环保水位监测装置制造方法

文档序号:7374978阅读:232来源:国知局
环保水位监测装置制造方法
【专利摘要】本实用新型公开了一种环保水位监测装置,属于太阳能应用领域,包括太阳能电池板、蓄电池、关断电路、充电切换电路、第一电压检测模块、升压控制电路、稳压电路、第二电压检测模块、电量检测电路和超声波水位计,本实用新型缩短了充电时间,提高太阳能电池板向蓄电池充电的效率,能够提供不同电压给水位监测装置的不同模块,本实用新型保证了水位监测装置的使用时间。
【专利说明】环保水位监测装置
【技术领域】
[0001]本实用新型属于太阳能应用领域,特别是涉及一种环保水位监测装置。
【背景技术】
[0002]太阳能发电是利用半导体界面的光生伏特效应将光能直接转变为电能的一种技术。光生伏特效应简称“光伏效应”,指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。光伏发电的优点是较少受地域限制,因为阳光普照大地,光伏系统还具有无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。
[0003]利用太阳能发电系统向蓄电池进行蓄能充电是常用技术,传统的太阳能经过光能到电能的转换后,经过太阳能控制器向蓄电池进行充电,或者电能经过太阳能控制器和逆变器后向交流负载供电,或者太阳能电池板直接向直流负载供电,目前市面上在使用的太阳能向蓄电池充电在蓄电池电量充足后只要用户没有切断充电器输入电源,充电器将会一直向电池充电,这样会缩短充电器的寿命,增加了充电器的故障率,容易引发其他不安全事故,停止太阳能对蓄电池充电时,应该先断开充电控制器与太阳能电池板之间的连接,后断开充电控制器与蓄电池之间的连接,否则容易引发充电器故障。现有技术中还存在浪费电能的缺点。
[0004]同时,太阳能电池板的电压一旦低于蓄电池电压,充电过程将停止,直到太阳能电池板的电源恢复,在日常生活中,由于光照不停变化,因此对蓄电池的充电也是极不稳定,如果对蓄电池的充电过于频繁,容易减少蓄电池寿命,并且极大的降低了充电效率。由于以上缺点,导致了太阳能充电的蓄电池不能被广泛的应用在各个领域内,限制了科学技术的进步。
实用新型内容
[0005]有鉴于现有技术的上述缺陷,本实用新型所要解决的技术问题是提供一种能够保证电能供给的水位监测装置。
[0006]为实现上述目的,本实用新型提供了一种环保水位监测装置,包括太阳能电池板、蓄电池和超声波水位计;所述太阳能电池板通过关断电路连接充电切换电路的第一输入端,所述关断电路与所述充电切换电路之间并联有第一电压检测模块,所述第一电压检测模块用于检测太阳能电池板的输出电压,所述第一电压检测模块的输出端连接所述充电切换电路的第二输入端;所述充电切换电路的第一电源输出端连接升压控制电路的输入端,所述充电切换电路的第二电源输出端连接所述蓄电池的充电输入端,所述充电切换电路的第三电源输出端连接稳压电路的输入端,所述稳压电路分别连接所述关断电路的电源输入端和升压控制电路的第一电源输入端,所述充电切换电路的信号输出端连接所述升压控制电路的信号输入端;所述升压控制电路的输出端连接蓄电池的充电输入端,所述蓄电池并联有第二电压检测模块,所述第二电压检测模块用于检测蓄电池两端电压,所述第二电压检测模块的输出端连接所述充电切换电路的第三输入端;所述蓄电池连接有电量检测电路,所述电量检测电路用于检测所述蓄电池的电量,所述电量检测电路的控制信号输出端连接所述关断电路的控制信号输入端。
