一种含直驱永磁风电场的配电网广义负荷建模方法
【专利摘要】本发明公开了一种含直驱永磁风电场的配电网广义负荷建模方法,提出了直驱永磁风电机组(DDPMSG)的简化模型,并将其并联传统负荷作为含直驱永磁风电场的配电网广义负荷模型结构。基于轨迹灵敏度方法,分析了广义负荷中各参数的可辨识性及辨识难易度。参数辨识先采用粒子群优化算法(PSO)进行全局寻优,再利用Levenberg?Marquardt(LM)算法在PSO优化结果基础上进行局部寻优。本发明简化了直驱永磁风电机组的模型结构,提出的参数辨识方法具有较高的辨识精度;本建模方法可以为其它含全变流器型的可再生能源接入配电网的广义负荷建模提供参考。
【专利说明】
-种含直驱永磁风电场的配电网广义负荷建模方法
技术领域
[0001] 本发明设及一种含直驱永磁风电场的配电网广义负荷建模方法,属于电力系统建 模技术领域。
【背景技术】
[0002] W可再生能源为主的分布式电源大量、分散接入配电网,传统的负荷模型无法描 述含分布式电源的广义负荷动态特性,因此需要研究含分布式电源的广义负荷模型结构及 参数辨识方法。风力发电是近期内最具开发利用前景的可再生能源,研究含风力发电的广 义负荷模型,其首要任务建立风电机组本身的模型,了解其动态特性。
[0003] 现有的含风力发电的广义负荷等值模型,有的过于简化,无法反映广义负荷的动 态特性,误差较大。有的过于复杂,存在模型阶数高、待辨识参数个数多,且模型参数可能存 在冗余的缺点。
【发明内容】
[0004] 为解决现有技术的不足,本发明的目的在于提供一种含直驱永磁风电场的配电网 广义负荷的建模方法,所建立的模型能较准确地反映不同风力发电比例、不同电压跌落程 度下广义负荷的动态特性,具有较强的适应性。
[0005] 为了实现上述目标,本发明采用如下的技术方案:
[0006] -种含直驱永磁风电场的配电网广义负荷建模方法,其特征是,包括如下步骤:
[0007] 1)建立直驱永磁风电机组(孤PMSG)的简化模型;
[000引2)在风电机组出口设置Ξ相对称电压跌落,将某一电压跌落场景下的有功功率和 无功功率受扰轨线作为参考,基于步骤1)所建立的简化模型进行曲线拟合,先采用粒子群 优化算法(PS0)获得优化结果,再采用Levenberg-Ma巧uardt(LM)算法在PS0优化结果基础 上进一步局部寻优,最后得到直驱永磁风电机组简化模型中各参数的辨识值;
[0009] W参数辨识结果为基准,分析其它扰动场景下实际受扰轨线与基于参数辨识值的 受扰轨线偏差,分析模型的适应性;
[0010] 3)将步骤1)所建立的风电机组简化模型与传统负荷(即电动机负荷并联静态负 荷)并联,建立含直驱永磁风电场的配电网广义负荷模型结构;
[0011] 4)在广义负荷出口设置对称Ξ相电压跌落扰动,将广义负荷出口的有功功率、无 功功率作为输出信号,计算广义负荷模型中各参数的轨迹灵敏度;根据轨迹灵敏度幅值大 小,确定广义负荷模型中的重点参数;根据轨迹灵敏度相位,确定广义负荷模型参数的可辨 识性;
[0012] 5)根据步骤4)确定的重点参数,设定其捜索范围并随机生成初始值;W步骤4)设 置的电压跌落扰动,基于广义负荷出口的有功功率、无功功率作为参考信号,采用PS0算法 辨识广义负荷模型中的重点参数;
[0013] 6)将基于PS0算法的参数辨识结果作为LM算法的初始值,进一步采用LM方法进行 局部寻优,获得参数的最终辨识结果;
[0014] 7)计算实际轨线和基于辨识结果的仿真轨线的偏差,选取偏差指标最小时的参数 辨识结果,作为最终的参数辨识值。
[0015] 进一步地,所述步骤1)中直驱永磁风电机组的简化模型包括有功环节和无功环 节;所述有功环节的输入量为风电机组有功功率参考值与有功功率实际值的偏差,输出环 节为d轴电流;所述无功环节的输入量与风电机组的控制方式有关。
[0016] 进一步地,所述步骤2)中曲线拟合,辨识直驱永磁风电机组模型参数的方法。辨识的 目标函数为偏差指标err达到最小,即
其中,η为辨识时间窗口内的总点数;Pest化)和Qest化)分别为辨识时间窗口内第k个基于辨 识结果仿真得到的直驱风电机组出口的有功功率和无功功率;Preal化)和Qreal化)分别为辨 识时间窗口内第k个基于实际值仿真得到直驱风电机组出口的有功功率和无功功率。
[0017] 进一步地,所述步骤4)中轨迹灵敏度的获取方法如下:
[0018] 41)将待辨识参数目的数值增大ΔΘ,基于Matlab/Simulink平台搭建的配电网广义 负荷并网系统,仿真得到观测量y的受扰轨迹y(e),其中ΔΘ为增量,Αθ = ι〇%θ〇,其中θ〇为 待辨识参数Θ的初始值;
[0019] 42)将待辨识参数Θ的数值减少Δ Θ,仿真得到观测量y的受扰轨迹/ (Θ);
[0020] 43)根据公?!
