专利名称:微小型结构及其制造方法
技术领域:
本发明涉及微加工和微制造技术,具体涉及其基础不同于常规薄膜多晶硅制造技术的集成化微小型结构的构造。
微技术包罗了多种源自应用于半导体和集成电路制造过程的集成化微加工技术。这些技术包括化学蚀刻、反应离子蚀刻、氧化蚀刻、干式等离子体蚀刻、金属化、金属淀积、光刻、热扩散、离子注入和化学汽相淀积。近年来,微加工和微制造技术有利于大量地和低成本地用来提供各种有源和无源的微结构。在推荐的许多结构中,有致动器和传感器、微电机和各种其它器件,包括可动铰接、杠杆、齿轮、滑动器、弹簧及其它。
传统上,表面加工的微结构是以多晶硅为基础的。这些结构通常是用化学汽相淀积的多晶硅薄膜来制造的,薄膜被蚀刻以产生出1-2微米厚度数量级的各结构层。这类极小的厚度表现了以多晶硅为基础的结构的固有界限,它限制了它们在某些应用中的有效性。例如,已经生产出一些多晶硅微致动器,它们能产生出亚微牛顿量级的恒定力和亚毫微牛顿-米量级的力矩。这些器件可用来在兆赫的频率上移动微小物体。另一方面,有时希望移动具有1立方毫米尺寸的物体,或者还希望加速度值高达100G。为此,便需要有毫牛顿量级的力。在这种水平上生产微结构需要一种可提供出足够垂直或不共面的刚性的设计,而在加速度方向有非常低的机械刚度,使得用以移动一个物体的可用能量为最大。
美国专利U.S.PatentNo.5025346中提出了在一个保护系统中应用多晶硅薄膜技术的侧向驱动共振微致动器结构的构造。其加工是基于一种四掩模过程,其中,在一个磷硅玻璃(PSG)的保护层上用低压化学汽相淀积法(LPCVD)淀积上一个2微米厚了多晶硅层。经适当刻成图案之后,该保护层被溶解掉而产生出一个独立式的致动器结构和悬挂系统。这悬挂系统包含有许多多晶硅支梁,它们对致动器在结构平面内的高频侧向移动给以支持。然而,在仅为2微米的垂直厚度下,悬挂支梁只有很小的垂直刚度,即垂直于所希望的加速方向的刚度。这样低的垂直刚度会导致不希望有的大的垂直移动。幸而,随着给定方向上厚度的增加,在该方向上机械刚度的增加为厚度的三次方的函数。另一方面,在正交方向上刚度的增加则只是按线性变化的。
因此,在微结构的应用中,特别是在具有独立式结构的应用中,将希望增加垂直结构的厚度。这便需要有这样的制造方法,它们能克服常规薄膜淀积技术上的厚度限制。而且,由于在加速方向上结构厚度方面的制约,因此,需要有一些能制造出具有大的纵横比(即垂直与侧向厚度之比)结构的技术。尽管已经提出的各种各样的X射线技术来产生具有100微米量级厚度的结构,但这类厚度比所需的要大得多。确切些说,希望提供出这样的微结构,在纵横比约为10∶1下具有10微米量级的垂直厚度。
为此,本发明的一个基本目的和优点在于提供出一种用以制造出独立式的极小化结构的方法,该结构在约10∶1的纵横比下具有10微米量级(大约在10微米之间)的垂直厚度,因而不存在多晶硅薄膜技术中所固有的厚度约束。做到这一点是通过应用了另一种材料和一种先进的光刻与电镀技术,它容许厚结构的微加工,不需要牺牲最小共平面特性而可增加结构的厚度。在本发明的优选实施例中,采用了一种以保护系统为基础的方法,它包括选择衬底材料的步骤,在该衬底材料上沉积一层保护材料,并将保护层刻成图案,来规定一种形状。在保护层上淀积一层光敏抗蚀材料,并用反差增强的光刻法制作图案来形成一光敏抗蚀剂型模。在此型模上,电镀上一层金属材料。这电镀结构与光敏抗蚀层轮廓相一致,其厚度可以为多晶硅结构厚度的许多倍。然后,用蚀刻剂使光敏抗蚀刻型模和保护层溶去,以形成一个独立式的金属结构。
图1是依照本发明制造的一个微致动器结构的概略平面图。
图2A-2M示出图1的微致动器结构构成中的各个步骤。
图3是沿图1中3-3线所得到的一个剖面图。
图4是磁和/或光存储器件中用的一种滑动器跟踪系统的一个概略端视图。
