基于等式约束的辅助电容分布式单箝位mmc自均压拓扑的制作方法

文档序号:10967541阅读:420来源:国知局
基于等式约束的辅助电容分布式单箝位mmc自均压拓扑的制作方法
【专利摘要】本实用新型提供基于等式约束的辅助电容分布式单箝位MMC自均压拓扑。单箝位MMC自均压拓扑,由单箝位MMC模型和自均压辅助回路联合构建。单箝位MMC模型与自均压辅助回路通过辅助回路中的6N个IGBT模块发生电气联系,IGBT模块触发,两者构成基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,IGBT模块闭锁,拓扑等效为单箝位MMC拓扑。该单箝位MMC自均压拓扑,可以箝位直流侧故障,同时不依赖于专门的均压控制,能够在完成直交流能量转换的基础上,自发地实现子模块电容电压的均衡,同时能相应降低子模块触发频率和电容容值,实现单箝位MMC的基频调制。
【专利说明】
基于等式约束的辅助电容分布式单箝位MMC自均压拓扑
技术领域
[0001] 本实用新型涉及柔性输电领域,具体涉及一种基于等式约束的辅助电容分布式单 箝位MMC自均压拓扑。
【背景技术】
[0002] 模块化多电平换流器MMC是未来直流输电技术的发展方向,MMC采用子模块级联的 方式构造换流阀,避免了大量器件的直接串联,降低了对器件一致性的要求,同时便于扩容 及冗余配置。随着电平数的升高,输出波形接近正弦,能有效避开低电平VSC-HVDC的缺陷。
[0003] 单箝位MMC由单箝位子模块组合而成,每个单箝位子模块由3个IGBT模块,1个子模 块电容,1个二极管及1个机械开关构成,成本低,运行损耗小。
[0004] 与两电平、三电平VSC不同,丽C的直流侧电压并非由一个大电容支撑,而是由一系 列相互独立的悬浮子模块电容串联支撑。为了保证交流侧电压输出的波形质量和保证模块 中各功率半导体器件承受相同的应力,也为了更好的支撑直流电压,减小相间环流,必须保 证子模块电容电压在桥臂功率的周期性流动中处在动态稳定的状态。
[0005] 基于电容电压排序的排序均压算法是目前解决MMC中子模块电容电压均衡问题的 主流思路。首先,排序功能的实现必须依赖电容电压的毫秒级采样,需要大量的传感器以及 光纤通道加以配合;其次,当子模块数目增加时,电容电压排序的运算量迅速增大,为控制 器的硬件设计带来巨大挑战;此外,排序均压算法的实现对子模块的开断频率有很高的要 求,开断频率与均压效果紧密相关,在实践过程中,可能因为均压效果的限制,不得不提高 子模块的触发频率,进而带来换流器损耗的增加。
[0006] 文献"A DC-Link Voltage Self-Balance Method for a Diode-Clamped Modular Multilevel Converter With Minimum Number of Voltage Sensors",提出了一 种依靠钳位二极管和变压器来实现MMC子模块电容电压均衡的思路。但该方案在设计上一 定程度破坏了子模块的模块化特性,子模块电容能量交换通道也局限在相内,没能充分利 用MMC的既有结构,三个变压器的引入在使控制策略复杂化的同时也会带来较大的改造成 本。 【实用新型内容】
[0007] 针对上述问题,本实用新型的目的在于提出一种经济的,模块化的,不依赖均压算 法,同时能相应降低子模块触发频率和电容容值且具有直流故障箝位能力的单箝位MMC自 均压拓扑。
[0008] 本实用新型具体的构成方式如下。
[0009] 基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,包括由A、B、C三相构成的 单箝位丽C模型,A、B、C三相分别由2N个单箝位子模块,2个桥臂电抗器串联而成;包括由6N 个IGBT模块,6N+7个钳位二极管,4个辅助电容及4个辅助IGBT模块构成的自均压辅助回路。