,计算参数Θ的轨迹灵敏度Sj,式中,η 为观测量的采样点个数。
[0021] 进一步地,所述步骤4)中重点参数的选择方法为:在所有参数的轨迹灵敏度中,选 择轨迹灵敏度最小值η倍W上的参数作为重点参数,η依据经验值选择。
[0022] 进一步地,其特征是,所述11 = 5。
[0023] 进一步地,所述步骤5)辨识广义负荷中的重点参数浸,辨识的目标函数为偏差指标 err达到最小,即
其中 0max和0min分别为待辨识参数的最大设定值和最小设定值,其他参数值与步骤2)中设及的参 数值代表含义相同。
[0024] 本发明所达到的有益效果:本发明提出的直驱永磁风电机组的简化模型,不仅结 构简单,还能反映风电机组在不同电压跌落程度下的动态特性,具有较强的适应性;采用该 简化的直驱永磁风电机组并联传统负荷的模型结构,作为含直驱永磁风电场的配电网广义 负荷模型结构,参数辨识先用粒子群(PS0)优化算法进行全局寻优,再利用LM算法在PS0优 化结果基础上进一步局部寻优。所提建模方法不仅简化了广义负荷的模型结构,且提出的 参数辨识方法具有较高的辨识精度。
【附图说明】
[0025] 图1是本发明的工作流程图;
[0026] 图2(a)(b)分别是简化的直驱永磁风电机组模型的有功环节和无功环节;
[0027] 图3是含直驱永磁风电机组的仿真系统接线图;
[00%]图4(a)(b)分别是简化模型辨识结果对Ξ相电压跌落10%Un程度、电压跌落30%Un 的适应性;
[0029] 图5是含直驱永磁风电场的配电网广义负荷模型结构;
[0030] 图6是含直驱风电场的广义负荷仿真测试系统;
[0031] 图7是电压跌落20%Un下的参数的轨迹灵敏度;
[0032] 图8是电压跌落80%Un下的参数的轨迹灵敏度;
[0033] 图9是电压跌落20%Un下基于实际参数与辨识参数的受扰轨线;
[0034] 图10是电压跌落80%Un下基于实际参数与辨识参数的受扰轨线。
【具体实施方式】
[0035] 下面结合附图对本发明作进一步描述。W下实施例仅用于更加清楚地说明本发明 的技术方案,而不能W此来限制本发明的保护范围。
[0036] 下面具体结合实施例对本发明进行阐述:
[0037] 步骤1)提出直驱永磁风电机组的简化模型,见图2所示。
[0038] 图2中,Pref和Qref分别为有功功率及无功功率设定值,其数值由巧中方式确定,一种 由风电场场站级控制系统直接下达,一种由直驱永磁风电机组的运行状态确定。P、Q、U和Θ 分别为风电机组的有功功率、无功功率、端电压幅值和功率因数角。、Kg分别为有功控 制环节的比例和积分系数。ΤΡ为有功控制环节的测量时间常数。Uref为电压参考值。、馬i 分别为无功控制的积分系数和电压控制的积分系数。id为d轴实际值;idN、iqN分别为d轴及q 轴电流的额定值;1<1.?<1、1。.。。<1分别为(1轴及9轴电流的控制量;111^为(1轴电流的限幅值;51、52 和S3为开关;S为拉氏变换因子。
[0039] 开关S1-S3的不同状态,用W切换直驱永磁风电机组的不同控制方式,具体如下:
[0040] 1)当Si = 0且S3 = 0时,对应定无功功率控制方式;
[OOW 2)当Si = 1且S3 = 0时,对应定功率因数控制方式;
[0042] 3)当S2 = 0且S3 = l时,对应定电压控制方式;
[0043] 4)当S2 = 1且S3 = 1时,对应电压/无功控制方式。
[0044] 步骤2)对直驱永磁风电机组的简化模型进行适应性分析。
[0045] W图3系统为例。其中,T1和T2为升压变,11和12为输电线路;故障设置为t = 1.7s 时,母线B1处发生Ξ相短路故障f,此时母线B2电压跌落了20%化左右,故障持续0.2s后恢 复。仿真得到该故障下风电机组有功功率P及无功功率Q的受扰轨线,W该受扰轨线为基准, 采用图2所示的简化模型进行拟合,根据曲线拟合结果辨识简化模型中的各参数 _Κρρ 乂pf'Tp _。