[0007]所述超声波水位计的输出端连接模数转换电路的信号输入端,所述模数转换电路的信号输出端连接第二处理器的信号输入端,所述第二处理器与存储模块双向连接,所述第二处理器通过串口转换连接模块与移动通信模块双向连接;所述蓄电池的第一输出端连接所述超声波水位计的电源输入端,所述蓄电池的第二输出端连接第一电压转换电路的输入端,所述蓄电池的第三输出端连接第二电压转换电路的输入端;所述第一电压转换电路的第一输出端连接所述模数转换电路的电源输入端,所述第一电压转换电路的第二输出端连接所述移动通信模块的电源输入端;所述第二电压转换电路的第一输出端连接所述第二处理器的电源输入端,所述第二电压转换电路的第二输出端连接所述串口转换连接模块的电源输入端,所述第二电压转换电路的第三输出端连接所述存储模块的电源输入端;
[0008]所述太阳能电池板的电源输出端通过所述关断电路的第一电磁继电器的开关末端连接所述充电切换电路;所述关断电路还包括第一隔离二极管;所述第一隔离二极管的负极连接稳压二极管的负极;所述稳压二极管的正极通过第一电容连接第一 NPN型三极管的发射极;所述第一 NPN型三极管的发射极接地;所述第一 NPN型三极管的集电极通过所述第一电磁继电器的电磁线圈连接第二隔离二极管的负极;所述第二隔离二极管的正极连接有第一电阻;所述第一 NPN型三极管的集电极与所述第一电磁继电器的电磁线圈之间并联有泄放二极管;所述泄放二极管的正极连接所述第一 NPN型三极管的集电极;所述泄放二极管的负极通过第二电容接地;所述第一 NPN型三极管的基极通过第二电阻连接PNP型三极管的集电极;所述PNP型三极管的发射极连接所述第一隔离二极管的负极;所述第一NPN型三极管的基极连接第第三隔离二极管的负极;所述第第三隔离二极管的正极连接第
二NPN型三极管的发射极;所述第二 NPN型三极管的集电极通过第三电阻连接所述第一隔离二极管的正极;所述PNP型三极管的基极通过第四电阻连接所述第一隔离二极管的正极;所述第一隔离二极管的正极连接所述稳压电路的第二输出端;所述第二隔离二极管通过第一电阻连接所述稳压电路的第二输出端;所述第二 NPN型三极管的基极连接所述电量检测电路的输出端。
[0009]所述充电切换电路包括比较器,所述比较器的第一输入端连接所述第一电压检测模块的输出端,所述比较器的第二输入端连接所述第二电压检测模块的输出端,所述比较器的输出端连接反向器的输入端,所述反向器的输出端连接第一场效应晶体管的栅极,所述第一场效应晶体管的源极通过所述第一电磁继电器的开关末端连接所述太阳能电池板的正极,所述第一场效应晶体管的漏极通过第一防反二极管连接所述升压控制电路的第二电源输人端;所述比较器的输出端还连接第二场效应晶体管的栅极,所述第二场效应晶体管的源极通过所述第一电磁继电器的开关末端连接所述太阳能电池板的正极,所述第二场效应晶体管的漏极通过第二防反二极管连接所述蓄电池的电源输入端;所述比较器的输出端还连接所述升压控制电路的信号输入端;当太阳能电池板的输出电压大于蓄电池两端的电压时,比较器输出电平信号控制第二场效应晶体管导通,太阳能电池板直接向蓄电池充电,当太阳能电池板的输出电压低于蓄电池两端的电压时,比较器输出的电平信号经反向器反向后输出到第一场效应晶体管,使其导通,太阳能电池板输出的电能进行升压后再向蓄电池充电。
[0010]所述升压控制电路包括第一处理器、第一电感和第三电容,所述第一处理器的信号输入端连接所述比较器的输出端,所述稳压电路还向所述第一处理器供电;所述第一场效应晶体管的漏极通过第一防反二极管连接所述第一电感的一端,所述第一电感的另一端依次通过第二电感和第一二极管连接所述蓄电池的正极;所述第二电感和第一二极管并联有第三电感和第二二极管;所述第三电感的一端连接在所述第一电感与第二电感之间的电路上,所述第三电感的另一端通过第二二极管连接在所述第一二极管与蓄电池之间的电路上,所述第二电感与所述第一二极管之间的电路通过第二电磁继电器连接太阳能电池板的负极,所述第一处理器的第一输出端连接所述第二电磁继电器的控制信号输入端;所述第三电感和第二二极管之间的电路通过第三电磁继电器连接太阳能电池板的负极,所述第一处理器的第二输出端连接所述第三电磁继电器的控制信号输入端;所述第三电容一端连接在所述第一二极管与蓄电池正极之间的电路上,所述第三电容的另一端连接太阳能电池板的负极并通过所述第三电磁继电器的开关末端连接所述第三电感和第二二极管之间的电路;所述第三电容两端并联有电阻;所述蓄电池的负极连接所述太阳能电池板的负极。
