由双旋转y切割石英板制成的石英晶体元件的制作方法

文档序号:7513880阅读:394来源:国知局
专利名称:由双旋转y切割石英板制成的石英晶体元件的制作方法
技术领域
本发明涉及一种由表现为SC切割板(cut plate)、 IT切割板等的双 旋转Y切割石英板制成的石英晶体元件,尤其涉及一种具有稳定振动特 性、易于设计和调整的石英晶体元件。
背景技术
用于作为频率和时间的基准源的石英晶体元件根据从一个单晶石英 晶体中切割出振动板的晶向(crystallographic orientation)分成多种 类型的"切割",振动板即构成晶体元件的晶体坯(crystal blank)。到 现在为止,这些类型的切割例如有X切割、AT切割、BT切割等。
在石英中,根据结晶学限定三个晶轴为X、 Y和Z轴。晶体元件具 有沿着一个平面从石英晶体切割出的晶体坯,该平面限定为正交于石英 的三个晶轴中的一个晶轴的平面以剩下的两个晶轴中的一个为中心旋转 预定角度,然后从已旋转到的位置以最后一个晶轴为中心旋转另一预定角 度,该晶体元件称为双旋转晶体元件。例如,具有沿着通过正交于Y轴的 平面分别以剩下的晶轴中每一个为中心连续旋转而得到的平面切割出的 晶体坯的晶体元件称为由双旋转Y切割板制成的晶体元件。因为由与Y轴 平行的平面得到的石英晶体板称为Y切割板,双旋转Y切割板是具有通过 连续围绕X轴和Z轴旋转Y切割板限定的切割方向的石英晶体板。作为由 双旋转Y切割板制成的晶体元件的例子,例如在日本专利特许公开 4-138708和2000-40937 (JP-A-4-138708和JP-A-2000-040937)中公开 了SC切割晶体元件。
SC切割晶体元件的石英晶体坯在应力敏感度和抗热冲击性 (thermal shock resistance)上尤其具有优越性,因此将其用于需要对 各种环境变化表现出更小的频率偏移的通讯设备的无线基站的高稳定性石英晶体振荡器。然而,sc切割晶体元件的晶体坯的切割方向要通过两
次旋转石英的固有晶轴才能得到,因此存在着SC切割晶体元件的设计和 制造不容易的问题。
图1A和IB示出了 SC切割晶体坯的切割方向,图2示出了由石英晶 体切割出的SC切割晶体坯与石英晶轴之间的关系。
将描述从石英晶体切割出ST切割晶体坯的切割方向。如图1所示, 正交于石英晶体的Y轴的平面围绕X轴从Y轴向Z轴逆时针旋转oc角度。 旋转的结果是,Y轴和Z轴分别变换为相应的Y'轴和Z'轴。下一步,该平 面围绕Z'轴从X轴向Y'轴逆时针旋转p角度。旋转的结果是,X轴和Y'轴 分别变换为相应的X'轴和Y"轴。这样,沿着通过使Y切割板经过两次旋转 操作获得的平面从石英晶体切割出的晶体坯为SC切割晶体坯。需要一提 的是,即使将这两次旋转操作的顺序颠倒,即先围绕z'轴旋转p角度,然 后再围绕新的X'轴旋转oc角度,得到的结果将是一样的。
简而言之,如图2所示,当以石英的晶体学X轴为中心将Y轴和Z 轴旋转ot角度,再以Z'轴为中心将X轴和Y'轴旋转p角度以建立新的晶轴线, 即经过这样旋转后的X'轴、Y"轴和Z'轴,由其主平面正交于Y"轴切割出的 石英晶体板称为双旋转Y切割板。在这种情况下,将切割出的晶体坯1的 主平面是由X'轴和Z'轴确定的平面,并且晶体坯1的厚度方向平行于Y" 轴。
SC切割晶体坯是这种双旋转Y切割板中ot的旋转角参考角度设置为 33度和P的旋转角参考角度设置为22度的切割晶体坯。在此,参考角度 是在晶体坯设计时提供一个参考的切割方向的角度,并且在实际切割出晶 体坯时根据晶体坯的所需温度特性等适当地选择参数值附近的数值。