[0046] 曲线拟合时,先采用粒子群优化算法(PSO)获得优化结果,进一步利用Levenberg- Marquardt(LM)算法在PSO优化结果基础上局部寻优:辨识的目标函数为偏差指标err达到 最小,目[
辨识的时间窗口选为[1.7, 2.3]s,输出曲线的步长为0.00005s。
[0047] 为校验图2所示简化模型的适应性,仍旧在母线B1处设置Ξ相短路故障,通过调整 接地电阻,使得母线B2电压跌落分别为1 ο % Un和30 % Un,基于电压跌落20 % Un下的参数辨识 结果获得风电机组有功功率和无功功率的受扰轨线。巧巾情况下参考模型和估算模型的受 扰轨线见图4,曲线偏差结果分别为err(10%UN)=0.0029,err(30%UN) = 0.0115,UN表示额 定电压。根据图4说明了直驱永磁风电机组的模型具有较强的适应性。
[0048] 步骤3)提出含直驱永磁风电场的配电网广义负荷的模型结构,如图5。其中,Pwg和 Qwg分别为风电场发出的总有功功率和无功功率。Pim和化m分别为电动机吸收的有功功率及 无功功率。Pzip和Qzip分别为静态负荷吸收的有功功率及无功功率。Pl和化分别为总负荷有功 功率和无功功率。P和Q分别为系统侧供给广义负荷的有功功率和无功功率。j为虚数单位。
[0049] 定义风电场发电功率W及电动机负荷功率比例系数,分别夫
其中,ZIP表示静态负荷,IM表示感应电动机负荷,它们的模型表达式如下。
[0化0] ZIP静态负荷模型:
其中,Zp、Ip、 ?口、2。、1。、?。分别为有功恒阻抗系数、有功恒电流系数、有功恒功率系数、无功恒阻抗系数、 无功恒电流系数和无功恒功率系数,且满巧
分别为有功和无功的频 率特性系数。Pzip和Qzip分别为静态负荷的有功功率和无功功率。Ρζιρο和化IPO分别为静态负荷 的初始有功功率和无功功率。化为负荷端口电压。化0负荷端口电压初始值。时为系统频率初 始值。A f为频率偏差,A f = f-f〇,f为系统频率。
[005。 IM电动机负荷模型
式中,ω r和ω S分别为转子角 速度和系统角速度;Ε/和E^f分别为暂态电势和励磁电势;χ/为暂态电抗;Τ'/为时间常数;Η 为惯性时间常数;C为常数;U为电动机端口电压幅值;δ为转子角;Tm为机械转矩。
[0052] 对于电动机负荷,灵敏度较大的参数为定子电抗Xs,初始滑差so,W及对暂态稳定 计算影响较大的电动机比例Kim,因此确定广义负荷中待辨识参数为目二比PP,Kpi,Τρ,Imt,Xs, H,SO,Kwg,Kim],其它参数采用典型值。
[0053] 步骤4)将含直驱永磁风电场的配电网广义负荷接入无穷大电网,分析各参数的可 辨识性及辨识难易度。仿真系统如图6所示,图中WG表示风电机组;Z表示恒阻抗负荷;11-13 为输电线路;T1-T3为变压器。该仿真系统搭建于Matlab 201化软件中,系统中直驱永磁风 电场取自Matlab自带的风电场算例(powe;r_wind_type_4_avg),风电机组采用定无功功率 控制方式(Qref = 0)。直驱永磁风电场和常规负荷通过升压变接在25kV的母线B1处,母线B1 进一步升压并入120kV的无穷大系统,静态负荷部分采用恒阻抗负荷模型。
[0054] 扰动设置为母线B1处设置Ξ相短路故障,通过改变接地电阻使得母线B1处电压跌 落分别为20 % Un和80 % Un,故障起始时间为1.7s,持续时间为0.2s,采集B1处的电压、有功功 率、无功功率作为实测数据。
[0055] 计算各参数的轨迹灵敏度,方法如下:
[0056] 41)将待辨识参数目的数值增大Δ Θ,基于Matlab/Simulink平台搭建的配电网广义 负荷并网系统,仿真得到观测量y的受扰轨迹y (9);
[0057] 42)将待辨识参数Θ的数值减少Δ Θ,仿真得到观测量y的受扰轨迹/ (Θ);
[005引43)根据公式
