上电复位电路的制作方法

文档序号:10626429阅读:479来源:国知局
上电复位电路的制作方法
【专利摘要】一种上电复位电路,包括电流偏置电路、门限电平控制电路及电容充放电电路;所述电流偏置电路用于为所述门限电平控制电路和电容充放电电路提供不随电源变化的基准电流;所述门限电平控制电路用于设定上、下电复位的门限电平值;所述电容充放电电路用于根据所述门限电平控制电路设定的门限电平值,输出上电复位信号;其中,所述电流偏置电路包括第一路基准电流输出端、第二路基准电流输出端和第三路基准电流输出端,所述第一路基准电流输出端用于与所述门限电平控制电路连接,所述第二路基准电流输出端和第三路基准电流输出端用于与所述电容充放电电路连接。本发明能产生稳定上电复位信号。
【专利说明】
上电复位电路
技术领域
[0001 ] 本发明涉及集成电路控制领域,特别是涉及一种上电复位电路。
【背景技术】
[0002]目前的芯片中基本都内置上电复位电路。上电复位电路种类很多,目前应用最广的是利用电阻电容、施密特触发器或反相器产生POR(Power On Reset,上电复位)信号。
[0003]然而,传统的上电复位电路在采用反相器做电平翻转使用时,其电源扰动的抗干扰能力比较差,即当电源在反相器翻转电平附近抖动时,反相器会不停的翻转而产生一系列不稳定的POR信号,这种现象被称之为误触发,使得芯片无法正常工作。采用施密特触发器做电平翻转的电路具有一定的抗干扰能力,但施密特触发器的上下门限电平难以精确的设置,且其门限电平会随电源电压的波动而变化,所以很难精确调制上电复位的门限电平,最终导致产生的POR信号不稳定。

【发明内容】

[0004]为了解决现有技术中上电复位信号不稳定的问题,本发明提供一种能产生稳定上电复位信号的上电复位电路。
[0005]为了实现上述目的,本发明提出一种上电复位电路,包括电流偏置电路、门限电平控制电路及电容充放电电路;所述电流偏置电路用于为所述门限电平控制电路和电容充放电电路提供不随电源变化的基准电流;所述门限电平控制电路用于设定上、下电复位的门限电平值;所述电容充放电电路用于根据所述门限电平控制电路设定的门限电平值,输出上电复位信号;
[0006]其中,所述电流偏置电路包括第一路基准电流输出端、第二路基准电流输出端和第三路基准电流输出端,所述第一路基准电流输出端用于与所述门限电平控制电路连接,所述第二路基准电流输出端和第三路基准电流输出端用于与所述电容充放电电路连接。
[0007]在其中一个实施例中,所述电流偏置电路包括第一场效应管、第二场效应管、第三场效应管、第四场效应管、第五场效应管、第六场效应管;
[0008]所述第一场效应管的栅极与其漏极相连,所述第一场效应管的漏极外接参考电流源,所述第一场效应管、第二场效应管和第三场效应管的源极接地;所述第二场效应管的栅极接第一场效应管的栅极,所述第二场效应管的漏极接所述第四场效应管的漏极,所述第三场效应管的栅极接所述第一场效应管的栅极,所述第三场效应管的漏极为所述第三路基准电流输出端,所述第四场效应管、第五场效应管和第六场效应管的源极接电源,所述第四场效应管的栅极接第四场效应管的漏极,所述第五场效应管的栅极接第四场效应管的栅极,所述第五场效应管的漏极为所述第二路基准电流输出端,所述第六场效应管的栅极接第四场效应管的栅极,所述第六场效应管的漏极为所述第一路基准电流输出端。
[0009]在其中一个实施例中,所述第一场效应管、第二场效应管、第三场效应管为N型场效应管;所述第四场效应管、第五场效应管、第六场效应管为P型场效应管。
[0010]在其中一个实施例中,所述门限电平控制电路包括串联的第一二极管和第二二极管,所述第一二极管的正极连接所述第一路基准电流输出端,所述第一二极管的负极接所述第二二极管的正极,所述第二二极管的负极接地。
[0011]在其中一个实施例中,所述门限电平控制电路还包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第三三极管、第一比较器、第二比较器、第三比较器、第一或非门及第二或非门;
[0012]所述第一电阻、第二电阻和第三电阻串联在所述第一路基准电流输出端与地之间,所述第四电阻、第五电阻和第六电阻串联在电源与地之间;
[0013]所述第一比较器的同向输入端连接在所述第四电阻与第五电阻之间;所述第一比较器的反向输入端连接在所述第一电阻与第二电阻之间,所述第一比较器的输出端接所述第一或非门的第一输入端;