[0010] 上述基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,A相上下桥臂,单箝 位子模块中,二极管连接子模块电容正极,IGBT模块连接子模块电容负极。A相上桥臂的第I 个子模块,其子模块二极管与IGBT模块联结点向下与A相上桥臂的第2个子模块IGBT模块中 点相连,其子模块IGBT模块中点向上与直流母线正极相连;A相上桥臂的第i个子模块,其中 i的取值为2~N-I,其子模块二极管与IGBT模块联结点向下与A相上桥臂的第i+Ι个子模块 IGBT模块中点相连,其子模块IGBT模块中点向上与A相上桥臂的第i-Ι个子模块二极管与 IGBT模块联结点相连;A相上桥臂的第N个子模块,其子模块二极管与IGBT模块联结点向下 经两个桥臂电抗器Lo与A相下桥臂的第1个子模块IGBT模块中点相连,其子模块IGBT模块中 点向上与A相上桥臂的第N-I个子模块二极管与IGBT模块联结点相连;A相下桥臂的第i个子 模块,其中i的取值为2~N-I,其子模块二极管与IGBT模块联结点向下与A相下桥臂的第i+1 个子模块IGBT模块中点相连,其IGBT模块中点向上与A相下桥臂的第i-1个子模块二极管与 IGBT模块联结点相连;A相下桥臂的第N个子模块,其子模块二极管与IGBT模块联结点向下 与直流母线负极相连,其子模块IGBT模块中点向上与A相下桥臂的第N-I个子模块二极管与 IGBT模块联结点相连。B相上下桥臂,单箝位子模块中,IGBT模块连接子模块电容正极,二极 管连接子模块电容负极。B相上桥臂的第1个子模块,其子模块二极管与IGBT模块联结点向 上与直流母线正极相连,其子模块IGBT模块中点向下与B相上桥臂的第2个子模块二极管与 IGBT模块联结点相连;B相上桥臂的第i个子模块,其中i的取值为2~N-I,其子模块二极管 与IGBT模块联结点向上与B相上桥臂的第i-Ι个子模块IGBT模块中点相连,其子模块IGBT模 块中点向下与B相上桥臂的第i+Ι个子模块二极管与IGBT模块联结点相连;B相上桥臂的第N 个子模块,其子模块二极管与IGBT模块联结点向上与B相上桥臂的第N-I个子模块IGBT模块 中点相连,其子模块IGBT模块中点向下经两个桥臂电抗器Lo与B相下桥臂的第1个子模块二 极管与IGBT模块联结点相连;B相下桥臂的第i个子模块,其中i的取值为2~N-I,其子模块 二极管与IGBT模块联结点向上与B相下桥臂的第i-Ι个子模块IGBT模块中点相连,其子模块 IGBT模块中点向下与B相下桥臂的第i+Ι个子模块二极管与IGBT模块联结点相连;B相下桥 臂的第N个子模块,其子模块二极管与IGBT模块联结点向上与B相下桥臂第N-I个子模块 IGBT模块中点相连,其子模块IGBT模块中点向下与直流母线负极相连。C相上下桥臂子模块 的连接方式可以与A相一致,也可以与B相一致。
[0011]上述基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,自均压辅助回路中, 第一个辅助电容正极连接辅助IGBT模块,负极连接钳位二极管并入直流母线正极;第二个 辅助电容负极连接辅助IGBT模块,正极连接钳位二极管并入直流母线负极;第三个个辅助 电容正极连接辅助IGBT模块,负极连接钳位二极管并入直流母线正极;第四个辅助电容负 极连接辅助IGBT模块,正极连接钳位二极管并入直流母线负极。钳位二极管,通过IGBT模块 连接A相上桥臂中第1个子模块电容与辅助电容正极;通过IGBT模块连接A相上桥臂中第i个 子模块电容与第i+Ι个子模块电容正极,其中i的取值为1~N-I;通过IGBT模块连接A相上桥 臂中第N个子模块电容与A相下桥臂第1个子模块电容正极;通过IGBT模块连接A相下桥臂中 第i个子模块电容与A相下桥臂第i+Ι个子模块电容正极,其中i的取值为1~N-I;通过IGBT 模块连接A相下桥臂中第N个子模块电容与第二个辅助电容正极。