假定由此获得由SC切割石英板制成的晶体坯1,如图3A和3B所示, 在晶体坯1的每一主平面的中心区域中形成用于在晶体坯1中激发厚度切 变振动的圆形激励电极,这样,得到SC切割晶体元件。石英中的厚度切 变振动具有与晶体坯1的厚度相应的谐振频率,该谐振频率随着晶体坯1 厚度的减少而增加。为了将晶体元件与外电路电连接,下面将描述的引出 电极3从每一激励电极2向晶体坯l的外周部分延伸,如图4所示。这样, 晶体坯在引出电极3延伸的位置得到电和机械保持,并且,将晶体坯密封地装入封装中,其状态为按该方式保持晶体坯,从而完成晶体单元。
在这样的晶体元件中,取决于作为双旋转Y切割板的SC切割板的晶体结构,通过将Z'轴向X'轴旋转Y角,即沿逆时针方向,而得到应力零敏
感度轴(null stress-sensitivity axis) Z'(Y)轴,另外还存在着正交于应力零敏感度轴Z'(Y)轴的另一个应力零敏感度轴X'(Y)轴,g卩,通过将X'轴旋转Y角得到的轴。应力零敏感度轴是指当应力沿着该轴从晶体坯1的两面施加时,频率变化是微小的,包括为零的情况。在SC切割板中Y角的参考角度为大约8度。
在施加应力到晶体坯时其谐振频率将变化,谐振频率还可以通过从保持晶体坯的机械装置施加的应力来改变。因此,为了使谐振频率的这种变化最小化,优选在应力零敏感度轴的两端保持晶体坯。当将平面形状的晶体坯选择为例如是正方形的,晶体坯1设置成是由石英晶体这样切割而得到,即两相互正交的应力零敏感度轴Z'(Y)和X'(Y)分别成为如图4所示的正方形的一对对角线。例如,引出电极3被构造为从激励电极2向成为一个应力零敏感度轴Z'(Y)的对角线的两端延伸。然后,通过机械装置(未图示)保持引出电极3所延伸的两端,在两个点处电和机械地保持晶体坯。当加强晶体元件的强度以应对机械冲击时,晶体坯进一步保持在另一应力零敏感度轴X'(Y)的两端,从而晶体坯最终在四个点处保持。这样两个点或四个点处保持的晶体坯如上所述地密封地装入封装中。
由于晶体坯1的四个角中的每一个角位于距离作为晶体坯中振动区域的中心区域最远,通过向四个角处延伸引出电极3并在角处保持晶体坯可以减小对中心区域的振动特性的影响。虽然也可以将晶体坯1构造成具有圆形的平面形状,但是采用圆形时难以辨别应力零敏感度轴的位置,而当晶体坯构造为具有矩形平面形状时应力零敏感度轴变得更加容易辨别
从而使晶体坯的保持操作更容易。
通过观察SC切割板的厚度切变振动结果,其表现出振动位移(vibration displacement)分布,例如在图5示出的阴影区域中,振动是加强的。即,晶体坯的中心区域由互相正交的应力零敏感度轴Z'(Y)和X'(Y)分成如图示出的四个区域,并且每一个被分割的区域分别具有加强的振动分布。这四个加强的部分的振动位移的幅度基本上相同。在图5中,振动位 移加强的每一个区域的中心用一实心点示出,这四个中心点基本上位于如 图中由点划线示出的正方形的角处。换而言之,沿着与晶体坯的对角线方 向正交的线的并且避免四个加强的振动位移的方向成为上述的应力零敏 感度轴Z'(Y)或X'(Y),因为它不会影响振动位移。
在SC切割晶体元件中,当振动频率相对较低例如不超过20MHz时, 为了将厚度切变振动的振动能量限制在晶体坯的中心区域从而降低晶体 阻抗(crystal impedance) (CI),晶体坯的一个主平面加工成平面的且 另一个主平面加工成凸型,从而形成所谓的平凸形状(piano-convex shape)。