[0014]所述第二比较器的同向输入端连接在所述第二电阻与第三电阻之间,所述第二比较器的反向输入端连接在所述第四电阻与第五电阻之间,所述第二比较器的输出端接所述第二或非门的第一输入端;
[0015]所述第三比较器的同向输入端连接所述第一路基准电流输出端,所述第三比较器的反向输入端连接在所述第五电阻与第六电阻之间,所述第三比较器的输出端接所述电容充放电电路;
[0016]所述第三三极管连接在所述第三比较器的反向输入端与地之间;所述第一或非门的输出端接所述第二或非门的第二输入端,所述第二或非门的输出端接所述第一或非门的第二输入端和所述电容充放电电路。
[0017]在其中一个实施例中,所述电容充放电电路包括第七场效应管、第八场效应管、第九场效应管、第十场效应管、第一电容以及反相器;
[0018]所述第七场效应管的源极接电源,所述第七场效应管的漏极分别接所述第八场效应管的漏极、所述第九场效应管的漏极、所述第十场效应管的栅极、所述第一电容的正极以及所述反相器的输入端,所述第八场效应管、第九场效应管的源极分别接所述第二路基准电流输入端和第三路基准电流输入端,所述第十场效应管的源极及其漏极都接地,所述第一电容的负极接地,所述反相器的输出端输出上电复位信号。
[0019]在其中一个实施例中,所述第七场效应管、第八场效应管为P型场效应管,所述第九场效应管、第十场效应管为N型场效应管。
[0020]在其中一个实施例中,所述第一电容为MIM电容。
[0021]在其中一个实施例中,所述第二路基准电流输出端输出的电流值是第三路基准电流输出端输出的电流值的整数倍。
[0022]上述上电复位电路,所述电流偏置电路为所述门限电平控制电路和电容充放电电路提供了三路不随电源变化的基准电流,这样所述门限电平控制电路通过电流偏置电路提供的基准电流产生精确的门限电平值,所述电容充放电电路通过电流偏置电路提供的基准电流,使得电容充放电时间也可以精确计算出来,无论在电源快速上电还是慢速上电的情况下,电容充放电电路都能产生稳定的上电复位信号。
[0023]所述串联的第一二极管和第二二极管可以确保参考电压源没有建立好之前,所述电容充放电电路不会产生POR信号。
【附图说明】
[0024]图1为一实施例中上电复位电路的模块图;
[0025]图2为图1所示实施例中电流偏置电路的电路原理图;
[0026]图3为图1所示实施例中门限电平控制电路的电路原理图;
[0027]图4为图1所示实施例中电容充放电电路的电路原理图;
[0028]图5为一实施例中正常情况的上、下电电源电压仿真波形图;
[0029]图6为图5所示实施例中对应的POR信号电压仿真波形图;
[0030]图7为电源电压波动为30%时的上、下电电源电压仿真波形图;
[0031]图8为图7所示实施例中对应的POR信号电压仿真波形图。
【具体实施方式】
[0032]请参照图1,为一实施例中上电复位电路的模块图。
[0033]该上电复位电路包括电流偏置电路110、门限电平控制电路120及电容充放电电路 130。
[0034]电流偏置电路110用于为门限电平控制电路120和电容充放电电路130提供不随电源变化的基准电流。在本实施例中,电流偏置电路110包括第一路基准电流输出端Ibiasl、第二路基准电流输出端Ibias2和第三路基准电流输出端Ibias3。第一路基准电流输出端Ibiasl用于与门限电平控制电路120连接,第二路基准电流输出端Ibias2和第三路基准电流输出端Ibias3用于与电容充放电电路130连接。
[0035]具体地,请结合图2。
[0036]电流偏置电路110包括第一场效应管丽1、第二场效应管丽2、第三场效应管丽3、第四场效应管MP1、第五场效应管MP2、第六场效应管MP3。
[0037]第一场效应管MNl的栅极与其漏极相连,第一场效应管MNl的漏极外接参考电流源Ibias。第一场效应管MNl、第二场效应管MN2和第三场效应管MN3的源极接地GND,第二场效应管丽2的栅极接第一场效应管丽I的栅极,第二场效应管丽2的漏极接第四场效应管MPl的漏极,第三场效应管丽3的栅极接第一场效应管丽I的栅极,第三场效应管丽3的漏极为第三路基准电流输出端Ibias3。第四场效应管MPl的栅极接第四场效应管MPl的漏极,第五场效应管MP2的栅极接第四场效应管MPl的栅极,第四场效应管MP1、第五场效应管MP2和第六场效应管MP3的源极接电源VDD,第五场效应管MP2的漏极为第二路基准电流输出端Ibias2,第六场效应管MP3的栅极接第四场效应管MPl栅极,第六场效应管MP3的漏极为第一路基准电流输出端Ibiasl。