钳位二极管,通过IGBT模 块连接B相上桥臂中第1个子模块电容与第一个辅助电容负极;通过IGBT模块连接B相上桥 臂中第i个子模块电容与第i+Ι个子模块电容负极,其中i的取值为1~N-I;通过IGBT模块连 接B相上桥臂中第N个子模块电容与B相下桥臂第1个子模块电容负极;通过IGBT模块连接B 相下桥臂中第i个子模块电容与B相下桥臂第i + 1个子模块电容负极,其中i的取值为1~N-1;通过IGBT模块连接B相下桥臂中第N个子模块电容与第二个辅助电容负极。C相子模块的 连接关系与A相一致时,C相上下桥臂中子模块间钳位二极管的连接方式与A相一致,同时第 三个辅助电容正极经IGBT模块、钳位二极管连接C相上桥臂第一个子模块电容正极,第三个 辅助电容负极经IGBT模块、钳位二极管连接B相上桥臂第一个子模块电容负极,第四个辅助 电容正极经IGBT模块、钳位二极管连接C相下桥臂第N个子模块电容正极,第四个辅助电容 负极经IGBT模块、钳位二极管连接B相下桥臂第N个子模块电容负极;C相子模块的连接关系 与B相一致时,C相上下桥臂中子模块间钳位二极管的连接方式与B相一致,同时第三个辅助 电容负极经IGBT模块、钳位二极管连接C相上桥臂第一个子模块电容负极,第三个辅助电容 正极经IGBT模块、钳位二极管连接A相上桥臂第一个子模块电容正极,第四个辅助电容负极 经IGBT模块、钳位二极管连接C相下桥臂第N个子模块电容负极,第四个辅助电容正极经 IGBT模块、钳位二极管连接A相下桥臂第N个子模块电容正极。
【附图说明】
[0012] 下面结合附图对本实用新型进一步说明。
[0013] 图1是单箝位子模块的结构示意图;
[0014] 图2是基于等式约束的辅助电容分布式单箝位MMC自均压拓扑。
【具体实施方式】
[0015] 为进一步阐述本实用新型的性能与工作原理,以下结合附图对对实用新型的构成 方式与工作原理进行具体说明。但基于该原理的单箝位MMC自均压拓扑不限于图2。
[0016] 参考图2,基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,包括由A、B、C三 相构成的单箝位MMC模型,A、B、C三相分别由2N个单箝位子模块,2个桥臂电抗器串联而成; 包括由6N个IGBT模块,6N+7个钳位二极管,4个辅助电容C 1、C2、C3、C4,4个辅助IGBT模块T1、 T2、T3、T4构成的自均压辅助回路。
[0017] 单箝位MMC模型中,A相上下桥臂,单箝位子模块中,二极管连接子模块电容正极, IGBT模块连接子模块电容负极。A相上桥臂的第1个子模块,其子模块二极管与IGBT模块联 结点向下与A相上桥臂的第2个子模块IGBT模块中点相连,其子模块IGBT模块中点向上与直 流母线正极相连;A相上桥臂的第i个子模块,其中i的取值为2~N-I,其子模块二极管与 IGBT模块联结点向下与A相上桥臂的第i+Ι个子模块IGBT模块中点相连,其子模块IGBT模块 中点向上与A相上桥臂的第i-Ι个子模块二极管与IGBT模块联结点相连;A相上桥臂的第N个 子模块,其子模块二极管与IGBT模块联结点向下经两个桥臂电抗器Lo与A相下桥臂的第1个 子模块IGBT模块中点相连,其子模块IGBT模块中点向上与A相上桥臂的第N-I个子模块二极 管与IGBT模块联结点相连;A相下桥臂的第i个子模块,其中i的取值为2~N-I,其子模块二 极管与IGBT模块联结点向下与A相下桥臂的第i+Ι个子模块IGBT模块中点相连,其IGBT模块 中点向上与A相下桥臂的第i-Ι个子模块二极管与IGBT模块联结点相连;A相下桥臂的第N个 子模块,其子模块二极管与IGBT模块联结点向下与直流母线负极相连,其子模块IGBT模块 中点向上与A相下桥臂的第N-I个子模块二极管与IGBT模块联结点相连。