[0011 ] 采用以上技术方案,充电切换电路采集第一电压检测模块和第二电压检测模块输出的电压信号,并根据比较两个接收到的电压信号,输出电平信号来控制电源线路的导通,使得当太阳能电池板的输出电压大于蓄电池电压时,太阳能电池板直接向蓄电池供电,当太阳能电池板的输出电压小于蓄电池电压时,充电切换电路将太阳能电池板的输出电源经过升压控制电路进行升压后再向蓄电池充电,以此实现了缩短充电时间,提高太阳能电池板向蓄电池充电的效率。同时,在蓄电池充满电后,电量检测电路输出控制信号给关断电路断开太阳能电池板和充电切换电路之间的连接,增加了充电器的寿命,降低了充电器的故障率,同时节约电能,环保且经济。由于电源供给的稳定高效,使得本实用新型能够长时间持续工作。
[0012]为了进一步的提高充电效率,所述太阳能电池板设置在相变蓄能调温材料板上,所述太阳能电池板的背光面与所述相变蓄能调温材料板贴合。采用以上技术方案,当光照温度较高时相变蓄能调温材料板可将光能吸收并存储起来,一旦当光照温度下降低于太阳能电池板光电转换温度时,会释放储存的能量保证太阳能电池板正常进行光电转换,大大提高了太阳能电池板的光电转换效率,从而促进了太阳能电池板向蓄电池充电的效率。
[0013]进一步的,为了显示蓄电池和太阳能电池板的电压情况,以及向本太阳能充电控制系统发送控制指令,本实用新型还包括触摸屏,所述第二处理器与所述触摸屏双向连接。
[0014]进一步的,本实用新型还包括语音芯片;所述第二处理器的第三输出端连接所述语音芯片的输入端,所述语音芯片的输出端通过滤波电路连接喇叭的信号输入端。采用以上技术方案,本实用新型能够根据检测水位值的不同发出语音提示。
[0015]较佳的,所述超声波水位计为气介式超声波水位计。
[0016]较佳的,所述串口转换连接模块为RS-232串口通信电平接口转换电路。
[0017]较佳的,所述移动通信模块为GPRS通信模块。
[0018]本实用新型的有益效果是:本实用新型缩短了充电时间,提高太阳能电池板向蓄电池充电的效率,能够提供不同电压给水位监测装置的不同模块,本实用新型保证了水位监测装置的使用时间。
【专利附图】

【附图说明】
[0019]图1是本实用新型的电路原理示意图。
[0020]图2是本实用新型蓄电池充电的具体电路连接示意图。
【具体实施方式】
[0021]下面详细描述本实用新型的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
[0022]在本实用新型的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底” “内”、“外”等指示的方位或位置关系为基于附
图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
[0023]在本实用新型的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。下面结合附图和实施例对本发明作进一步说明:
