式安装时膨胀机(2)被安装在前轴伸或后轴伸,直接用轴伸处的对称双平键传递能量,驱动发电机转子旋转,对外输出电能。
3.根据权利要求1所述并网型多回路低温余热发电系统,其特征在于:所述永磁同步发电机(5)可选定一套、两套或多套独立三相绕组,通过背靠背双PWM变流器形成单个、两个或多个电能传输回路,经隔离变压器(16)并入电网(17);所述永磁同步发电机(5)可以由感应发电机、电励磁同步发电机、永磁直流无刷发电机、开关磁阻发电机代替。
4.根据权利要求1所述并网型多回路低温余热发电系统,其特征在于:所述机侧变流器I (8)和机侧变流器II (9)采用基于转矩电流转速比最大的功率追踪控制方式或转子磁链定向的转速电流双闭环的矢量控制方式;网侧变流器I (12)和网侧变流器II (13)采用基于电压定向电压电流双闭环矢量控制策略,通过锁相环获取电网相位和频率信息。
5.根据权利要求1所述并网型多回路低温余热发电系统,其特征在于:所述机侧变流器I (8)和机侧变流器II (9)与网侧变流器I (12)和网侧变流器II (13)之间通过CAN通信获取对方当前时刻的状态、故障信息。
6.根据权利要求1所述并网型多回路低温余热发电系统,其特征在于:所述储气罐(21)存储相等气压的低沸点介质蒸汽,通过上位机系统根据需要实时调节出气调节阀(20),使膨胀机(2)的输出功率维持恒定。
【文档编号】H02J3/38GK104037796SQ201310748900
【公开日】2014年9月10日 申请日期:2013年12月31日 优先权日:2013年12月31日
【发明者】黄晟, 张文娟, 王家堡, 廖武 申请人:湖南齐力达电气科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1