图5是磁和/或光数据存储系统中用的一种磁头跟踪系统的一个概略侧视图。
图6是以本发明为基础构成的一个全面积有用的、多电极微致动系统的一个概略平面图。
图7是图6中全面积有用的微致动器一部分的一个细节图。
现在,结合一个优选的实施例来说明依照本发明用于制造微小型结构的一种方法,本实施例本质上是示范性的,不应理解为是对本发明的范畴的限制,本发明的范畴在所附的权利要求书中完全作出限定。
在图1的实施例中,形成一种微小型化结构,如一个静电微致动器器件10。该器体10包括一个衬底12,其上面安装着一对间隔开的金属支撑14和16,它们安排在衬底12上两个相对的纵向端,并在衬底12上形成另一对间隔开的金属固定器18和20,它们安排在衬底12上两个相对的横向端处,位于支撑14和16的中间。在支撑14和16之间悬挂着一个独立式的金属致动器22,它通过许多金属悬挂构件24、26、28和30安装在支撑14和16上。这些悬挂构件是将致动器22铰接到支撑14和16上的一些挠性支梁,因而允许致动器12在图1中箭头示出的A-A方向上作共面运动。为了促进这运动,图1中由尺寸“d”所表示的这些悬挂构件的厚度是相当薄的。因而,对于大约为1毫米的微致动器结构的最大尺寸,“d”的厚度约为1微米。这就保证了有足够的悬挂挠性来使得致动器22可在所示的A-A方向上被驱动。用来使致动器22移位的驱动力是由固定器18和20提供的。固定器18和20上均包含有许多各自向内伸展的电极32和34。致动器22上则包含有许多向外伸展的电极36和38。致动器电极36和38分别与固定器电极32和34相互地交错或叉指。在固定器18和20与位于致动器22之下的一个导体(图1中未示出)间施加一个直流电压,则会产生出一个静电力,它能使得致动器22在A-A方向上移动,如通常所知,移动方向取决于所加电压的极性。
为完成致动器结构10,在致动器22的上表面上形成一个耦接平台40,由致动器22来驱动耦接部件。还应指出,致动器22上包含有许多蚀刻孔42,它们的作用是让蚀刻剂穿过,以便在最后的脱模步骤中能对位于下部的保护层进行掏刻,这将在下面较详细地描述。
现在,转看图2A-2M,它们示出制造致动器结构10的一种优选的方法。从图2A开始,它示出一个绝缘衬底12,这可以是由一硅片以常规制造方法做成的。分别用二氧化硅和氮化硅外敷层50和52使衬底12钝化。衬底12的厚度可有所不同,但典型值约是100-500微米。二氧化硅外敷层50的厚茺约为0.5微米,氮化硅外敷层52的厚度也约为0.5微米。在氮化硅外敷层52的表面上淀积一个薄的金属导电层54,其厚度亦约为0.5微米。该金属导电层54可以是一种掺杂的半导体材料,例如是P型多晶硅。或者,这一层可以借助于溅射上一种选定的金属复合物来淀积成,这种金属复合物可以包含任一种过渡元素,包括铜或铬。
在淀积之后,用光刻和等离子体蚀刻过程将金属层54刻成图案。如图2B中所示,在金属层54上形成一个光敏抗蚀层56,并将第一光掩模57置于光敏抗蚀层之上。光敏抗蚀材料可以是任一种常用型的材料。这类材料一般具有这样的特性,当在一个合适的光源下曝光时,它们对随后的用来溶解光敏抗蚀材料的光显影变得抗蚀性较差,掩模可以用通常的材料构成,诸如石英的铬板。用一个准直光源来照射光敏抗蚀剂层56,该准直光源沿一个垂直于该结构平面的轴向下照射。可应用各式准直光源来使光敏抗蚀材料曝光,它个有波长为365毫微米左右的紫外线区域的光。已曝光的光敏抗蚀材料被显影,并在大约120°F下坚膜烘烤一小时许。使用一种通常的光敏抗蚀剂溶剂来溶解掉曝过光的光敏抗蚀剂层,以形成如图2C中所示的一个光敏抗蚀剂层图案。一般,光敏抗蚀材料制造厂家也供应相适应的抗蚀剂的溶剂,它与所销售的光敏抗蚀材料是相适应的。