[0024]如图1和图2所示,一种环保水位监测装置,包括太阳能电池板1、蓄电池2和超声波水位计111 ;所述太阳能电池板I通过关断电路3连接充电切换电路4的第一输入端,所述关断电路3与所述充电切换电路4之间并联有第一电压检测模块5,所述第一电压检测模块5的信号输出端连接所述充电切换电路4的第二输入端;所述充电切换电路4的第一电源输出端连接升压控制电路6的输入端,所述充电切换电路4的第二电源输出端连接所述蓄电池2的充电输入端,所述充电切换电路4的第三电源输出端连接稳压电路7的输入端,所述稳压电路7分别连接所述关断电路3的电源输入端和升压控制电路6的第一电源输入端,所述充电切换电路4的信号输出端连接所述升压控制电路6的信号输入端;所述升压控制电路6的输出端连接蓄电池2的充电输入端,所述蓄电池2并联有第二电压检测模块8,所述第二电压检测模块8的信号输出端连接所述充电切换电路4的第三输入端;所述蓄电池2连接有电量检测电路9,所述电量检测电路9用于检测所述蓄电池2的电量,所述电量检测电路9的控制信号输出端连接所述关断电路3的控制信号输入端;所述超声波水位计111的输出端连接模数转换电路112的信号输入端,所述模数转换电路112的信号输出端连接第二处理器113的信号输入端,所述第二处理器113与存储模块118双向连接,所述第二处理器113通过串口转换连接模块114与移动通信模块115双向连接;所述蓄电池2的第一输出端连接所述超声波水位计111的电源输入端,所述蓄电池2的第二输出端连接第一电压转换电路116的输入端,所述蓄电池2的第三输出端连接第二电压转换电路117的输入端;所述第一电压转换电路116的第一输出端连接所述模数转换电路112的电源输入端,所述第一电压转换电路116的第二输出端连接所述移动通信模块115的电源输入端;所述第二电压转换电路117的第一输出端连接所述第二处理器113的电源输入端,所述第二电压转换电路117的第二输出端连接所述串口转换连接模块114的电源输入端,所述第二电压转换电路117的第三输出端连接所述存储模块118的电源输入端;
[0025]所述太阳能电池板I的电源输出端通过所述关断电路3的第一电磁继电器10的开关末端连接所述充电切换电路4 ;所述关断电路3还包括第一隔离二极管Dl ;所述第一隔离二极管Dl的负极连接稳压二极管D2的负极;所述稳压二极管D2的正极通过第一电容Cl连接第一 NPN型三极管Ql的发射极;所述第一 NPN型三极管Ql的发射极接地;所述第
一NPN型三极管Ql的集电极通过所述第一电磁继电器10的电磁线圈连接第二隔离二极管D3的负极;所述第二隔离二极管D3的正极连接有第一电阻Rl ;所述第一 NPN型三极管Ql的集电极与所述第一电磁继电器10的电磁线圈之间并联有泄放二极管D4 ;所述泄放二极管D4的正极连接所述第一 NPN型三极管Ql的集电极;所述泄放二极管D4的负极通过第二电容C2接地;所述第一 NPN型三极管Ql的基极通过第二电阻R2连接PNP型三极管Q2的集电极;所述PNP型三极管Q2的发射极连接所述第一隔离二极管Dl的负极;所述第一 NPN型三极管Ql的基极连接第第三隔离二极管D5的负极;所述第第三隔离二极管D5的正极连接第二 NPN型三极管Q3的发射极;所述第二 NPN型三极管Q3的集电极通过第三电阻R3连接所述第一隔离二极管Dl的正极;所述PNP型三极管Q2的基极通过第四电阻R4连接所述第一隔离二极管Dl的正极;所述第一隔离二极管Dl的正极连接所述稳压电路7的第二输出端;所述第二隔离二极管D3通过第一电阻Rl连接所述稳压电路7的第二输出端;所述第
二NPN型三极管Q3的基极连接所述电量检测电路9的输出端;