B相上下桥臂,单箝 位子模块中,IGBT模块连接子模块电容正极,二极管连接子模块电容负极。B相上桥臂的第1 个子模块,其子模块二极管与IGBT模块联结点向上与直流母线正极相连,其子模块IGBT模 块中点向下与B相上桥臂的第2个子模块二极管与IGBT模块联结点相连;B相上桥臂的第i个 子模块,其中i的取值为2~N-I,其子模块二极管与IGBT模块联结点向上与B相上桥臂的第 i-Ι个子模块IGBT模块中点相连,其子模块IGBT模块中点向下与B相上桥臂的第i+Ι个子模 块二极管与IGBT模块联结点相连;B相上桥臂的第N个子模块,其子模块二极管与IGBT模块 联结点向上与B相上桥臂的第N-I个子模块IGBT模块中点相连,其子模块IGBT模块中点向下 经两个桥臂电抗器Lo与B相下桥臂的第1个子模块二极管与IGBT模块联结点相连;B相下桥 臂的第i个子模块,其中i的取值为2~N-1,其子模块二极管与IGBT模块联结点向上与B相下 桥臂的第i-Ι个子模块IGBT模块中点相连,其子模块IGBT模块中点向下与B相下桥臂的第i+ 1个子模块二极管与IGBT模块联结点相连;B相下桥臂的第N个子模块,其子模块二极管与 IGBT模块联结点向上与B相下桥臂第N-I个子模块IGBT模块中点相连,其子模块IGBT模块中 点向下与直流母线负极相连。C相上下桥臂子模块的连接方式与A相一致。
[0018] 自均压辅助回路中,辅助电容C1正极连接辅助IGBT模块T1,负极连接钳位二极管并 入直流母线正极;辅助电容&负极连接辅助IGBT模块T 2,正极连接钳位二极管并入直流母线 负极;辅助电容C3正极连接辅助IGBT模块T3,负极连接钳位二极管并入直流母线正极,辅助 电容C 4负极连接辅助IGBT模块T4,正极连接钳位二极管并入直流母线负极。钳位二极管,通 过IGBT模块Tauj连接A相上桥臂中第1个子模块电容C- au-j与辅助电容C1正极;通过IGBT模块 Tau_i、Tau_i+1连接A相上桥臂中第i个子模块电容C- au-_i与第i+Ι个子模块电容C-au-_i+1正极,其 中i的取值为1~N-1;通过IGBT模块T au_N、Taij连接A相上桥臂中第N个子模块电容C-au-_ N与A 相下桥臂第1个子模块电容C-al-_l正极;通过IGBT模块Tal_i、Tal_i+l连接A相下桥臂中第i个子 模块电容C- ai-_i与A相下桥臂第i+Ι个子模块电容C-ai-_i+i正极,其中i的取值为1~N-I;通过 IGBT模块Tai_N连接A相下桥臂中第N个子模块电容C-ai_ N与辅助电容C2正极。钳位二极管,通 过IGBT模块IVu连接B相上桥臂中第1个子模块电容C- bu-j与辅助电容C1、辅助电容C3负极; 通过IGBT模块T bu_i、Tbu_i+1连接B相上桥臂中第i个子模块电容C-bu-_i与第i+Ι个子模块电容 Ciu-少!负极,其中i的取值为1~N-I;通过IGBT模块Tbu_N、Tbij连接B相上桥臂中第N个子模 块电容C_ bu-_N与B相下桥臂第1个子模块电容C-bi-j负极;通过IGBT模块Tbi_i、T bi_i+1连接B相 下桥臂中第i个子模块电容C-bi-_i与B相下桥臂第i+Ι个子模块电容C-bi-_i+i负极,其中i的取 值为1~N-I;通过IGBT模块Tbi_ N连接B相下桥臂中第N个子模块电容C-bi-_N与辅助电容C2、辅 助电容C 4负极。C相上下桥臂子模块间钳位二极管的连接关系与A相一致;C相上桥臂第一个 子模块电容Ccu--J正极经IGBT模块T cuj及钳位二极管连接到辅助电容C3正极;C相下桥臂第 N个子模块电容Cc--Ij正极经IGBT模块Tci_N及钳位二极管连接到辅助电容C 4正极。