刻成图案的光敏抗蚀层56,借助离子体蚀刻法,将金属层54刻成图案。四氯化碳(CCl4)等离子体蚀刻法是较好的蚀刻方法。该蚀刻过程用来去掉金属层54上没有被光敏抗蚀层56所保护的那些部分。在等离子体蚀刻过程之后,使光敏抗蚀层56溶去,从而产生出如图2D中所示的一种刻成图案的金属层54。
再在金属导电层54和氮化硅外敷层52的上面淀积一层用玻璃材料做成的保护层58,玻璃材料最好采用磷硅玻璃(PSG)。这一结构示明于图2E。这个磷硅玻璃保护层是用低压化学汽相淀积法(LPCVD)或等离子体增强型化学汽相淀积法(PECVD)淀积的。在淀积之后,保护层58刻图案成平台式,它将被用来确定支撑14和16及固定器18和20的内部尺寸。如图2F中所示,在保护层58上涂敷一层光敏抗蚀层60,并用一个第二光掩模61放在光敏抗蚀层60和保护层58上面,然后用一个准直光源来照射光敏抗蚀层60和保护层58,而该准直光源则沿一个垂直于该结构平面的轴向下照射。为此,仍可应用任一种通常用的光敏抗蚀材料和任一种常用的掩模材料,诸如石英铬板。也可应用各式准直光源来使光敏抗蚀材料曝光,它波长为365毫微米左右的紫光线区域的光。已曝光的光敏抗蚀材料被显影,并在大约120°F下坚膜烘烤一小时许。用一种氟化氢为基的溶液,诸如氢氟酸来溶去曝光的磷硅玻璃。最后,在一种光敏抗蚀剂的溶剂中使留下的光敏抗蚀材料被溶去,以产生出如图2G中所示的刻成图案的保护层58。
在保护层58和氮化硅层52上再用溅射法淀积上一个电镀籽晶层62(图中未示出)。该电镀籽晶层62可以由某种金属元素来形成,最好用铜、镍或铬来做成。电镀籽晶层62一旦淀积好后,在这电镀籽晶层62上又淀积一个光敏抗蚀层62,如图2H中所示。该光敏抗蚀层62延伸到衬底12的整个面积范围内,而保护层58配置在其下面的中央位置处。该光敏抗蚀层62的厚度将决定包括支撑14和16与固定器18和20以及致动器22在内的各金属构件的厚度。依此,作为例子,光敏抗蚀层62可以厚约10微米量级,或者厚度在10-20微米的范围内。最好,该光敏抗蚀层62的厚度不小于约2微米。该光敏抗蚀层62可以由通常的光敏抗蚀材料来形成,包括以商标名称AZ4000和AZ6000销售的产品。
光敏抗蚀材料以通常的方法旋涂在结构上。此后,为图2H中所示,在该光敏抗蚀层上涂上一个阻挡层64,而阻挡层64可以由脂肪酸盐材料(肥皂)之类来做成。然后,将一个反差增强层66旋涂在阻挡层64上。这反差增强层66用来在随后的光刻期间提供强烈的光学反差,以便在光敏抗蚀层上显影出边沿十分清晰、侧边陡直的墙面。这就产生出一种反差增强的光刻结构。反差增强层66最好由一种或几种可变色染料来制成,可变包染料例如包括二芳基黄硝在内。“可变色染料”指的是这样的特性,即反差增强层在一个光刻光源的照射下曝光时,如果照射量在一个临界能量密度之上,反差增强层变成透明,而如果照射的能量较小,则反差增强层保持不透明状态。反差增强层的作用如同一个光学开关,根据激活情况,可使其下面的光敏抗蚀材料进行光学显影。这就促进了下面的光敏抗蚀材料有均匀的光学显影,使得光敏抗蚀材料的上部不致“过曝光”而下部保持“欠曝光”。有一种优选的反差增强材料可供应用,它是通用电气公司(GE)生产的,商标为“CEM388”。上述的临界能量密度将随光敏抗蚀层的厚度和反差增强层而变。
现在,参看图2I,一个第三光掩模68被用于光敏抗蚀层62、阻挡层64和反差增强层66的图案形成,为随后的电镀形成一个型模。这第三光掩模68可以由石英片上的铬按通常方法制成,而带着光敏抗蚀层62、阻挡层64和作为一种复合的正性光敏抗蚀层的反差增强层66。用合适的照射进行曝光,使光敏抗蚀层有选择的硬化,已曝光的复合光敏抗蚀层区域在随后的光学显影和硬化中被溶解掉,而在第三光学掩模68之下的光敏抗蚀层部分则保持原样不变。用于复合光敏抗蚀层图案刻制的所选用的照射光源是一种低数值孔径(NA)的投影系统。该系统在紫外线范围内提供出高度准直的照射光线,最好波长为365毫微米左右,其照射方向真正垂直于该结构的平面。然后,已曝光的光敏抗蚀层被显影,但并不需紧膜烘烤。