[0026]所述充电切换电路4包括比较器11,所述比较器11的第一输入端连接所述第一电压检测模块5的信号输出端,所述比较器11的第二输入端连接所述第二电压检测模块8的信号输出端,所述比较器11的输出端连接反向器12的输入端,所述反向器12的输出端连接第一场效应晶体管13的栅极,所述第一场效应晶体管13的源极通过所述第一电磁继电器10的开关末端连接所述太阳能电池板I的正极,所述第一场效应晶体管13的漏极通过第一防反二极管14连接所述升压控制电路6的第二电源输人端;所述比较器11的输出端还连接第二场效应晶体管15的栅极,所述第二场效应晶体管15的源极通过所述第一电磁继电器10的开关末端连接所述太阳能电池板I的正极,所述第二场效应晶体管15的漏极通过第二防反二极管16连接所述蓄电池2的电源输入端;所述比较器11的输出端还连接所述升压控制电路6的信号输入端;
[0027]所述升压控制电路6包括第一处理器23、第一电感17和第三电容,所述第一处理器23的信号输入端连接所述比较器11的输出端,所述稳压电路7还向所述第一处理器23供电;所述第一场效应晶体管13的漏极通过第一防反二极管14连接所述第一电感17的一端,所述第一电感17的另一端依次通过第二电感18和第一二极管19连接所述蓄电池2的正极;所述第二电感18和第一二极管19并联有第三电感20和第二二极管21 ;所述第三电感20的一端连接在所述第一电感17与第二电感18之间的电路上,所述第三电感20的另一端通过第二二极管21连接在所述第一二极管19与蓄电池2之间的电路上,所述第二电感18与所述第一二极管19之间的电路通过第二电磁继电器22连接太阳能电池板I的负极,所述第一处理器23的第一输出端连接所述第二电磁继电器22的控制信号输入端;所述第三电感20和第二二极管21之间的电路通过第三电磁继电器24的开关末端连接太阳能电池板I的负极,所述第一处理器23的第二输出端连接所述第三电磁继电器24的控制信号输入端;所述第三电容25 —端连接在所述第一二极管19与蓄电池2正极之间的电路上,所述第三电容25的另一端连接太阳能电池板I的负极并通过所述第三电磁继电器24的开关末端连接所述第三电感20和第二二极管21之间的电路;所述第三电容电容25两端并联有电阻26 ;所述蓄电池2的负极连接所述太阳能电池板I的负极。
[0028]所述太阳能电池板I设置在相变蓄能调温材料板27上,所述太阳能电池板I的背光面与所述相变蓄能调温材料板27贴合。
[0029]还包括触摸屏28,所述二处理器113与所述触摸屏28双向连接。
[0030]还包括语音芯片29 ;所述第二处理器113的输出端连接所述语音芯片29的输入端,所述语音芯片29的输出端通过滤波电路31连接喇叭30的信号输入端。
[0031]所述超声波水位计111为气介式超声波水位计。
[0032]所述串口转换连接模块114为RS-232串口通信电平接口转换电路。
[0033]所述移动通信模块115为GPRS通信模块。
[0034]以上详细描述了本实用新型的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本实用新型的构思作出诸多修改和变化。因此,凡本【技术领域】中技术人员依本实用新型的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
【权利要求】
1.一种环保水位监测装置,包括太阳能电池板(I)、蓄电池(2)和超声波水位计(111);其特征在于:所述太阳能电池板(I)通过关断电路(3)连接充电切换电路(4)的第一输入端,所述关断电路(3)与所述充电切换电路(4)之间并联有第一电压检测模块(5),所述第一电压检测模块(5)的信号输出端连接所述充电切换电路(4)的第二输入端;所述充电切换电路(4)的第一电源输出端连接升压控制电路(6)的输入端,所述充电切换电路(4)的第二电源输出端连接所述蓄电池(2)的充电输入端,所述充电切换电路(4)的第三电源输出端连接稳压电路(7)的输入端,所述稳压电路(7)分别连接所述关断电路(3)的电源输入端和升压控制电路(6)的第一电源输入端,所述充电切换电路(4)的信号输出端连接所述升压控制电路(6)的信号输入端;所述升压控制电路(6)的输出端连接蓄电池(2)的充电输入端,所述蓄电池(2)并联有第二电压检测模块(8),所述第二电压检测模块(8)的信号输出端连接所述充电切换电路(4)的第三输入端;所述蓄电池(2)连接有电量检测电路(9 ),所述电量检测电路(9 )用于检测所述蓄电池(2 )的电量,所述电量检测电路(9 )的控制信号输出端连接所述关断电路(3)的控制信号输入端;所述超声波水位计(111)的输出端连接模数转换电路(112)的信号输入端,所述模数转换电路(112)的信号输出端连接第二处理器(113)的信号输入端,所述第二处理器(113)与存储模块(118)双向连接,所述第二处理器(113)通过串口转换连接模块(114)与移动通信模块(115)双向连接;所述蓄电池(2 )的第一输出端连接所述超声波水位计(111)的电源输入端,所述蓄电池(2 )的第二输出端连接第一电压转换电路(116)的输入端,所述蓄电池(2)的第三输出端连接第二电压转换电路(117)的输入端;所述第一电压转换电路(116)的第一输出端连接所述模数转换电路(112)的电源输入端,所述第一电压转换电路(116)的第二输出端连接所述移动通信模块(115)的电源输入端;所述第二电压转换电路(117)的第一输出端连接所述第二处理器(113)的电源输入端,所述第二电压转换电路(117)的第二输出端连接所述串口转换连接模块(114)的电源输入端,所述第二电压转换电路(117)的第三输出端连接所述存储模块(118)的电源输入端; 所述太阳能电池板(1)的电源输出端通过所述关断电路(3 )的第一电磁继电器(10 )的开关末端连接所述充电切换电路(4);所述关断电路(3)还包括第一隔离二极管(Dl);所述第一隔离二极管(Dl)的负极连接稳压二极管(D2)的负极;所述稳压二极管(D2)的正极通过第一电容(Cl)连接第一 NPN型三极管(Ql)的发射极;所述第一 NPN型三极管(Ql)的发射极接地;所述第一 NPN型三极管(Ql)的集电极通过所述第一电磁继电器(10)的电磁线圈连接第二隔离二极管(D3)的负极;所述第二隔离二极管(D3)的正极连接有第一电阻(Rl);所述第一 NPN型三极管(Ql)的集电极与所述第一电磁继电器(10)的电磁线圈之间并联有泄放二极管(D4);所述泄放二极管(D4)的正极连接所述第一 NPN型三极管(Ql)的集电极;所述泄放二极管(D4)的负极通过第二电容(C2)接地;所述第一 NPN型三极管(Ql)的基极通过第二电阻(R2)连接PNP型三极管(Q2)的集电极;所述PNP型三极管(Q2)的发射极连接所述第一隔离二极管(Dl)的负极;所述第一 NPN型三极管(Ql)的基极连接第第三隔离二极管(D5)的负极;所述第第三隔离二极管(D5)的正极连接第二 NPN型三极管(Q3)的发射极;所述第二 NPN型三极管(Q3)的集电极通过第三电阻(R3)连接所述第一隔离二极管(Dl)的正极;所述PNP型三极管(Q2)的基极通过第四电阻(R4)连接所述第一隔离二极管(Dl)的正极;所述第一隔离二极管(Dl)的正极连接所述稳压电路(7)的第二输出端;所述第二隔离二极管(D3)通过第一电阻(Rl)连接所述稳压电路(7)的第二输出端;所述第二NPN型三极管(Q3)的基极连接所述电量检测电路(9)的输出端; 