[0019] 正常情况下,自均压辅助回路中6N个IGBT模块Tau_i、Tai_i、T bu_i、Tbi_i、Tcu_i、Tci_i常 闭,其中i的取值为I~N,A相上桥臂第一个子模块电容C- au-j旁路时,此时辅助IGBT模块T1 断开,子模块电容C-au-_i与辅助电容(^通过钳位二极管并联;A相上桥臂第i个子模块电容 C-au-_i旁路时,其中i的取值为2~N,子模块电容C-au-_i与子模块电容C-U^ 1通过钳位二极 管并联;A相下桥臂第一个子模块电容C_al_l旁路时,子模块电容Oal-J通过钳位二极管、两 个桥臂电抗器Lo与子模块电容C- au-_N并联;A相下桥臂第i个子模块电容C-ai_i旁路时,其中i 的取值为2~N,子模块电容C-ai-_i与子模块电容031_^通过钳位二极管并联;辅助IGBT模块 T2闭合时,辅助电容C2通过钳位二极管与子模块电容C_al_N并联。
[0020] 正常情况下,自均压辅助回路中6N个IGBT模块Tau_i、Tai_i、Tb u_i、Tbi_i、Tcu_i、Tci_i常 闭,其中i的取值为1~N,辅助IGBT模块T 1闭合时,辅助电容C1与子模块电容C-bu-j通过钳位 二极管并联;B相上桥臂第i个子模块电容C- bu-_i旁路时,其中i的取值为1~N-I,子模块电容 C-bu-_i与子模块电容C-bu-_i+i通过钳位二极管并联;B相上桥臂第N个子模块电容C- bu_N旁路 时,子模块电容C-bu-_N通过钳位二极管、两个桥臂电抗器Lo与子模块电容C-bi-_i并联;B相下 桥臂第i个子模块电容C-bi_i旁路时,其中i的取值为1~N-I,子模块电容C_bi-_i与子模块电 容C_bi_i+i通过钳位二极管并联;B相下桥臂N个子模块电容C_bi_N旁路时,子模块电容C_bi-_N 与辅助电容C-2通过钳位二极管并联。其中辅助IGBT模块T1的触发信号与A相上桥臂第一个 子模块触发信号一致;辅助IGBT模块T2的触发信号与B相下桥臂第N个子模块的触发信号一 致。
[0021] 在直交流能量转换的过程中,各个子模块交替投入、旁路,辅助IGBT模块ThT2交替 闭合、关断,A、B相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列约束:
[0022]

[0023] 由此可知,在单箝位MMC在完成直交流能量转换的动态过程中,满足下面的约束条 件:
[0024]
[0025]
[0026]
[0027]
[0028]
[0029] 由上述具体说明可知,该单箝位MMC拓扑具备子模块电容电压自均衡能力。
[0030] 最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实 施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得 的所有其他实施例,都属于本申请保护的范围。
【主权项】
1. 基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,其特征在于:包括由A、B、C 三相构成的单箝位MMC模型,A、B、C三相分别由2N个单箝位子模块,2个桥臂电抗器串联而 成;包括由6N个IGBT模块,6N+7个钳位二极管,4个辅助电容C!、C 2、C3、C4,4个辅助IGBT模块 Τ!、T2、T3、T4构成的自均压辅助回路。2. 根据权利1所述的基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,其特征在 于:Α相上下桥臂,单箝位子模块中,二极管连接子模块电容正极,IGBT模块连接子模块电容 负极;A相上桥臂的第1个子模块,其子模块二极管与IGBT模块联结点向下与A相上桥臂的第 2个子模块IGBT模块中点相连,其子模块IGBT模块中点向上与直流母线正极相连;A相上桥 臂的第i个子模块,其中i的取值为2~N-1,其子模块二极管与IGBT模块联结点向下与A相上 桥臂的第i+1个子模块IGBT模块中点相连,其子模块IGBT模块中点向上与A相上桥臂的第i -1个子模块二极管与IGBT模块联结点相连;A相上桥臂的第N个子模块,其子模块二极管与 IGBT模块联结点向下经两个桥臂电抗器L〇与A相下桥臂的第1个子模块IGBT模块中点相连, 其子模块IGBT模块中点向上与A相上桥臂的第N-1个子模块二极管与IGBT模块联结点相连; A相下桥臂的第i个子模块,其中i的取值为2~N-1,其子模块二极管与IGBT模块联结点向下 与A相下桥臂的第i + Ι个子模块IGBT模块中点相连,其IGBT模块中点向上与A相下桥臂的第 i-Ι个子模块二极管与IGBT模块联结点相连;A相下桥臂的第N个子模块,其子模块二极管与 IGBT模块联结点向下与直流母线负极相连,其子模块IGBT模块中点向上与A相下桥臂的第 N-1个子模块二极管与IGBT模块联结点相连;B相上下桥臂,单箝位子模块中,IGBT模块连接 子模块电容正极,二极管连接子模块电容负极;B相上桥臂的第1个子模块,其子模块二极管 与IGBT模块联结点向上与直流母线正极相连,其子模块IGBT模块中点向下与B相上桥臂的 第2个子模块二极管与IGBT模块联结点相连;B相上桥臂的第i个子模块,其中i的取值为2~ N-1,其子模块二极管与IGBT模块联结点向上与B相上桥臂的第i-Ι个子模块IGBT模块中点 相连,其子模块IGBT模块中点向下与B相上桥臂的第i+Ι个子模块二极管与IGBT模块联结点 相连;B相上桥臂的第N个子模块,其子模块二极管与IGBT模块联结点向上与B相上桥臂的第 N-1个子模块IGBT模块中点相连,其子模块IGBT模块中点向下经两个桥臂电抗器L〇与B相下 桥臂的第1个子模块二极管与IGBT模块联结点相连;B相下桥臂的第i个子模块,其中i的取 值为2~N-1,其子模块二极管与IGBT模块联结点向上与B相下桥臂的第i-Ι个子模块IGBT模 块中点相连,其子模块IGBT模块中点向下与B相下桥臂的第i+Ι个子模块二极管与IGBT模块 联结点相连;B相下桥臂的第N个子模块,其子模块二极管与IGBT模块联结点向上与B相下桥 臂第N-1个子模块IGBT模块中点相连,其子模块IGBT模块中点向下与直流母线负极相连;C 相上下桥臂子模块的连接方式可以与A相一致,也可以与B相一致;在A、B、C相上下桥臂第i 个子模块上下输出线之间分别并联有机械开关Kau_i、Kal_i、Kbu_i、Kbl_i、Kc;u_i、Kcd_i,其中i的取 值为1~N;上述连接关系构成的A、B、C三相地位一致,三相轮换对称之后的其他拓扑在权利 范围内。3. 根据权利1所述的基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,其特征在 于:自均压辅助回路中,辅助电容&正极连接辅助IGBT模块T!,负极连接钳位二极管并入直 流母线正极;辅助电容(: 2负极连接辅助IGBT模块T2,正极连接钳位二极管并入直流母线负 极;辅助电容C3正极连接辅助IGBT模块Τ 3,负极连接钳位二极管并入直流母线正极,辅助电 容C4负极连接辅助IGBT模块Τ4,正极连接钳位二极管并入直流母线负极;钳位二极管,通过 IGBT模块TauJ连接A相上桥臂中第1个子模块电容C-au-j与辅助电容Q正极;通过IGBT模块 Tau_i、Tau_i+1连接A相上桥臂中第i个子模块电容C- au-_i与第i+Ι个子模块电容C-au-_i+1正极,其 中i的取值为1~N-1;通过IGBT模块T au_N、Taij连接A相上桥臂中第N个子模块电容C-au-_ N与A 相下桥臂第1个子模块电容C-al-_l正极;通过IGBT模块Tal_i、Tal_i+l连接A相下桥臂中第i个子 模块电容C-ai-_i与A相下桥臂第i+Ι个子模块电容C- ai-_i+i正极,其中i的取值为1~N-1;通过 IGBT模块Tai_N连接A相下桥臂中第N个子模块电容C-ai_ N与辅助电容C2正极;钳位二极管,通 过IGBT模块TbuJ连接B相上桥臂中第1个子模块电容C- bu-j与辅助电容&负极;通过IGBT模块 Tbu_i、Tbu_i+1连接Β相上桥臂中第i个子模块电容C- bu-_i与第i+Ι个子模块电容C-bu-_i+1负极,其 中i的取值为1~N-1;通过IGBT模块T bu_N、Tbij连接B相上桥臂中第N个子模块电容C-bu_ N与B 相下桥臂第1个子模块电容C_bi-_i负极;通过IGBT模块Tbi_i、Tbi_i+i连接B相下桥臂中第i个子 模块电容C_bi-_i与B相下桥臂第i+Ι个子模块电容C-bi-_i+i负极,其中i的取值为1~N-1;通过 IGBT模块Tbi_N连接B相下桥臂中第N个子模块电容C-bi-_ N与辅助电容C2负极;C相子模块的连 接关系与A相一致时,C相上下桥臂中子模块间钳位二极管的连接方式与A相一致,同时辅助 电容C 3正极经IGBT模块TcuJ、钳位二极管连接C相上桥臂第一个子模块电容CcuJ正极,辅助 电容C 3负极经IGBT模块TbuJ、钳位二极管连接B相上桥臂第一个子模块电容CbuJ负极,辅助 电容C 4正极经IGBT模块Tcl_N、钳位二极管连接C相下桥臂第N个子模块电容C cl_N正极,辅助电 容C4负极经IGBT模块Tbi_N、钳位二极管连接B相下桥臂第N个子模块电容C bi_N负极;C相子模 块的连接关系与B相一致时,C相上下桥臂中子模块间钳位二极管的连接方式与B相一致,同 时辅助电容C 3负极经IGBT模块TclU、钳位二极管连接C相上桥臂第一个子模块电容CclU负 极,辅助电容C 3正极经IGBT模块TauJ、钳位二极管连接A相上桥臂第一个子模块电容CauJ正 极,辅助电容C 4负极经IGBT模块Tci_N、钳位二极管连接C相下桥臂第N个子模块电容Cci_ N, 极,辅助电容C4正极经IGBT模块Tal_N、钳位二极管连接A相下桥臂第N个子模块电容C al_Ni 极;上述A、B、C三相中 6N 个 IGBT模块Tau_i、Tai_i、Tbu_i、Tbi_i、T cu_i、Tci_i,其中 i 的取值为 1 ~N, 6N+7个钳位二极管,4个辅助电容&、C2、C3、C4及4个辅助IGBT模块Τ!、T 2、T3、T4,共同构成自均 压辅助回路。4.根据权利1所述的基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,其特征在 于:正常情况时,自均压辅助回路中6N个IGBT模块Tau_i、Tai_i、Tbu_i、Tbi_i、T cu_i、Tci_i常闭,故 障情况时,6N个IGBT模块Tau_i、T ai_i、Tbu_i、Tbi_i、Tcu_i、Tci_i断开,其中i的取值为1~N;正常情 况下,A相上桥臂第一个子模块电容C- au-_i旁路时,此时辅助IGBT模块Τι断开,子模块电容 C-au-J与辅助电容&通过钳位二极管并联;Α相上桥臂第i个子模块电容C_au-_i旁路时,其中i 的取值为2~N,子模块电容C-au-_i与子模块电容C-au-_i-i通过钳位二极管并联;A相下桥臂第 一个子模块电容C-al_l旁路时,子模块电容C_al-_1通过钳位二极管、两个桥臂电抗器L〇与子 模块电容C- au-_N并联;A相下桥臂第i个子模块电容C-ai_i旁路时,其中i的取值为2~N,子模 块电容C- al-_i与子模块电容C-ai_i-:通过钳位二极管并联;辅助IGBT模块T2闭合时,辅助电容 C2通过钳位二极管与子模块电容C_al_N并联;辅助IGBT模块Τι闭合时,辅助电容Cl与子模块 电容C-bu-^通过钳位二极管并联;B相上桥臂第i个子模块电容C- bu-_i旁路时,其中i的取值为 1~N-1,子模块电容C_bu-_i与子模块电容C-bu-_i+i通过钳位二极管并联;B相上桥臂第N个子 