复合光敏抗蚀层制成图案产生出一个型模结构,如图2J中所示,它确定了图1中示出的金属支撑14和16、致动器22及固定器18和20的结构形状。并且,确定了许多蚀刻孔42。应用所述的光刻刻图案方法,光敏抗蚀模版或型模的厚度可达20微米,纵横比能容易做到9∶1至10∶1,甚至更高;这样,可允许金属结构的显影在不共面方向上(以图1为基准)相当厚,而诸如在结构平面中所形成的各交错电极间的间隔方面,则可具有极薄的特点。依靠上面所述那样形成的光敏抗蚀层,应用电镀籽晶层作为一个电镀电极,由电镀方法可淀积成一个如图2K中所示的金属结构68。电镀材料可以是任一种金属元素,而当保护层为磷硅玻璃时,电镀材料最好是一种过渡元素,诸如铜、镍或铬。
在金属电镀步骤之后,在电镀的金属层68上依靠淀积一个光敏抗蚀层70来生成耦接平台40。该光敏抗蚀层70由一种通常的光敏抗蚀材料制成。在光敏抗蚀层70上放置一个第四光掩模72。同样,该光掩模72是一种通常的材料,诸如石英的铬版。这类结构示于图2L中。光敏抗蚀层70在一个准直光源下曝光,该准直光源提供出波长约365毫微米的紫外线范围的光线。此光线沿一个垂直于该结构平面的轴向下照射。然后,已曝光的光敏抗蚀层被显影,但不坚膜烘烤。此后,刻成图案的光敏抗蚀层被用作一个电镀型模,以形成一个金属结构74,如图2M中所示。当光敏抗蚀层70被溶去后,该结构形成了耦接平台40。
在构成耦接平台40之后,余留的复合光敏抗蚀层,包括层62、64和66及籽晶层和保护层58,都被溶去,以形成金属支撑结构14和16、固定器结构18和20,以及包括悬挂构件24-30和交错电极32-38的独立式致动器结构22。此种结构的一个截面图示于图3。用于溶去保护层58的蚀刻剂,当保护层58是由磷硅玻璃制成和金属结构是由铜或铬制成时,最好采用氢氟酸溶液或任一种其它的合适的氟化氢基溶液。这些材料有利于在室温下提供出每分钟约1微米的蚀刻速率,并对保护材料会更高些,而铜或铬金属结构的蚀刻速率则可忽略不计。因此,对于磷硅玻璃保护层58和铜或铬的金属结构68而言,氟化氢基蚀刻剂具有良好的选择性蚀刻。
可认识到,应用上面所描述的制造方法,可以方便地形成具有高的纵横比的结构。高的纵横比结构可期望有很多的用途,诸如微致动器10;其中,既希望垂直偏移或不共面偏移最小,同时要产生出充分的共平面致动力。例如,高纵横比的微致动器可以在磁记录或光记录的亚微米跟踪中得到低成本的应用。此种应用的两个例子示于图4和图5。图4示出一个滑动器跟踪系统100,它有一个按照本发明构成的微致动器102,夹插在一个跟踪臂悬挂组件104与一个滑动器106之间,滑动器106上安装有一对磁头108和110。如图4所示,微致动器102包括一个衬底112、一个独立式的致动器结构114和一个上面安装有滑动器106的耦接平台116。图4这种器件可以构造成具有大的垂直刚度(40千牛顿/米)和1毫牛顿力,这1毫牛顿力可以就10毫克的负载作1微米的跟踪,提供出1.6千赫的带宽。
图5中说明另一种构造的磁头跟踪系统120。如图5所示,滑动器122具有一个下部空气轴承表面124。通过一个按照本发明构成的微致动器结构128,将一个薄膜磁头126安装到滑动器122上。同样,由微致动器128可提供极精细的跟踪校正。