所述充电切换电路(4)包括比较器(11),所述比较器(11)的第一输入端连接所述第一电压检测模块(5)的信号输出端,所述比较器(11)的第二输入端连接所述第二电压检测模块(8)的信号输出端,所述比较器(11)的输出端连接反向器(12)的输入端,所述反向器(12)的输出端连接第一场效应晶体管(13)的栅极,所述第一场效应晶体管(13)的源极通过所述第一电磁继电器(10)的开关末端连接所述太阳能电池板(I)的正极,所述第一场效应晶体管(13)的漏极通过第一防反二极管(14)连接所述升压控制电路(6)的第二电源输人端;所述比较器(11)的输出端还连接第二场效应晶体管(15)的栅极,所述第二场效应晶体管(15)的源极通过所述第一电磁继电器(10)的开关末端连接所述太阳能电池板(I)的正极,所述第二场效应晶体管(15)的漏极通过第二防反二极管(16)连接所述蓄电池(2)的电源输入端;所述比较器(11)的输出端还连接所述升压控制电路(6)的信号输入端; 所述升压控制电路(6)包括第一处理器(23)、第一电感(17)和第三电容,所述第一处理器(23)的信号输入端连接所述比较器(11)的输出端,所述稳压电路(7)还向所述第一处理器(23)供电;所述第一场效应晶体管(13)的漏极通过第一防反二极管(14)连接所述第一电感(17)的一端,所述第一电感(17)的另一端依次通过第二电感(18)和第一二极管(19)连接所述蓄电池(2)的正极;所述第二电感(18)和第一二极管(19)并联有第三电感(20)和第二二极管(21);所述第三电感(20)的一端连接在所述第一电感(17)与第二电感(18 )之间的电路上,所述第三电感(20 )的另一端通过第二二极管(21)连接在所述第一二极管(19)与蓄电池(2)之间的电路上,所述第二电感(18)与所述第一二极管(19)之间的电路通过第二电磁继电器( 22)连接太阳能电池板(I)的负极,所述第一处理器(23)的第一输出端连接所述第二电磁继电器(22)的控制信号输入端;所述第三电感(20)和第二二极管(21)之间的电路通过第三电磁继电器(24)的开关末端连接太阳能电池板(I)的负极,所述第一处理器(23)的第二输出端连接所述第三电磁继电器(24)的控制信号输入端;所述第三电容(25)—端连接在所述第一二极管(19)与蓄电池(2)正极之间的电路上,所述第三电容(25)的另一端连接太阳能电池板(I)的负极并通过所述第三电磁继电器(24)的开关末端连接所述第三电感(20 )和第二二极管(21)之间的电路;所述第三电容电容(25 )两端并联有电阻(26);所述蓄电池(2)的负极连接所述太阳能电池板(I)的负极。
2.如权利要求1所述的环保水位监测装置,其特征在于:所述太阳能电池板(I)设置在相变蓄能调温材料板(27)上,所述太阳能电池板(I)的背光面与所述相变蓄能调温材料板(27)贴合。
3.如权利要求1或2所述的环保水位监测装置,其特征是:还包括触摸屏(28),所述二处理器(113)与所述触摸屏(28 )双向连接。
4.如权利要求3所述的环保水位监测装置,其特征在于:还包括语音芯片(29);所述第二处理器(113)的输出端连接所述语音芯片(29)的输入端,所述语音芯片(29)的输出端通过滤波电路(31)连接喇叭(30)的信号输入端。
5.如权利要求1所述的环保水位监测装置,其特征在于:所述超声波水位计(111)为气介式超声波水位计。
6.如权利要求1所述的环保水位监测装置,其特征在于:所述串口转换连接模块(114)为RS-232串口通信电平接口转换电路。
7.如权利要求 1所述的环保水位监测装置,其特征在于:所述移动通信模块(115)为GPRS通信模块。
【文档编号】H02J7/00GK203690976SQ201320824434
【公开日】2014年7月2日 申请日期:2013年12月15日 优先权日:2013年12月15日
【发明者】沈正华 申请人:重庆辉腾光电有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1