一种可智能无功补偿配电系统的运行方法

文档序号:10615169阅读:857来源:国知局
一种可智能无功补偿配电系统的运行方法
【专利摘要】本发明公开了一种可智能无功补偿配电系统的运行方法,包括如下步骤:S1.在配电系统的当前调度时间段开始时刻进行是否调控判断:在当前调度时间段开始,监测模块上传负载节点n处电压有效值Un,控制模块判断:Un<Ulim1?,是则进入步骤S2,否则等待新的调度时间段开始,作为下一个当前调度时间段再次进行是否调控判断;S2.控制模块建立无功智能调节优化模型;S3.控制模块求解优化模型;S4.控制模块向各分布式SVC设备发送相应Qj(set),j=1,2,…,m,各分布式SVC设备根据相应输出无功功率的设定值Qj(set)产生相应的无功功率注入至馈电线路。该方法能够使得配电系统中馈电线路各节点电压满足标准的要求,协调分布式SVC设备向配电系统提供无功功率支撑,提高了分布式SVC设备的利用率和经济效益。
【专利说明】-种可智能无功补偿配电系统的运行方法 所属技术领域
[0001] 本发明设一种可智能无功补偿配电系统的运行方法。
【背景技术】
[0002] 在电力系统中,电压是衡量电能质量的一项重要指标,电压过低、过高都不仅会影 响到电气设备的寿命和效率,而且还会危及电力系统的稳定及安全运营。无功功率平衡是 保证电压稳定的重要手段,电压无功控制对降低网损,提高电压质量和统筹系统资源配置 等有着重要的作用。
[0003] 传统的配电网采用电压-无功综合控制(VQC),变电站的调压主要是有载调压变压 器配合电容器组的投切来实现。随着分布式SVC设备不断接入配电网,改变了传统配电网的 潮流流向和电压分布,而且由于DG出力具有随机性和间歇性、负载具有波动性等特点,会导 致变电站母线电压合格而馈线上的节点电压越限的情况出现,严重影响到变电站的运行控 制策略。
[0004] 电压质量是配电网运行最为关注的指标之一,在目前的配电网中尚没有对各个节 点电压进行全面监测的手段,进行电压调节都是在向配电网供电的变电站进行,或者由各 负荷根据各自接入点电压利用无功电容补偿进行。运些电压调节措施通常难W兼顾全局的 电压水平,且缺少协调控制的方法和实施手段。
[0005] 目前,配电系统的优化分析计算已经比较成熟,实时电压无功的优化与控制主要 通过能量管理系统进行,对电网的实时数据获取也来自于变电站通过RTU(远程终端单元) 进行采集并上送给能量管理系统的数据。但是,一方面大电网的电压无功优化周期通常W 几分钟乃至一小时为单位进行周期运行,另一方面电网自身是一个负荷与发电时刻处于动 态平衡的系统,实时电压无功控制的过程中电网的状态相对于全局优化的断面已经发生了 偏移。

【发明内容】

[0006] 本发明提供一种可智能无功补偿配电系统的运行方法,该方法可智能识别并跟踪 系统运行拓扑和状态的变化,获取节点电压、负载、可用支线无功补偿的出力等信息,并W 此为信息源动态智能调节无功补偿,协调各分布式SVC设备的无功功率注入,能够使得配电 系统中馈电线路各节点电压满足标准的要求,协调分布式SVC设备向配电系统提供无功功 率支撑,进一步提高了分布式SV村受备的利用率和经济效益。
[0007] 为了实现上述目的,本发明提供一种可智能无功补偿配电系统的运行方法,包括 如下步骤:
[0008] SI.在配电系统的当前调度时间段开始时刻进行是否调控判断:在当前调度时间 段开始,监测模块上传负载节点n处电压有效值Un,控制模块判断:Un<Uliml?,是则进入步骤 S2,否则等待新的调度时间段开始,作为下一个当前调度时间段再次进行是否调控判断;
[0009] S2.控制模块建立无功智能调节优化模型;
[0010] S3.控制模块求解优化模型;
[0011] S4.控制模块向各分布式SVC设备发送相应Qj (set),j = 1,2,…,m,各分布式SVC设备 根据相应输出无功功率的设定值A(set)产生相应的无功功率注入至馈电线路。
[0012] 优选的,在所述步骤Si中,配电系统的每个调度时间段开始时刻,各分布式SVC设 备需要向控制模块上传其所接入节点的实时电压有效值贴,贴,…,阳m,运可W通过分布式 SVC设备对接入点电压监测结果而方便地获得。分布式SVC设备j实时地向控制模块上传化J (j = l,2,...,m)。
[001引优选的,在所述步骤S2中,控审臘块建立式(1)、式(2)、式(3)所示优化模型:
[0014]
Cl)
[0015] 约束条件为:
[0016] Uliml《Un(set) (2)
[001 7] Qj (set) ^ Qj (max) , j = I , 2 , . . . ,IH (3)