模块电容C-bu_N旁路时,子模块电容C-bu-_N通过钳位二极管、两个桥臂电抗器L〇与子模块电容 C-bi-_i并联;B相下桥臂第i个子模块电容C-bi_i旁路时,其中i的取值为1~N-1,子模块电容 C_bi-_i与子模块电容C_bi_i+i通过钳位二极管并联;B相下桥臂N个子模块电容C_bi_N旁路时, 子模块电容C-b匕n与辅助电容C-2通过钳位二极管并联;其中辅助IGBT模块h的触发信号与 A相上桥臂第一个子模块触发信号一致;辅助IGBT模块T2的触发信号与B相下桥臂第N个子 模块的触发信号一致;在直交流能量转换的过程中,各个子模块交替投入、旁路,辅助IGBT 模块。、^交替闭合、关断,A相上下桥臂子模块电容电压在钳位二极管的作用下,满足下列 约束,Uc-l 2 Uc-au_l 2 Uc-au_2 …2 Uc-au_N 2 Uc-al_l 2 Uc-al_2··· 2 Uc-al_N 2 Uc-2 ; B 相上下桥臂子模块 电容电压在钳位二极管的作用下,满足下列约束,U〇l dbu_l dbu_2…dbu_N < Uc-bl_l仝 Uc-bijT·· < UC-bi_N < UC-2;基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,动态过程 中,辅助电容&既可以作为A相电压最高的电容,又可以作为B相电压最低的电容;辅助电容 C2既可以作为A相电压最低的电容,又可以作为B相电压最高的电容;依靠着两个等式约束, max(Uca) =min(Ucb),min(Uca)=max(U(;b),A、B相上下桥臂的4N个子模块电容,Cau_i、C ai_i、 Cbu_i、Cbi_i,其中i取值为1~N,以及辅助电容&、&,电压处于自平衡状态,拓扑的A、B相间具 备子模块电容电压自均衡能力;若拓扑中C相的构成形式与A相一致,则通过辅助电容C3、C4 的作用,C、B相间电容电压的约束条件与A、B之间电容电压约束条件类似;若拓扑中C相的构 成形式与B相一致,则通过辅助电容C 3、C4的作用,A、C相间电容电压的约束条件与A、B之间电 容电压约束条件类似,拓扑具备子模块电容电压自均衡能力;在利用钳位二极管实现相内 相邻子模块间电容能量单相流动的基础上,依靠辅助电容电压间的等式约束max(Uc a) =min (Ucb),min(Uca)=max(Ucb),或max(Uca) =min(Ucc),min(Uca)=max(Ucc),或max(Ucc) =min (Ucb) mindkmaxl^cb),实现电容能量的相间流动构成电容能量的循环通路,进而保持相 间子模块电容电压稳定,是该权利的保护内容。5.根据权利1所述的基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,其特征在 于:基于等式约束的辅助电容分布式单箝位MMC自均压拓扑,不仅能作为多电平电压源换流 器直接应用于柔性直流输电领域,也能通过构成静止同步补偿器(STATC0M),统一电能质量 调节器(UPQC),统一潮流控制器(UPFC)等装置应用于柔性交流输电领域;间接利用该实用 新型拓扑及思想的其他应用场合在权利范围内。
【文档编号】H02M1/32GK205657605SQ201620068867
【公开日】2016年10月19日
【申请日】2016年1月25日 公开号201620068867.5, CN 201620068867, CN 205657605 U, CN 205657605U, CN-U-205657605, CN201620068867, CN201620068867.5, CN205657605 U, CN205657605U
【发明人】许建中, 赵成勇, 刘航
【申请人】华北电力大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1