[0038]在本实施例中,第一场效应管丽1、第二场效应管MN2、第三场效应管丽3为N型场效应管;所述第四场效应管MP1、第五场效应管MP2、第六场效应管MP3为P型场效应管。
[0039]门限电平控制电路120用于设定上、下电复位的门限电平值。具体地,请结合图3。
[0040]门限电平控制电路120包括第一电阻Rl、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第一二极管D1、第二二极管D2、第三三极管D3、第一比较器Compl、第二比较器Comp2、第三比较器Comp3、第一或非门Norl及第二或非门Nor2。
[0041 ] 第一电阻Rl、第二电阻R2和第三电阻R3串联在第一路基准电流输出端Ibiasl与地GND之间,第四电阻R4、第五电阻R5和第六电阻R6串联在电源VDD与地GND之间。
[0042]第一比较器Compl的同向输入端ip连接在第四电阻R4与第五电阻R5之间,第一比较器Compl的反向输入端in连接在第一电阻Rl与第二电阻R2之间,第一比较器Compl的输出端out接第一或非门Norl的第一输入端。
[0043]第二比较器Comp2的同向输入端ip连接在第二电阻R2与第三电阻R3之间,第二比较器Comp2的反向输入端in连接在第四电阻R4与第五电阻R5之间,第二比较器Comp2的输出端out接第二或非门Nor2的第一输入端。
[0044]第三比较器Comp3的同向输入端ip和第一二极管Dl的正极一起连接第一路基准电流输出端Ibiasl,第三比较器Comp3的反向输入端in连接在第五电阻R5与第六电阻R6之间,第三比较器Comp3的输出端out接电容充放电电路130。
[0045]第一二极管Dl的负极接第二二极管D2的正极,第二二极管D2的负极接地GND。第三三极管D3连接在第三比较器Comp3的反向输入端in与地GND之间。第一或非门Norl的输出端接第二或非门Nor2的第二输入端,第二或非门Nor2的输出端接第一或非门Norl的第二输入端和电容充放电电路130。
[0046]由于电流偏置电路110外接的参考电流源Ibias—般来自于芯片内部的参考电源电路,若电源VDD上电速度比芯片内部参考电压电源电路建立时间快就会造成电路失效,串联的第一二极管Dl和第二二极管D2可以确保参考电压源Ibias没有建立好之前,电容充放电电路130不会产生POR信号。
[0047]电容充放电电路130用于根据门限电平控制电路120设定的门限电平值,输出POR0具体地,请结合图4。
[0048]电容充放电电路包括第七场效应管MP4、第八场效应管MP5、第九场效应管MN4、第十场效应管丽5、第一电容Cl以及反相器INV。
[0049]第七场效应管MP4的源极接电源VDD,第七场效应管MP4的漏极分别接第八场效应管MP5的漏极、第九场效应管MN4的漏极、第十场效应管MN5的栅极、第一电容Cl的正极以及反相器INV的输入端。第八场效应管MP5、第九场效应管MN4的源极分别接第二路基准电流输入端Ibias2和第三路基准电流输入端Ibias3,第十场效应管MN5的源极及其漏极都接地GND,第一电容Cl的负极接地,反相器INV的输出端输出P0R。
[0050]以下结合图1?图4说明上电复位电路的工作原理。
[0051]外接的参考电流源Ibias经过电流偏置电路110后,提供出了三路不随电源VDD波动的基准电流。第一路基准电流输出端Ibiasl接至串联的第一电阻R1、第二电阻R2和第三电阻R3后,产生了较为精准的上、下门限电平。设第一路基准电流输出端Ibiasl输出的电流值为I1,第一电阻RU第二电阻R2和第三电阻R3的电阻值分别为Rp RjPR3,则上门限电平为I1X (?+?),下门限电平为I1XR3,即上、下门限电平之差为I1XRy
[0052]可以理解,在其他实施例中,还可以将串联的第二电阻R2、第三电阻R3替换为N(不小于2)个小电阻值的电阻串联,通过微调串联电阻的个数,可以获得更为精准的上、下门限电平,同时门限电平之差也可以灵活的调整,可以实现不同芯片应用场合下电源的抗干扰能力。