[0018]式(I)表示所需要调度的分布式SVC设备输出无功功率的总和最小,W减小调度无 功功率的成本,Qj(Set)为分布式SVC设备j输出无功功率的设定值,式(2)中Un(Set)为进行无功 调度后节点n的电压有效值预测值,使得其不低于化imi;式(3)为各分布式SVC设备输出无功 功率的限制条件,其中Qj (max)为分布式SVC设备j输出无功功率Qj的最大限值,该限值是常 量,可根据分布式SVC设备的特性获知,在规划设计阶段即可预存到控制模块中。
[0019]优选的,在所述步骤S3中,控制模块求解优化模型,得到Ql(Set),Q2(set),...,Q"(set):
[0020] 按优化模型计算各分布式SVC设备输出无功功率化,Q2,…,Qm的设定值化(set), Qs(Set)Qm(set);
[0021] 可通过目前成熟的线性或非线性规划方法求解W式(I)为目标函数,式(2)和式 (3)为约束条件的优化问题,从而得Ql(Set) ,Q2(set),…,Qm(set)。
[0022] 优选的,在计算Un(set)时,可通过下式进行:
[0023]
(4)
[0024] 式中,系数Qnj是分布式SVC设备j向网络注入单位无功功率后,配电网馈电线路节 点n的电用有效估巧化量,用公式表示为:
[0025]
巧)
[0026] 式中,下标j表示分布式SVC设备编号,j = l,2,…,为分布式SVC设备j向配电 网注入的无功功率;A Un功分布式SVC设备j向配电网注入无功功率^后节点n的电压有效 值变化量。
[0027] 优选的,在步骤S4中,在得到Ql(set),Q2(set),…,Qm(Set)后,控制模块通过双向通信线 路向各分布式SVC设备传送无功功率设定值Qj(Set),各分布式SVC设备根据该设定值Qj (set)产 生相应的无功功率注入至馈电线路,从而满足式(2)所示的约束条件。
[0028] 本发明具有如下优点:(1)可智能识别并跟踪系统运行拓扑和状态的变化,获取节 点电压、负载、可用支线无功补偿的出力等信息,并W此为信息源动态智能调节无功补偿, 协调各分布式SVC设备的无功功率注入;(2)能够使得配电系统中馈电线路各节点电压满足 标准的要求,协调分布式SVC设备向配电系统提供无功功率支撑,进一步提高了分布式SVC 设备的利用率和经济效益。
【附图说明】
[0029] 图1示出了本发明的一种基于负载变化智能调节无功输出的配电系统的框图;
[0030] 图2示出了一种可智能无功补偿配电系统的运行方法的流程图。
【具体实施方式】
[0031] 图1示出了本发明的一种基于负载变化智能调节无功输出的配电系统10,该配电 系统包括:
[0032] 馈电线路14,该馈电线路为多个,用于为多个负载15提供电能;
[0033] SVC设备12,用于为馈电线14路提供无功功率,W维持馈电线路电压14的稳定,该 SVC设备为多个14,并与所述馈电线路一一对应;
[0034] 并网装置13,用于实现SVC设备12和馈电线路14并网运行,该并网装置13与所述馈 电线路14--对应;
[0035] 和监控装置11;
[0036] 该监控装置11包括:
[0037] 监测模块113、控制模块112和用于所述各模块通信的通信总线111;
[0038] 所述监测模块113,用于实时监测多个负荷15接入点的实际电压值;
[0039] 所述控制模块112包括调控判断单元、优化模型建立单元、无功功率设定获取单元 和无功功率设定输出单元,其中:
[0040] 所述调控判断单元用于配电系统当前调度时间段开始时刻进行是否调控判断,包 括在当前调度时间段开始,各分布式SVC设备j分别向控制模块上传相应接入节点的电压有 效值化其中j = l,2,…,m,监测模块向控制模块上传负载节点n处电压有效值Un,控制模块 判断是否Un<Uliml,化iml为标准规定的负载节点电压有效值下限值,是则命令优化模型建立 单元工作,否则等待新的调度时间段开始再进行是否调控判断;
[0041 ]所述优化模型建立单元,用于建立优化模型;
[0042] 所述无功功率设定获取单元,用于求解优化模型,得到各分布式SVC设备输出无功 功率的设定值;
[0043] 所述无功功率设定输出单元,用于向各分布式SVC设备发送相应输出无功功率的 设定值。
[0044] 优选的,优化模型建立单元,用于建立优化模型如下:
[0045] 控制模块调度的目标函数为:
[0046]
[0047] 约束条件为:
[004引化 iml《Un(set)
[0049] 0《Qj(set)《Qj(max),j = l,2, . . .,m