十算参数目的轨迹灵敏度Sj,式中,η为 观测量的采样点个数,A θ = 10%θ0,其中θ0为待辨识参数Θ的初始值。
[0化9] 电压跌落分别为20%化和80%Un,且风电比例为1^ = 50%也。=50%下各参数的 轨迹灵敏度曲线,分别见图7和图8。
[0060] 根据图7在电压跌落较小情况下的轨迹灵敏度曲线,看出广义负荷模型中各参数 [虹。,虹1,了。,乂3,扣的轨迹灵敏度曲线不同时过零,据此判别参数可唯一辨识。根据图6的轨 迹灵敏度大小,判断参数[Tp,Xs,扣的轨迹灵敏度数值较大,容易辨识;参数比Ρρ,Κρι]的轨迹 灵敏度数值较小,相对难W辨识。且由于电动机的初始滑差so、风电场发电功率比例系数Kwg W及电动机负荷功率比例系数Kim对广义负荷的动态影像较大,因此在电压跌落较小时,选 择参数比PP,Kpi,Τρ,Xs,Η,so,Kwg,Kim]作为待辨识参数。
[0061] 根据图8在;相电压跌落较大情况下的轨迹灵敏度大小,得出参数[Κρρ,ΚΡι,Τρ]的 轨迹灵敏度较小,但参数[lmt,Xs,H]的轨迹灵敏度较大。根据图8的轨迹灵敏度曲线形状来 看,参数[lmt,Xs,H]的轨迹灵敏度曲线不同时过零,可唯一辨识。因此在电压跌落较大情况 下,选择参数[Imt,Xs,Η,so,Kwg,Kim]作为待辨识参数。
[0062] 步骤5)综合PSO及LM方法对含直驱永磁风电场的配电网广义负荷模型进行参数辨 识。
[0063] 设工况为:Kwg = 50%,Kim=50%,基于Matlab/Simulink平台搭建的详细模型,仿 真获得Ξ相电压跌落下广义负荷出口有功功率和无功功率受扰轨线,并W此为基准,基于 所提出的含直驱永磁风电场的配电网简化模型进行拟合,据此辨识简化模型中各参数。
[0064] 辨识时先采用PS0方法获得优化结果,再采用LM算法在PS0优化结果基础上局部寻 优。
[00 化]
[0066] 在Kwg = 50 %,Kim= 50 %工况下的参数辨识结果见表1。Ξ相电压跌落20 %化下的 PS0方法的参数辨识结果,见表1。
[0067] 表1电压跌落20 %Un下PS0方法的参数辨识结果
[006引
[0069]
[0070] 步骤6)将PSO算法的结果作为LM算法的初始点,进行局部寻优,目标函数与粒子群 算法目标函数一致,电压跌落20%UN下LM算法辨识结果,见表2。选取表2中误差最小的辨识 结果作为参数的最终的辨识值,见表2中的第2列参数。根据参数的辨识结果进行实际与辨 识结果的仿真曲线对比,见图9。
[0071 ]表2电压跌落20%Un下LM方法的参数辨识结果
[0072]
[0073] 采用相同的方法,可得电压跌落80%Un的PSO及LM方法的参数辨识结果,见表3。[0074] 表3电压跌落50 % UN下的参数辨识结果
[0075]
[0076]
[0077] 步骤7)选取表3中误差最小的辨识结果作为参数的最终的辨识值,见表3中的第3 列参数。根据参数的辨识结果进行实际与辨识结果的仿真曲线对比,见图10。
[0078] W上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人 员来说,在不脱离本发明技术原理的前提下,还可W做出若干改进和变形,运些改进和变形 也应视为本发明的保护范围。
【主权项】
1. 一种含直驱永磁风电场的配电网广义负荷建模方法,其特征是,包括如下步骤: 1) 建立直驱永磁风电机组的简化模型; 2) 在风电机组出口设置三相对称电压跌落,将某一电压跌落场景下的有功功率和无功 功率受扰轨线作为参考,基于步骤1)所建立的简化模型进行曲线拟合,先采用粒子群优化 算法获得优化结果,再采用Levenberg-Marquardt算法在粒子群优化算法优化结果基础上 进一步局部寻优,最后得到直驱永磁风电机组简化模型中各参数的辨识值; 以参数辨识结果为基准,分析其它电压跌落场景下实际受扰轨线与基于参数辨识值的 