[0053]进一步地,配合串联的第四电阻R4、第五电阻R5及第六电阻R6,可以实现电源VDD在不同电压值时产生POR信号。如当第四电阻R4、第五电阻R5及第六电阻R6的电阻值相等时,上、下门限电平产生POR时对应的电源电压分别为1.5 X I i X (R2+R3)、1.5 X I i X R3。因此,第四电阻R4、第五电阻R5及第六电阻R6可以实现电源VDD产生POR信号时电压值的粗调,而第一电阻R1、第二电阻R2及第三电阻R3可以实现此电压值的精细调节。
[0054]电流偏置电路110提供的第二路基准电流输出端Ibias2、第三路基准电流输出端Ibias3输出的电流分别为电容充放电电路130中的充电电流和放电电流。此两路电流源的电流值可根据芯片实际应用环境设置。
[0055]在本实施例中,第二路基准电流输出端Ibias2输出的电流值是第三路基准电流输出端Ibias3输出的电流值的两倍,可以理解,在其他实施例中,只要保证第二路基准电流输出端Ibias2输出的电流值是第三路基准电流输出端Ibias3输出的电流值的整数倍即可。
[0056]由于偏置电流不会随电源VDD波动,则可以精确计算出充电时间为=T1 =(V1XC1VIp同理,放电时间也可以精确计算出来为:T2= 2X (V1-V2) XC1A2t3其中,V1S第十场效应管丽5的栅极的电压值,C1为第十场效应管丽5的电容值和第一电容Cl的电容值的和,I2为第二路基准电流输出端Ibias2输出的电流值,V 2为反相器INV所对应的翻转电平值。
[0057]当电源VDD上电时,第四电阻R4和第五电阻R5间电压V3成比例跟随上升,第一比较器Compl输出为“0”,第二比较器Comp2输出为“1”,第二或非门Nor2输出为“0”,第八场效应管MP5导通,第二路基准电流输出端IBias2输出电流对第一电容Cl充电,第十场效应管丽5的栅极电压上升,反向器INV输出为“O”。
[0058]当第四电阻R4和第五电阻R5间电压V3上升至下门限电平时,第一比较器Compl输出为“0”,第二比较器Comp2输出为“0”,第二或非门Nor2输出为“0”,第二路基准电流输出端IBias2输出电流继续对第一电容Cl充电,反向器INV输出依然为“O”;当第四电阻R4和第五电阻R5间电压V3上升至上门限电平时,第一比较器Compl输出为“I”,第二比较器Comp2输出为“0”,第二或非门Nor2输出为“1”,第一电容Cl开始放电,反向器INV输出为“1”,产生POR信号。
[0059]当电源VDD下电时,第四电阻R4和第五电阻R5间电压V3开始下降,当V3电压下降至上门限电平时,第一比较器Compl输出为“O”,第二比较器Comp2输出为“0”,第二或非门Nor2输出为“1”,反向器INV输出依然为“I”;当第四电阻R4和第五电阻R5间电压V3下降至下门限电平时,第一比较器Compl输出为“0”,第二比较器Comp2输出为“1”,第二或非门Nor2输出为“ O ”,反向器INV输出为“ O ”。
[0060]该上电复位电路上、下电仿真波形图如图5?图8所示。其中,图5和图6分别为正常情况的上、下电电源电压仿真波形图及其对应的POR信号电压仿真波形图;图7、图8分别为电源电压波动为30%时的上、下电电源电压仿真波形图及其对应的POR信号电压仿真波形图。
[0061]当电源VDD电压升高至上门限电平2.807V时,电路产生POR信号,当电源VDD电压下降至下门限电平1.567V时,POR信号立即下降为0,这就大大提高了电源电压VDD的抗干扰能力。
[0062]如图8所示,即使电源电压VDD波动30%时,也不会产生POR信号的误触发。
[0063]上述上电复位电路,所述电流偏置电路为所述门限电平控制电路和电容充放电电路提供了三路不随电源变化的基准电流,这样所述门限电平控制电路通过电流偏置电路提供的基准电流产生精确的门限电平值,所述电容充放电电路通过电流偏置电路提供的基准电流,使得电容充放电的时间也可以精确计算出来,无论在电源快速上电还是慢速上电的情况下,电容充放电电路都能产生稳定的上电复位信号。
[0064] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
【主权项】