[0050] 其中,Qj(set)为分布式SVC设备j输出无功功率的设定值,Un(set))为进行无功调度后 节点n的电压有效值预测值,QWmax历分布式SVC设备j输出无功功率的最大限值。
[0051]优选的,无功功率设定获取单元,用于求解优化模型,得到各分布式SVC设备输出 无功功率的设走值化(set) , Qs(Set),…,Qm(Set);
[0化2] 在计算Un(Set)时,通过下式实现:
[0化3]
[0054] 其中,系数Qnj是分布式SVC设备j向配电系统注入单位无功功率后,配电系统馈电 线路负载节点n的电压有效值变化量。
[0055] 优选的,无功功率设定输出单元,用于向各分布式SVC设备发送相应输出无功功率 的设定值Qj(Set) J = I,2,…,m,各分布式SVC设备根据相应输出无功功率的设定值Qj(Set)产 生相应的无功功率注入至馈电线路;而且,系数<^通过下式计算得到:
[0化6]
[0057] A中,叫刃分布式SVC设备j向配电系统注入的无功功率;A Unj为分布式SVC设备j 向配电系统注入无功功率A后负载节点n的电压有效值变化量。
[005引优选的,所述监测模块通过拓扑结构识别算法,获取配电系统中各负载节点的位 置和连接关系,确定分布式SVC设备的接入位置和馈电线路无功补偿的位置,通过多点分布 的智能检测终端获取到的信息的汇总,得到配电系统中分布式SVC设备的容量W及各个节 点的电压。
[0059] 优选的,所述SVC设备的主电路为S相S桥臂的逆变电路,由6个电力电子器件和 直流侧电容组成。
[0060] 优选的,所述SVC设备采用电压空间矢量的调制方式,为了便于在a-e坐标系上直 接控制,减少切换开关时造成的电压波动,控制SVC输出电压矢量在正六边形的内切圆中, 内切圆半径为表示SVC的直流侧电容电压。
[0061] 参见附图2,本发明的一种可智能无功补偿配电系统的运行方法,包括如下步骤:
[0062] SI.在配电系统的当前调度时间段开始时刻进行是否调控判断:在当前调度时间 段开始,监测模块上传负载节点n处电压有效值Un,控制模块判断:Un<Uliml?,是则进入步骤 S2,否则等待新的调度时间段开始,作为下一个当前调度时间段再次进行是否调控判断;
[0063] S2.控制模块建立无功智能调节优化模型;
[0064] S3.控制模块求解优化模型;
[0065] S4.控制模块向各分布式SVC设备发送相应Qj(Set),j = 1,2,…,m,各分布式SVC设备 根据相应输出无功功率的设定值A(set)产生相应的无功功率注入至馈电线路。
[0066] 优选的,在所述步骤Sl中,配电系统的每个调度时间段开始时刻,各分布式SVC设 备需要向控制模块上传其所接入节点的实时电压有效值贴,贴,…,阳m,运可W通过分布式 SVC设备对接入点电压监测结果而方便地获得。分布式SVC设备j实时地向控制模块上传化J (j = l,2,...,m)。
[0067] 优选的,在所述步骤S2中,控制模块建立式(1)、式(2)、式(3)所示优化模型:
[006引
(0
[0069] 约束条件为:
[0070] Uliml《Un(set) (2)
[0071 ] 0《Qj(set)《Qj(max) ,j - I,2,. ..,IH (3)
[0072] 式(I)表示所需要调度的分布式SVC设备输出无功功率的总和最小,W减小调度无 功功率的成本,QWset)为分布式SVC设备j输出无功功率的设定值,式(2)中Un(Set)为进行无功 调度后节点n的电压有效值预测值,使得其不低于化imi;式(3)为各分布式SVC设备输出无功 功率的限制条件,其中如(max)为分布式SVC设备j输出无功功率如的最大限值,该限值是常 量,可根据分布式SVC设备的特性获知,在规划设计阶段即可预存到控制模块中。
[0073] 优选的,在所述步骤S3中,控制模块求解优化模型,得到化(set),化(set),…,^(set):
[0074] 按优化模型计算各分布式SVC设备输出无功功率化,Q2,…,Qm的设定值化(set), Q2(set) QnKset);
[0075] 可通过目前成熟的线性或非线性规划方法求解W式(I)为目标函数,式(2)和式 (3)为约束条件的优化问题,从而得Ql(Set) ,Qs(Set),…,Qm(set)。
[0076] 优选的,在计算Un(set)时,可通过下式进行:
[0077]

[0078] 式中,系数Qnj是分布式SVC设备j向网络注入单位无功功率后,配电网馈电线路节 点n的由用有谢值巧化量,用公式表示为:
[0079]
(5)
[0080] 式中,下标j表不分布式SVC设备编号,j = 1,2,…,m;Qj为分布式SVC设备j向配电 网注入的无功功率;A Unj为分布式SVC设备j向配电网注入无功功率Qj后节点n的电压有效 值变化量。
[OOW] 优选的,在步骤S4中,在得到Ql(set),Q2(set),…,Qm(set)后,控制模块通过双向通信线 路向各分布式SVC设备传送无功功率设定值Qj(Set),各分布式SVC设备根据该设定值Qj(Set)产 生相应的无功功率注入至馈电线路,从而满足式(2)所示的约束条件。
[0082] W上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定 本发明的具体实施只局限于运些说明。对于本发明所属技术领域的普通技术人员来说,在 不脱离本发明构思的前提下,做出若干等同替代或明显变型,而且性能或用途相同,都应当 视为属于本发明的保护范围。
【主权项】
1. 一种可智能无功补偿配电系统的运行方法,包括如下步骤:51. 在配电系统的当前调度时间段开始时刻进行是否调控判断:在当前调度时间段开 始,监测模块上传负载节点η处电压有效值Un,控制模块判断:Un<Uliml?,是则进入步骤S3,否 则等待新的调度时间段开始,作为下一个当前调度时间段再次进行是否调控判断;52. 控制模块建立无功智能调节优化模型;53. 控制模块求解优化模型;54. 控制模块向各分布式SVC设备发送相应Qj(set),j = 1,2, · · · ,m,各分布式SVC设备根据 相应输出无功功率的设定值Qj(set)产生相应的无功功率注入至馈电线路。2. 如权利要求1所述的方法,其特征在于,在所述步骤S1中,配电系统的每个调度时间 段开始时刻,各分布式SVC设备需要向控制模块上传其所接入节点的实时电压有效值化1, 化2,…,阳m,运可W通过分布式SVC设备对接入点电压监测结果而方便地获得。分布式SVC设 备j实时地向控制模块上传1^( j = 1,2,…,m)。3. 如权利要求2所述的方法,其特征在于,在所述步骤S2中,控制模块建立式(1)、式 (2)、式(3)所示优化模型:(1) 约束条件为: 化 iml《Un(set) ( 2 ) 〇《Qj (set)《Qj (max) ,j = 1,2,...,m (3) 式(1)表示所需要调度的分布式SVC设备输出无功功率的总和最小,w减小调度无功功 率的成本,Qj(set)为分布式SVC设备j输出无功功率的设定值,式(2)中Un(set)为进行无功调度 后节点η的电压有效值预测值,使得其不低于化imi;式(3)为各分布式SVC设备输出无功功率 的限制条件,其中Qj (max)为分布式SVC设备j输出无功功率Qj的最大限值,该限值是常量,可 根据分布式SVC设备的特性获知,在规划设计阶段即可预存到控制模块中。4. 如权利要求3所述的方法,其特征在于,在所述步骤S3中,控制模块求解优化模型,得 到Ql(set) , Q2(set) , ... , Qn^set): 按优化模型计算各分布式SVC设备输出无功功率Qi,Q2,···,Qm的设定值Ql(set), Q2(set), * * * , Qm(set); 可通过目前成熟的线性或非线性规划方法求解W式(1)为目标函数,式(2)和式(3)为 约束条件的优化问题,从而得Ql(set) , Q2(set),…,Qm(set)。 5 .如权利要求4所述的方法,其特征在于,在计算Un(set)时,可通过下式进行:辨 式中,系数(?是分布式SVC设备j向网络注入单位无功功率后,配电网馈电线路节点η的 电压有效值变化量,用公式表示为:巧 式中,下标j表不分布式SVC设备编号,j = l ,2,…,m;Qj为分布式SVC设备j向配电网注入 的无功功率;Δ Unj为分布式SVC设备j向配电网注入无功功率Qj后节点η的电压有效值变化 量。 6 .如权利要求5所述的方法,其特征在于,在步骤S4中,在得到Ql(set),Q2(set),…,Qm(set) 后,控制模块通过双向通信线路向各分布式SVC设备传送无功功率设定值A(set),各分布式 SVC设备根据该设定值A(set)产生相应的无功功率注入至馈电线路,从而满足式(2)所示的 约束条件。
【文档编号】H02J3/18GK105977997SQ201610457040
【公开日】2016年9月28日
【申请日】2016年6月22日
【发明人】靖新宇
【申请人】成都欣维保科技有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1