此外,由双旋转Y切割板制成晶体元件的例子包括IT切割石英晶体 元件,其中上述的角oc和(3与SC切割晶体元件中的角度不同,正如美国专 利7, 001, 887中公开的那样。在IT切割石英晶体元件中,a角度的参考 值为34度并且P角度的参考值为19度。
然而,尽管上述的SC切割晶体元件在振动特性如应力敏感度和热冲 击性能上具有优越性,但是振动特性会由于切割出晶体坯时角度的微小差 异而出现巨大变化。例如,晶体元件的振动特性对形成SC切割板的双旋 转Y切割板的切割方向、在形成矩形晶体坯使得角位于与Z'轴或X'轴成8 度倾斜的位置时平面中的切割角度灵敏地作出反应。尽管SC切割晶体元 件具有可用拐点在大约90度温度处的三次曲线表示的频率-温度特性,该 频率-温度特性会由于切割方向和切割角度的微小误差而出现大的变化, 而且晶体阻抗(CI)也会恶化。
当晶体坯1具有例如圆形或矩形而非正方形的形状时,振动特性将对 于与Z'轴或X'轴成8度倾斜的位置的保持位置微小偏移灵敏地作出反应。
当切割方向或切割角度偏离它们的正确值时,观察结果表明在晶体元 件的上述四个部分处的振动位移分布将从正确的对称排列变成非对称排 列,结果,如图6所示,振动位移加强的区域的位置及尺寸改变了。特别 是当晶体坯构成为具有正方形平面形状时,必须减少晶体坯切割方向和切 割角度的误差,因此SC切割晶体元件的设计和制造将更困难并由此而降 低了生产率。

发明内容
本发明的一个目的是提供易于设计和制造并且振动特性能很好地维
持的由双旋转Y切割石英板制成的晶体元件。
本发明的目的通过由双旋转Y切割板制成的晶体元件来达到,晶体元 件包括从石英晶体切割出的晶体坯,晶体坯的一个主平面与Y"轴正交, 其中Y轴和Z轴围绕石英晶体的X轴旋转oc角度后指定为Y'轴和Z'轴,X 轴和Y'轴围绕Z'旋转p角度后指定为X'轴和Y"轴;其中,晶体坯具有相互 正交的两条应力零敏感度轴以及从应力零敏感度轴以直角相互交叉的中 心处放射状地分开的四个振动位移加强区域;其中,在应力零敏感度轴相 互以直角交叉处即中心部分的厚度增加,且形成从中心部分向晶体坯的外 周部分限定四角锥形形状的脊线部分;且其中,当提供与四角锥形形状的 顶角相对的底面时,晶体坯沿着底面的截面厚度在晶体坯的中心区域较大 且向晶体坯的两末端逐渐变小。
根据这样的构造,在相互正交的应力零敏感度轴之间的四个区域的加 强的振动位移被限制在相互正交的应力零敏感度轴之间的四个加厚的区 域中的每一个中。即使作为双旋转Y切割板的晶体坯的切割方向、切割角 度和保持位置出现一些偏差,在这四个区域的振动位移能量也被限制在那 四个区域,且约束其泄漏,从而防止具有加强的振动位移的区域之间的相 互干涉。因此,可以防止由于振动能量的泄漏导致的CI恶化以及由于相 互干涉导致的频率-温度特性的变化。这样,可以得到由双旋转Y切割板 制成的晶体元^1=,其具有更优越的振动特性且易于设计和制造。


图IA和1B示出了从石英晶体中切割出SC切割晶体坯的切割方向; 图2示出SC切割晶体坯与X'轴、Y"轴及Z'轴之间的关系; 图3A和3B是平面图和截面图,分别示出传统SC切割晶体元件的基 本结构;
图4是传统的SC切割晶体元件的一个例子的平面图; 图5是SC切割晶体元件的振动位移分布的平面图;图6是具有不对称振动位移分布的SC切割晶体元件的平面图; 图7是根据本发明第一实施例的用于SC切割晶体元件的晶体坯的 透视图8是描述得到图7中所示的晶体坯的处理方法的视图9A和9B是平面图和A-A线截面图,分别示出第一实施例的SC 切割晶体元件的工作原理;