图6和图7说明用以产生共平面致动力的一个优选的微致动器构造,这里指的是全面积有用的多电极微致动器结构130。这一电极树结构包括有一对固定器132和134,它们各自分别有着许多树枝136和138。每一树枝又包含有许多支叉140和142,它们由此出发向外作侧向延伸,图7中更清楚地予以示明。该树结构还包括有一个包含着许多树枝146的致动器144,每一树枝146又有许多电极支叉148,它由此出发侧向向外延伸,这也示明于图7中。致动器144借助许多悬挂构件150、152、154和156安装到一对支撑结构158和160上。在本方法中,每一对支叉形成一个能量变换单元,它们遍及整个面积区,或以高效地将电场能量变换成力或力矩,并能在一个小的运用范围内维持一个恒定的输出一输入关系。可以这样地估算如果图6和图7结构包围的尺寸为1毫米×1毫米的面积,不共面厚度20微米,各电极的宽度6微米,空气隙2微米,树枝宽度10微米,树枝间隔25微米,叉指形支叉5微米,等等,而最大电压100伏,则可以得到1.1毫牛顿的侧向力。为了结构的完整性,对电极树结构130可以配备一个顶板,以使全部可移动的致动器电极树枝固定在一起。该顶板可以为金属板,也可以由一种加工方面兼容的电介质材料形成。假若在顶板与固定器电极树枝之间有5微米的间隔,则可以估算出,将产生一个小的0.3毫牛顿的垂直力。对于一个由多晶硅制成的可予比较的结构,该垂直刚度至少在量值上要比之大三个数量级,它应能以最小的不共面偏移来适应此负载。
于此,揭示了一种微小型结构及其特造方法。虽然,已示明和描述了本发明的几个优选的实施例,但应理解到,在该技术领域内的熟练人员对这方面会作出变型和修改。所以,对本发明所作的保护不应受此限制,而仅受所附的权利要求书的精神限制。
权利要求
1.一种制造微小型结构的方法,其特征在于有以下步骤选定一种衬底材料;在衬底材料表面上淀积一层保护材料;将保护层刻成图案以规定一种形状;在保护层上淀积一层光敏抗蚀材料;用反差增强光刻法,将光敏抗蚀层刻成图案,以形成一个光敏抗蚀型模;在光敏抗蚀型模上,电镀上一层金属层材料;应用蚀刻剂来溶去光敏抗蚀型模和保护层,以形成一个独立式的金属结构。
2.根据权利要求1中所述的方法,其特征在于,所述的保护层、金属层和蚀刻剂都选择得能提供出高的蚀刻选择性,以使得对保护层的蚀刻要比对金属层的蚀刻有显著地更高的速率。
3.根据权利要求1中所述的方法,其特征在于,所述的保护层是由一种玻璃材料构成的,金属层是由一种过渡元素构成的,蚀刻剂是由一种HF-基材料制成的。
4.根据权利要求1中所述的方法,其特征在于,所述的保护层是磷硅玻璃(PSG),金属层是铜或铬,蚀刻剂是氢氟酸(HF)。
5.根据权利要求1中所述的方法,其特征在于,在所述的淀积一个光敏抗蚀层的步骤中,还包括在该光敏抗蚀层上淀积一个反差增强层的步骤。
6.根据权利要求1中所述的方法,其特征在于,在所述的淀积一个光敏抗蚀层的步骤中,还包括在光敏抗蚀层上淀积一个阻挡层和在阻挡层上淀积一个反差增强层的步骤。
7.根据权利要求4中所述的方法,其特征在于,所述的反差增强层是由具有一种可变色染料的混合物组成的。
8.根据权利要求1中所述的方法,其特征在于,所述的将光敏抗蚀层刻成图案的步骤中包括掩散光敏抗蚀层和对未掩散的光敏抗蚀层部分进行曝光,曝光中应用一个小数值孔径的投影系统,它提供出波长约365毫/微米的准直光源照射光线。
9.根据权利要求1中所述的方法,其特征在于,所述的光敏抗蚀层的厚度不小于鸡2微米。
10.根据权利要求1中所述的方法,其特征在于,所述的光敏抗蚀层被刻成图案,以提供具有最大纵横比至少为9∶1的一个独立式结构。
全文摘要
本方法包括选择一种衬底材料、在衬底材料上淀积一层保护材料、将保护层刻成图案以规定形状的步骤。在保护层上淀积一层光敏抗蚀材料,用反差增强光刻法,刻成图案以形成一光敏抗蚀型模并在其上电镀一层金属材料。电镀结构与光敏抗蚀层轮廓共形,而厚度可比通常的多晶硅微结构大许多倍。然后用蚀刻剂使光敏抗蚀型模和保护层溶去,以形成10—20微米厚的一个独立式金属结构,其纵横比可达9∶1到10∶1,甚至更高。
文档编号H02N1/00GK1085667SQ93116450
公开日1994年4月20日 申请日期1993年8月21日 优先权日1992年9月21日
发明者范龙身, 汉斯·赫尔姆特·扎普 申请人:国际商业机器公司