用于微麦克风和扬声器的悬臂式振膜结构及其制备方法

文档序号:7591956阅读:313来源:国知局
专利名称:用于微麦克风和扬声器的悬臂式振膜结构及其制备方法
技术领域
本发明涉及一种用于微麦克风和扬声器的悬臂式振膜结构及其制备方法,属半导体器件领域。
压电材料具有力、电信号耦合特性,可用于力、电信号的相互转换。其原理如图1所示,在压电薄膜的上下表面制作金属电极,当在z方向加电压V后,根据压电材料的力电耦合特性,压电材料会在x方向产生应变,由于压电薄膜固定在衬底上,所以x方向上的应变造成薄膜在z方向的扰曲,从而压缩周围空气完成电声信号的转换。同理,在z方向加上力信号(如声压)后,薄膜也会在z方向扰曲,使x方向产生应变,从而在压电材料的上下表面产生电荷,完成从声到电的转化。利用这种结构可以实现结构简单的、高性能的、集麦克风和扬声器性能于一体的压电型集成微麦克风和扬声器器件。
目前,传统麦克风普遍具有体积大、价格高的缺点,为了改善麦克风的性能价格比并使麦克风向小型化、高性能化的方向发展,人们较早就已利用MEMS技术在硅片上制作微型麦克风。八十年代研究人员用ZnO压电材料在硅片上制作出第一个压电微麦克风。此后,研究人员不断地对微麦克风的制作方法及性能进行改进。最近,美国Berkeley的研究人员提出了一种采用ZnO压电材料的悬臂式振膜结构,见图2,基于这种结构可以将微麦克风和微扬声器集成于同一芯片上,同时可以获得较高的灵敏度和声输出。参阅文献“压电悬臂式微麦克风和扬声器”,《微电子机械系统》,(美国),1996,5(4)238-242。
由于ZnO压电材料的压电系数d31较小,集成微麦克风和扬声器结构的声输出和灵敏度等品质还不够理想。
本发明的目的是提出一种用于微麦克风和扬声器的悬臂式振膜结构及其制备方法,这种结构利用锆钛酸铅(Pbx(ZryTi1-y)O3,以下简称PZT)铁电体显著高于ZnO的压电系数,也就是其更优异的力电耦合性能,使得具有更高灵敏度和声输出品质的硅基集成微麦克风和扬声器的实现成为可能。
本发明提出的用于微麦克风和扬声器的悬臂式振膜结构的制备方法,由以下各步骤组成(1)在单晶硅衬底上低压化学气相淀积(LPCVD)一层氮化硅,LPCVD的条件为温度830℃,压强90Pa,反应气体为SiH4与NH3,其体积之比为8~5∶1,淀积时间随氮化硅厚度而变化,氮化硅层厚度范围为0.5~2μm。
(2)硅衬底背面腐蚀,形成背腔,腐蚀液为浓度50%的KOH溶液,反应温度50℃,腐蚀速率约为1μm/min。
(3)在氮化硅上淀积一层厚度为3000~5000的二氧化硅,反应气体为SiH4和O2,其体积之比为1∶2~3,淀积温度500℃。
(4)射频磁控溅射金属Pt/Ti层,其中Pt层厚度范围为500~1000 ,Ti层厚度范围为50~100,溅射频率13.56MHz,溅射温度120℃,再光刻金属Pt/Ti层形成底电极,其中光刻采用投影式曝光,金属Pt/Ti层用感应耦合等离子(ICP)方法刻蚀。
(5)用溶胶-凝胶(sol-gel)法在Pt/Ti层上制备PZT铁电薄膜,PZT(Pbx(ZryTi1-y)O3)的组分中x=0.9~1.1,y=0.4~0.6,PZT铁电薄膜的厚度为0.5-2μm,通过改变旋涂PZT溶胶的次数可以获得相应的厚度。每次旋涂之后得到的湿膜需经过380℃和800℃的预热处理去除有机溶剂,最后将PZT薄膜置于900℃的环境中退火处理30分钟,得到PZT铁电薄膜。