图IO是第一实施例的SC切割晶体元件的振动位移分布的平面图11A和11B是可用于第一实施例的SC切割晶体元件的晶体坯的 其它例子的透视图12A是用于根据本发明第二实施例SC切割晶体元件的晶体坯的 透视图12B和12C是平面图和A-A线截面图,分别示出第二实施例的SC 切割晶体元件;
图13是可用于第二实施例的SC切割晶体元件的晶体坯的另一例子 的透视图;以及
图14可用于本发明另一个实施例的晶体元件的晶体坯的一个例子 的平面图。
具体实施例方式
图7示出根据本发明第一实施例的由双旋转Y切割板制成的石英晶 体元件。特别是,图7示例说明构成该晶体元件的石英晶体坯。在此, 将描述双旋转Y切割板为SC切割石英板的情况。
SC切割晶体元件采用晶体坯1,晶体坯1具有正交于Y"轴的主平面, 这里Y轴旋转再次,以旋转角(参考角)a和p从晶体学X轴和Z轴分别 旋转22度和33度,得到称为X'轴、Y"轴和Z'轴的三个轴(见图2)。晶 体坯1在此同样构造为具有正方形平面的形状,以使对角线自Z'轴和X' 轴成为应力零敏感度轴Z'(Y)和X'(Y),对角线分别从Z'轴和X'轴分别 倾斜角度Y。这里Y为8度。
在这个实施例中,作为SC切割板的晶体坯1的一个主平面形成为以 中心点为顶点的四角锥形(quadrangular pyramid)形状。具体地,形成底边为晶体坯的相应的四条边、宽度从顶点(或顶点部分)到每一底边渐 渐增加的三角形倾斜表面,并且脊线部分P形成在这些倾斜表面之间。在 这种情况下,晶体坯1的主平面的中心点对应于两应力零敏感度轴相交成 直角的点。进一步,在晶体坯l的一个主平面中的四个三角形倾斜表面各 自在正交于晶体坯的外围边(底边)的方向上具有曲率相同的凸曲线形, 并且相应地,脊线部分也形成为曲线形状。在晶体坯1中,四边的各个位 置的端面基本上具有相同的厚度"t"。晶体坯1的另一主平面加工为平面。 即,晶体坯l具有这样的形状,每一侧面形成为凸曲线形表面的四角锥设 置在具有均匀厚度t的底板部分的一个主平面上。
具有这样形状的晶体坯1可通过使用研磨板4加工成半圆柱体形状,
例如,如图8所示。首先,准备刚从石英晶体中切割出来的具有近似均匀 厚度的正方形晶体坯,并且使一个主平面邻接并且压到研磨板4的内周面 上,如图中的箭头A所示。此时,晶体坯l的四边被安置为与研磨板4的 宽度和长度方向一致。然后,在晶体坯的一个主平面压在研磨板4上的同 时研磨板4沿宽度方向转动,如箭头B所示,并且还沿长度方向C前后移 动。
研磨板4和晶体坯1之间的这种相对运动使晶体坯1的一个主平面沿 着研磨板4的内周加工成凸曲面,并且该凸曲面沿着所示的方向C线性延 伸。此时,如此进行研磨使晶体坯的恒定厚度在方向C上在晶体坯1的端 面保留下来。接下来,晶体坯1旋转90度且类似地研磨从而使厚度t保 留下来。
这样,通过沿着正方形正交的两边的方向的这样的曲面研磨,晶体坯 1将被加工成四角锥形形状,其顶点使晶体坯1的一个主平面的中心部分, 其在四个面的每一面具有等腰三角形状的倾斜表面,如图7所示。在这种 情况下,每一倾斜表面构造成具有从顶点向晶体坯四边的模仿研磨板4的 内周的曲率的凸曲表面。虽然脊线部分P也形成为凸曲线,其曲线比研磨 板4的曲率更平缓。