1.一种上电复位电路,其特征在于,包括电流偏置电路、门限电平控制电路及电容充放电电路,所述电流偏置电路用于为所述门限电平控制电路和电容充放电电路提供不随电源变化的基准电流,所述门限电平控制电路用于设定上、下电复位的门限电平值,所述电容充放电电路用于根据所述门限电平控制电路设定的所述门限电平值,输出上电复位信号; 其中,所述电流偏置电路包括第一路基准电流输出端、第二路基准电流输出端和第三路基准电流输出端,所述第一路基准电流输出端用于与所述门限电平控制电路连接,所述第二路基准电流输出端和第三路基准电流输出端用于与所述电容充放电电路连接。2.根据权利要求1所述的上电复位电路,其特征在于,所述电流偏置电路包括第一场效应管、第二场效应管、第三场效应管、第四场效应管、第五场效应管、第六场效应管; 所述第一场效应管的栅极与其漏极相连,所述第一场效应管的漏极外接参考电流源,所述第一场效应管、第二场效应管和第三场效应管的源极接地;所述第二场效应管的栅极接第一场效应管的栅极,所述第二场效应管的漏极接所述第四场效应管的漏极,所述第三场效应管的栅极接所述第一场效应管的栅极,所述第三场效应管的漏极为所述第三路基准电流输出端,所述第四场效应管、第五场效应管和第六场效应管的源极接电源,所述第四场效应管的栅极接第四场效应管的漏极,所述第五场效应管的栅极接第四场效应管的栅极,所述第五场效应管的漏极为所述第二路基准电流输出端,所述第六场效应管的栅极接第四场效应管的栅极,所述第六场效应管的漏极为所述第一路基准电流输出端。3.根据权利要求2所述的上电复位电路,其特征在于,所述第一场效应管、第二场效应管、第三场效应管为N型场效应管;所述第四场效应管、第五场效应管、第六场效应管为P型场效应管。4.根据权利要求1所述的上电复位电路,其特征在于,所述门限电平控制电路包括串联的第一二极管和第二二极管,所述第一二极管的正极连接所述第一路基准电流输出端,所述第一二极管的负极接所述第二二极管的正极,所述第二二极管的负极接地。5.根据权利要求4所述的上电复位电路,其特征在于,所述门限电平控制电路还包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第三三极管、第一比较器、第二比较器、第三比较器、第一或非门及第二或非门; 所述第一电阻、第二电阻和第三电阻串联在所述第一路基准电流输出端与地之间,所述第四电阻、第五电阻和第六电阻串联在电源与地之间; 所述第一比较器的同向输入端连接在所述第四电阻与第五电阻之间;所述第一比较器的反向输入端连接在所述第一电阻与第二电阻之间,所述第一比较器的输出端接所述第一或非门的第一输入端; 所述第二比较器的同向输入端连接在所述第二电阻与第三电阻之间,所述第二比较器的反向输入端连接在所述第四电阻与第五电阻之间,所述第二比较器的输出端接所述第二或非门的第一输入端; 所述第三比较器的同向输入端连接所述第一路基准电流输出端,所述第三比较器的反向输入端连接在所述第五电阻与第六电阻之间,所述第三比较器的输出端接所述电容充放电电路; 所述第三三极管连接在所述第三比较器的反向输入端与地之间;所述第一或非门的输出端接所述第二或非门的第二输入端,所述第二或非门的输出端接所述第一或非门的第二输入端和所述电容充放电电路。6.根据权利要求1所述的上电复位电路,其特征在于,所述电容充放电电路包括第七场效应管、第八场效应管、第九场效应管、第十场效应管、第一电容以及反相器; 所述第七场效应管的源极接电源,所述第七场效应管的漏极分别接所述第八场效应管的漏极、所述第九场效应管的漏极、所述第十场效应管的栅极、所述第一电容的正极以及所述反相器的输入端,所述第八场效应管、第九场效应管的源极分别接所述第二路基准电流输入端和第三路基准电流输入端,所述第十场效应管的源极及其漏极都接地,所述第一电容的负极接地,所述反相器的输出端输出上电复位信号。7.根据权利要求6所述的上电复位电路,其特征在于,所述第七场效应管、第八场效应管为P型场效应管,所述第九场效应管、第十场效应管为N型场效应管。8.根据权利要求6所述的上电复位电路,其特征在于,所述第一电容为M頂电容。9.根据权利要求1所述的上电复位电路,其特征在于,所述第二路基准电流输出端输出的电流值是第三路基准电流输出端输出的电流值的整数倍。
【文档编号】H03K17/22GK105991119SQ201510045235
【公开日】2016年10月5日
【申请日】2015年1月28日
【发明人】高云
【申请人】无锡华润上华半导体有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1