专利名称:谐振型开关电源的制作方法
技术领域:
本发明涉及一种开关电源电路,特别是,涉及一种在电流谐振型开关电源中对降低功率损耗有用的开关电源。
图4示出了半桥电路构成的开关电源的一个原理图。标号Q1和Q2表示串联连接的MOSFET构成的开关元件。标号T表示一个把初级侧上的切换功率转换到次级侧的隔离变压器。
IC表示交替开/关开关元件Q1和Q2的电源控制电路,并且通常被构造成使开关元件Q1和Q2的切换频率可变,同时,通过电压检测装置(未图示)把一个输出电压V0与一个参考电压比较并由电路控制将输出电压V0设置到一个恒定值。
开关元件Q1和Q2的输出被提供到隔离变压器T的初级绕组L1和一个谐振电容器C1。如果开关元件Q1和Q2交替开/关,变压器的初级绕组L1被对谐振电容器C1充/放电的电流驱动,谐振电容器C1谐振到变压器T的一个漏电感。
如果,在流到开关元件的一个电流被设置到0的一个时限,开关元件的一个开关操作通过谐振电流被执行,开关元件的损耗电流能够被降低。
全波整流二极管D1和D2与滤波电容器C0被连接到隔离变压器T的次级绕组L2,并获得输出电压V0。
但是,在这样一个开关电源电路中,如图5所示的电压V1和电流I通过开关元件Q1和Q2的开/关流出,在开关元件Q1接通时,流向晶体管的电流开始从谐振状况测定的倾斜处的负方向流出,实现一个过零(zero-cross)。至于电流I,如图5所示,与谐振电路一样多的谐振电流IR被多路传输到和功率转换一样多的电流I1。因此,漏电流值增加。
因此,问题在于,开关元件Q1和Q2处的饱和电压和电流的乘积的功率损耗增加。
尤其是,关于普通电流谐振型开关电源,隔离变压器T的漏电感被利用,从而产生一个由漏电感和谐振电容C1设定的谐振频率,因此难以设计隔离变压器T。另外,为了产生一个到隔离变压器T的漏磁通,例如,设计使得初级绕组L1和次级绕组L2大致耦合。从而产生一个问题,功率的转换效率降低并产生一个漏磁场。
根据本发明,为了解决上述问题,在用于以预定切换频率切换供电电压并用于经变压器输出一个由切换操作产生的交变功率的开关电源中,设置一个包括以预定频率谐振的谐振元件的三级绕细用作变压器绕组,并通过谐振元件确定开关电源的一个谐振频率。
在半桥型开关电源的情况下,通常,变压器包括一个初级绕组和一个次级绕组,以及一个第三线圈被设置为三级绕组。通过把谐振元件连接到三级绕组,构成一个电流谐振型开关电源。
由于电流谐振电路被添加到变压器的三级绕组以及开关电源的谐振频率被确定,谐振电流不直接被开关元件通/断,开关损耗能够被减少。
在隔离变压器的情况下,初级绕组和次级绕组能够被紧密地耦合,从而,与普通电流谐振型开关电源相比,被传输的功率的转换效率能够被提高。
而且,与绕组数量比相当,谐振电流的被施加的电压能够被任意地设置,并且能够执行谐振电路的最优设计(实现小损耗)。
图1是一个电路方框图,示出了本发明开关电源电路的一个实施例。
图2是一个波形图,示出了在图1中的开关操作时间的每一个位置的信号。
图3是一个电路方框图,相当于三级绕组的谐振阻抗。
图4是一个电路方框图,示出了电流谐振型开关电源的一个轮廓。
图5是开关电压和谐振电流的波形图。
图1所示为半桥型电流谐振型开关电源电路,它示出了本发明的一个实施例。如图4所示,标号E表示一个电源,Q1和Q2表示形成一个半桥连接的开关电路的开关元件。它们由MOS晶体管构成。
输出端经隔离变压器T的初级绕组L1被连接到两个整流电容C1和C2之间的中点,以具有一个半桥结构。
一个全波整流电路被构成,从而一个由隔离变压器T的次级绕组L2感应的感应电压经二极管D1和D2为一个平滑电容C0充电。
此外,在本发明的实施例中,作为一个第三线圈,一个三级绕组L2被用于隔离变压器T。一个用于谐振的电容Cr和一个用于谐振的线圈Lr被连接到三级绕组L3,谐振电路被添加。
也就是说,如图3所示,耦合到三级绕组L3的谐振元件(Cr,Lr)经隔离变压器T通过一个N1/N3=a的绕组比等效地连接初级侧上的开关电路。
在这种情况下,R1和(1-K)L1分别表示初级绕组的一个阻抗分量和一个漏电感分量。标号K表示初级和三级绕组的耦合系数。
如果在绕组比等于“a”的情况下假定一个紧密耦合K=1,谐振元件Cr和Lr的阻抗等于被a2乘获得的一个值。
由等效谐振元件阻抗设置的一个谐振频率包括一个电流IR,当开关元件Q1和Q2接通/断开三级绕组L3时用作一个谐振波形。
IC是用于控制驱动开关元件Q1和Q2的IC电路。IC电路通常控制切换频率,从而把输出电压V0保持在一个恒定电压,并检测开关电源温度的不规则增加,从而它能够具有一个保护功能,用于停止一个开关操作。