其后,上述的激励电极2和引出电极3形成在晶体坯1的两个主平面 上。在这种情况下,依旧如图3所示,每一激励电极2以圆形形状提供, 并且引出电极3从激励电极2向作为一个应力零敏感度轴Z' ( Y )的对角线
10部分的两端延伸。形成有如上述的激励电极2和引出电极3的SC切晶体
元件通过保持作为一个应力零敏感度轴Z' ( Y )的对角线的两端而在两点
处保持,或者通过保持与两个应力零敏感度轴X' ( Y )和Z' ( Y )对应的对角
线的两端而在四点处保持,并且密封地装入晶体元件的封装中。这样一个 晶体单元就完成了。
图9A是如上述的晶体坯l的平面图且图中的虚线是显示轮廓的线,
即晶体坯1的厚度为一定的固定值的位置。这样,在晶体坯1的一个主平 面上,在垂直方向上的截面的厚度在正方形的各边上是相同的,因为每一 正方形相对于晶体坯的中心点而共中心地设置。因此,在平行于晶体坯l
的各边的线上的晶体坯的垂直截面如图9B所示。图9B是沿着图9A中的 A-A线的晶体坯1截面图。g卩,在宽度方向上横过晶体坯l的一个主平面 上的每一个三角形形状的倾斜表面的截面厚度将是相同的。厚度在以脊线 部分P为界的倾斜表面上渐渐变小。因此,沿着A-A线得到的截面成为所 谓的倾斜面形状,其厚度在中心点是大的,并且以脊线部分P为界的两侧 倾斜,从而减小厚度。
在本实施例中,每个脊线部分P与晶体坯1的相互正交应力零敏感度 轴Z'(Y)和X'(Y)对应。表现出加强的振动位移以及被应力零敏感度轴 Z'(Y)和X'(Y)分开的区域出现在四个倾斜表面的每一个上。进一步,由 于在每一倾斜表面中振动位移加强的区域中,在与每一倾斜表面的每一外 周平行的线上的截面形成为倾斜形状,振动能量(振动位移)由此而被强 制限制。换而言之,在此结构中,晶体坯l的一个主平面中的脊线P成为 增加中心区域厚度以及在每一截面的两侧上渐渐减少截面厚度的边界条 件。因此,如图10所示,加强的振动位移被限制在脊线部分P之间的四 个部分中,并且这四个振动位移区域的位置的分开变得清晰。
在本实施例中,振动位移加强的区域将被限制在由脊线部分P分开的 部分中。即使当切割出SC切割板时存在着切割方向的误差,或者在形成 矩形晶体坯使得对角线方向与应力零敏感度轴Z'(Y)和X'(Y)相对应时 在平面内存在着切割角度的偏差,或者存在着由于切割角度的偏差而造成 的晶体坯的保持位置的偏差,也可能将晶体元件的取决于振动位移分布的 频率-温度特性、以及振动特性如CI等维持在良好的状况下。根据本实施例,设计和制造振动特性维持良好的晶体元件将变得简单。
需要指出的是,在第一实施例中,晶体坯1的一个主平面被加工成四 角锥形形状,其中心部分是最高点或顶点,并且进一步,四角锥形的顶点 部分可加工成平坦表面形状,如图IIA和IIB所示。平坦表面形状是完全 平坦的面或者具有小曲率的凸曲表面。这种平坦表面可通过在形成四角锥 形形状的处理之后将晶体坯1的一个主平面的中心部分邻接研磨板(未图 示)而形成,该研磨板具有平坦的表面或者具有小曲率的球形表面。通过
这些处理,晶体坯l的顶点部分5加工成如图IIA所示的平坦表面,和顶 点部分5加工成如图11A所示的具有小曲率的球形表面形状。在图11B所 示的情况中,顶点部分5的曲率可比四角锥形的倾斜边的曲率更小。如此, 通过使顶点部分5成为平坦表面形状,可以整体地调整顶点的不对称,从
而进一步改善晶体元件的振动特性,这种不对称是在将晶体坯的一个主平 面加工成四角锥形形状时引起的。