受扰轨线偏差,分析模型的适应性; 3) 将步骤1)所建立的简化模型与传统负荷并联,建立含直驱永磁风电场的配电网广义 负荷模型结构; 4) 在广义负荷出口设置对称三相电压跌落扰动,将广义负荷出口的有功功率、无功功 率作为输出信号,计算广义负荷模型中各参数的轨迹灵敏度;根据轨迹灵敏度幅值大小,确 定广义负荷模型中的重点参数;根据轨迹灵敏度相位,确定广义负荷模型参数的可辨识性; 5) 根据步骤4)确定的重点参数,设定其搜索范围并随机生成初始值;以步骤4)设置的 电压跌落扰动,基于广义负荷出口的有功功率、无功功率作为参考信号,采用粒子群优化算 法辨识广义负荷模型中的重点参数; 6) 将基于粒子群优化算法的参数辨识结果作为Levenberg-Marquardt算法的初始值, 进一步采用Levenberg-Marquardt算法进行局部寻优,获得参数的最终辨识结果; 7) 计算实际轨线和基于辨识结果的仿真轨线的偏差,选取偏差指标最小时的参数辨识 结果,作为最终的参数辨识值。2. 根据权利要求1所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述步骤1)中直驱永磁风电机组的简化模型包括有功环节和无功环节;所述有功环节 的输入量为风电机组有功功率参考值与有功功率实际值的偏差,输出环节为d轴电流;所述 无功环节的输入量与风电机组的控制方式有关。3. 根据权利要求1所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述步骤2)中曲线拟合辨识直驱永磁风电机组模型参数,辨识的目标函数为偏差指标 err达到最小,即:,其中,η为辨识时间 窗口内的总点数;Pest(k)和Qest(k)分别为辨识时间窗口内第k个基于辨识结果仿真得到的 直驱风电机组出口的有功功率和无功功率;Preai(k)和Qreai(k)分别为辨识时间窗口内第k个 基于实际值仿真得到直驱风电机组出口的有功功率和无功功率。4. 根据权利要求1所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述步骤4)中轨迹灵敏度的获取方法如下: 41) 将待辨识参数Θ的数值增大ΔΘ,基于Matlab/Simulink平台搭建的配电网广义负荷 并网系统,仿真得到观测量y的受扰轨迹y(9),其中Δ Θ为增量,Δ θ = 1〇%θ〇,其中θ〇为待辨 识参数Θ的初始值; 42) 将待辨识参数Θ的数值减少Δ Θ,仿真得到观测量y的受扰轨迹y' (Θ);廿算参数Θ的轨迹灵敏度&,式中,η为观测 量的采样点个数。5. 根据权利要求1所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述步骤4)中重点参数的选择方法为:在所有参数的轨迹灵敏度中,选择轨迹灵敏度最 小值η倍以上的参数作为重点参数,η依据经验值选择。6. 根据权利要求4所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述η=5。7. 根据权利要求1所述的一种含直驱永磁风电场的配电网广义负荷建模方法,其特征 是,所述步骤5)辨识广义负荷中的重点参数I时,辨识的目标函数为偏差指标err达到最小,,其中0max和0min分别 为待辨识参数的最大设定值和最小设定值,η为辨识时间窗口内的总点数;(k)和Qd(k) 分别为辨识时间窗口内第k个基于辨识结果仿真得到的直驱风电机组出口的有功功率和无 功功率;Preal(k)和Q real(k)分别为辨识时间窗口内第k个基于实际值仿真得到直驱风电机组 出口的有功功率和无功功率。
【文档编号】H02J3/38GK106058937SQ201610616460
【公开日】2016年10月26日
【申请日】2016年7月29日
【发明人】潘学萍, 冯徐徐, 鞠平, 吴峰, 金宇清
【申请人】河海大学