下面将描述本发明的开关电源的操作。
例如,如果MOS晶体管Q1被驱动接通,MOS晶体管Q2被驱动断开,电压V1被施加并且其电流从电源E经MOS晶体管Q1和变压器的初级绕组L1流到整流电容C1。整流电容C1被充电,并且同时,如图2所示,电流I1流到变压器的初级绕组L1。
然后,与谐振频率相当,MOS晶体管Q1被驱动断开,MOS晶体管Q2被驱动接通,从而电压V1等于晶体管的饱和电压。相反方向上的电流I1经整流电容C2和变压器的初级绕组L1被提供到隔离变压器T的初级绕组L1。交变电压被感应到次级绕组L2。
如果切换频率的负载等于50%,整流电容C1和C2分别以电源电压的一半被充电,作为一个稳定状态。
虽然,施加到隔离变压器T的交变电压甚至被感应到三级绕组L3,三级绕组被形成从而通过谐振元件(Ir,Cr)产生一个连续的谐振。因此,如图2中的电流波形IR所示,由于谐振元件的影响,初级侧驱动电流I的波形也变成谐振波形。
也就是说,通过隔离变压器中初级绕组和三级绕组之间的等效电路,如图3所示,它等效于,通过绕组比a2乘以谐振元件的阻抗ωL1/ωC的谐振阻抗所获得的阻抗被插入到初级侧电路。与普通电流谐振型电路类似,切换频率被适当地测定,从而使接通和断开时开关损耗被降低。
在本发明的情况下,以及在MOS晶体管接通时,谐振电流组分不直接被开关元件接通/断开,从而由于FET的on-阻抗造成的损耗能够被降低。
由于谐振频率没有通过使用变压器的漏电感设置,绕组被提供,从而初级、次级和三级绕组的耦合可以被尽可能地设置为紧密耦合。隔离变压器年被容易地设计,特别是次级绕组的功率转换效率能够被设置到较高。
当三级绕组被设计从而它被较松散耦合到初级绕组L1时,仅在初级和三级绕组之间产生漏磁通。漏磁通被用作一个漏电感,从而图1中的谐振线圈Lr能够被省略,一个谐振频率能够通过电容Cr设置。
在上述实施例中,电流谐振型半桥型转换器已经作为一个例子被描述。但是,关于用于通/断流经变压器绕组的电流、通过切换操作产生一个交变电压、并利用谐振波形通/断切换电流的谐振型功率转换装置,显然可以理解,本发明也可以被应用到用于通过一个绕组仅连接到谐振电路而形成谐振型开关电源的另一个系统的谐振型功率转换装置。
如上所述,本发明的一个作用是在一个功率转换装置中通过利用变压器的一个漏电感形成一个谐振型转换器,一个第三绕组被提供用于变压器,仅用于形成一个以预定谐振频率谐振的谐振电路,从而谐振电路被切换时开关损耗能够被消除,转换装置的效率能够被提高。
尤其是,在绝缘型功率转换装置的情况下,由于初级和次级绕组能够被紧密地耦合,变压器能够被容易地设计,并且电流的转换效率能够被提高。
权利要求
1.一种谐振型开关电源,用于执行开关操作,通过开关元件以预定的切换频率通/断电源电压,并用于通过所说的切换操作经一个变压器输出一个交变电源,其中一个第三绕组被提供,以预定频率谐振的谐振元件被连接到第三绕组,从而通过所说的谐振元件确定所说的变压器的绕组和开关电源的谐振频率。
2.根据权利要求1的一种谐振型开关电源,其中所说的变压器包括一个初级绕组和次级绕组,并且所说的第三绕组作为一个三级绕组被耦合。
3.根据权利要求1的一种谐振型开关电源,其中所说的开关元件包括两个半桥连接的MOS晶体管。
4.根据权利要求2的一种谐振型开关电源,其中所说的初级绕组和次级绕组被紧密耦合。
5.根据权利要求2的一种谐振型开关电源,其中形成在所说的第三绕组中的谐振电路包括谐振线圈和谐振电容的串联连接电路。
6.根据权利要求2的一种谐振型开关电源,其中所说的第三绕组和所说的第一绕组松散耦合,谐振频率由连接到第三绕组的电容和第一绕组与第三绕组之间的一个漏电感确定。
全文摘要
在开关电源中,通过交替接通第一和第二MOS晶体管,切换电流流到变压器的初级绕组,交变电流被传输到次级侧。次级绕组中产生的交变电压被第一和第二二极管全波整流。谐振元件(电容和线圈)被连接到耦合到隔离变压器的三级绕组,从而使初级侧被设置到谐振状态中,并被设置到一个电流谐振型开关电源。由于变压器的漏电感没有被设置到谐振元件,隔离变压器绕组之间的一个间隙能够被紧密地耦合。由于谐振电流没有被直接通/断,初级电流的峰值被削弱,开关损耗和阻抗造成的损耗能够被降低。电流谐振型开关电源的效率因此被提高。
文档编号H02M3/24GK1232312SQ99106239
公开日1999年10月20日 申请日期1999年4月10日 优先权日1998年4月10日
发明者小堀克己, 今村典俊 申请人:索尼公司