迸一步,通过将晶体坯1的一个主平面加工成晶体坯1的厚度比与目 标频率的标准值相对应的厚度稍大的四角锥形形状,并且其后将四角锥形 的顶点部分5加工成平坦表面形状从而减少晶体坯1的厚度,可以将晶体 坯1的振动频率调整到目标频率的标准值范围内。这种振动频率调整在随 后描述的第二实施例中按照类似的方式执行。
图12A示出根据本发明第二实施例由双旋转Y切割板制得的晶体元 件。在此,将对双旋转Y切割板为SC切割板的情况进行描述。图12A示 出在这种SC切割板晶体元件中的晶体坯。在图中,和上述每一图中的类 似元件采用类似的附图标记,从而简化或省略多余的描述。
在上述的第一实施例中,提供脊线部分P使其在具有正方形平面形状 的晶体坯l的第一主平面中沿对角线方向延伸。相反地,在第二实施例中, 脊线部分P构造为线连接晶体坯1的两对对边中的每一对的一对对边的中 点。即,脊线P是交叉的形状以连接晶体坯1的外周的每一边的中点。当 通过例如使用如图8所示的半圆柱体形的研磨板4形成晶体坯1时,该晶 体坯1可被研磨使得对角线方向沿着研磨板4的长度方向取向,这和第一 实施例的情况相反。同时在这种情况中,构造成使得晶体坯的每一对角线 方向和应力零敏感度轴Z'(Y)及X'(Y)相互正交。
12图12B是第二实施例中的晶体坯l的平面图,图中的虚线表示轮廓。 图12C是晶体坯1沿着图12B中的A-A线得到的截面图。在第二实施例的 情况中,晶体坯1中厚度相同的位置是互连距脊线P是的交点距离相等的 四个点的正方形的各边,此时考虑两条脊线的交点。该正方形的各边可看 作是顶点在脊线P的交点处的四角锥形的底边。沿着与晶体坯的各边平行 的线的截面,例如,沿着A-A线的截面成为倾斜表面,其宽度方向的中心 点是脊线P,其厚度在脊线处最大并且向两边逐渐变小。
在第二实施例中,和第一实施例的情况一样,在晶体坯1的中心区域 中相互正交的应力零敏感度轴Z'(y)和X'(y)之间的四个振动位移区域 也将限制在互连各对对边的中点的中心线上的晶体坯1中大厚度的区域 中。因此,通过第二实施例,即使在SC切割晶体坯的切割方向和平整切 割中存在着某些角度偏差,也可以维持晶体元件的振动特性良好。进一步, 可以容易地设计和制造这样的晶体元件。
也是在第二实施例中,如图13所示,可以完成在晶体坯l的一个主 平面的中心部分具有小的曲率的凸曲线形状的脊线部分P。例如,通过构 造为曲率不大于在与晶体坯1的中心交叉的方向上的脊线P的曲率的球形 研磨板,通过旋转晶体坯l,可以仅将脊线的中心部分中的区域研磨形成 具有更小曲率的区域。
进一步,通过任意处理方法,可以仅将各脊线的交叉区域形成为曲线 形状。这样的结果是,可以制成平滑的脊线,四角锥形状的相邻的倾斜表 面在脊线处交叉,从而形成界限,并且限制振动在一个大厚度的区域中, 而且因为去除振动的界限条件也容易产生振动。
虽然,在上述的第一和第二实施例中,已经假定晶体坯1具有正方形 平面形状,并且其对角线方向为应力零敏感度轴Z'(y)和X'(y),应力零 敏感度轴Z' ( y )和X' ( y )也可以沿着正方形各边的方向。在那种情况下, 晶体坯保持在各对边中间点处,因此那些点成为应力零敏感度轴Z'(y) 和X'(y)的两端。
进一步在本发明中,晶体坯1的形状不仅限于正方形。本发明应用的 晶体坯可以是例如图14所示的圆形晶体坯,或者未图示的矩形晶体坯。 即使在这些情况中,当考虑正交于脊线P的线(如A-A线)时,与四角锥
13形形状的顶点对应,在中心区域即在脊线P的位置,晶体坯1的截面厚度 更大,并且沿着这条线向两端变小。
本发明应用的双旋转Y切割板不仅限于SC切割板。例如,本发明可
近似地应用于具有如上述的角度a为34度和角度(3为19度的IT切割石英 板。需要注意的是在IT切割板中应力零敏感度轴的方向,相对于SC切割 板,为从Z'轴旋转8度后的方向以及正交于该方向的方向,即从X'轴旋转 8度后的方向。进一步,本发明还可以应用于除了SC切割板和IT切割板 之外的其它板,如果它们是具有相似的振动位移分布的双旋转Y切割板。
权利要求
1、一种晶体元件,由双旋转Y切割板制成,所述晶体元件包括从石英晶体切割出的晶体坯,晶体坯的主平面正交于Y”轴,其中Y轴和Z轴以石英晶体的X轴为中心旋转α角度后指定为Y’轴和Z’轴,并且X轴和Y’轴以Z’轴为中心旋转β角度后指定为X’轴和Y”轴,其中所述晶体坯具有相互正交的两条应力零敏感度轴,并且在从所述应力零敏感度轴以直角相互交叉的中心处放射状地分开的四个区域中具有加强的振动位移,其中所述应力零敏感度轴相互以直角交叉处的中心部分的厚度增加,并且形成从所述中心部分向所述晶体坯的外周部分限定四角锥形形状的脊线部分,其中当提供与四角锥形形状的顶角相对的底面时,所述晶体坯沿着底面的截面厚度在所述晶体坯的中心区域较大,并且朝着晶体坯的两末端逐渐变小。
2、 根据权利要求1的晶体元件,其中所述晶体坯的两个主平面的 每一个设置有激励电极。
3、 根据权利要求1的晶体元件,其中所述晶体坯的所述脊线部分 沿着所述相互正交的应力零敏感度轴。
4、 根据权利要求1的晶体元件,其中所述晶体坯的所述脊线部分 沿着应力敏感中间轴,该应力敏感度中间轴从所述相互正交的应力零敏 感度轴的中间看时分别旋转45度,以两等分地分开所述应力零敏感度轴 之间的空间。
5、 根据权利要求3的晶体元件,其中所述晶体坯具有正方形平面 形状,并且所述相互正交的应力零敏感度轴沿着所述正方形的对角线方 向放置。
6、 根据权利要求1的晶体元件,其中所述四角锥形在所述晶体坯 的一个主平面中的顶点部分形成为具有至少比所述四角锥形的倾斜表面 更缓和的斜度的平坦表面形状。
7、 根据权利要求l的晶体元件,其中所述晶体元件被构造为SC切割晶体元件,所述角度oc为33度,所述角度P为22度。
8、 根据权利要求7的晶体元件,其中所述晶体坯具有从所述Z'轴 和所述X'轴倾斜8度的相互正交的应力零敏感度轴。
9、 根据权利要求1的晶体元件,其中所述晶体元件被构造为IT切 割晶体元件,所述角度a为34度,所述角度P为19度。
10、 根据权利要求9的晶体元件,其中所述晶体坯具有从所述Z'轴 和所述X'轴倾斜8度的相互正交的应力零敏感度轴。
全文摘要
一种晶体元件,具有从石英晶体切割出的晶体坯,晶体坯的主平面正交于Y”轴,其中Y轴和Z轴以石英晶体的X轴为中心旋转α角度后指定为Y’轴和Z’轴,并且X轴和Y’轴以Z’轴为中心旋转β角度后指定为X’轴和Y”轴。晶体坯具有相互正交的两条应力零敏感度轴。在晶体坯中,两条应力零敏感度轴交叉处的中心部分的厚度增加,并且形成从中心部分向外周部分限定四角锥形形状的脊线部分。晶体坯沿着底面的截面厚度在中心区域较大,并且朝着两末端逐渐变小。
文档编号H03H9/00GK101478298SQ20081013669
公开日2009年7月8日 申请日期2008年10月17日 优先权日2007年10月18日
发明者千叶亚纪雄, 小原茂 申请人:日本电波工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1