(6)在上述PZT铁电薄膜上旋涂一层正胶,光刻后在其上射频磁控溅射金属Pt/Ti层,其中Pt层厚度范围为500~1000,Ti层厚度范围为50~100。溅射频率13.56MHz,溅射温度46℃,再在室温下用丙酮浸泡10分钟左右,有胶部分金属Pt/Ti层发皱剥落,即可形成Pt/Ti顶电极。
(7)从正面的M点往下刻蚀各层薄膜,去除其中一侧,保留的另一侧形成悬臂振膜结构,悬臂结构的长宽为1000~2000μm。并去除PZT层的端部,使其与顶层电极的长度相等,并与底层电极成阶梯状。其中PZT薄膜采用反应离子刻蚀,反应气体为SF6和CF4,其体积比为1∶1,气体流量均为25毫升/分钟,功率为300瓦。二氧化硅层用加入了氟化铵(NH4F)缓冲剂的HF溶液进行湿法刻蚀,50℃条件下腐蚀速率约为2000/min。氮化硅层用湿法刻蚀,腐蚀剂为沸腾的H3PO4溶液,并采用回流蒸发器以防止操作时腐蚀液成分发生变化,氮化硅的腐蚀速率约为100/min。
本发明提出的用于微麦克风和扬声器的悬臂式振膜结构,依次由硅衬底、氮化硅层、低温淀积的二氧化硅层、底层Pt/Ti电极、PZT铁电薄膜、顶层Pt/Ti电极相互排列而成。其中的氮化硅层、低温淀积的二氧化硅层、底层Pt/Ti电极、PZT铁电薄膜、顶层Pt/Ti电极排列而成的长度为1000~2000μm,从硅衬底上伸出,形成悬臂结构。其中的底层Pt/Ti电极中,Pt层厚度为500~1000,Ti层厚度为50~100。其中的顶层Pt/Ti电极中,Pt层厚度范围为500~1000,Ti层厚度范围为50~100。
采用本发明制备的PZT铁电悬臂式振膜结构,集成微麦克风和扬声器,其灵敏度和声输出较之采用原有材料及结构的微麦克风和扬声器有了明显提高。


图1为压电悬臂振膜结构的原理图。
图2为已有的基于ZnO压电材料的悬臂式振膜结构。
图3为本发明的PZT悬臂式振膜结构的制备过程示意图。
图4为本发明的PZT悬臂式振膜结构示意图。
图1-3中1为铝电极,2为ZnO压电薄膜,3为多晶硅电极,4为低温淀积的二氧化硅层,5为氮化硅层,6为热生长的二氧化硅层,7为硅衬底,8为顶层Pt/Ti电极,9为PZT铁电薄膜,10为底层Pt/Ti电极,11是PZT铁电薄膜的边缘去除部分,12为底层电极的边缘去除部分,13为刻蚀去除部分,14为去除侧,15为背腔。
下面结合附图,详细介绍本发明的原理和实施例。
本发明依据的原理是铁电材料同压电材料一样也具有压电特性,而且铁电材料的压电常数远大于压电材料。用铁电材料PZT代替压电材料ZnO,可以在外加相同电压的情况下,获得更大的扰曲位移,从而实现更高品质的集成微麦克风和扬声器。
本发明提出的用于微麦克风和扬声器的悬臂式振膜结构,依次由硅衬底7、氮化硅层5、低温淀积的二氧化硅层4、底层Pt/Ti电极10、PZT铁电薄膜9、顶层Pt/Ti电极8相互排列而成。其中的氮化硅层5、低温淀积的二氧化硅层4、底层Pt/Ti电极10、PZT铁电薄膜9、顶层Pt/Ti电极8排列而成的长度为1000~2000μm,从硅衬底7上伸出,形成悬臂结构。
下面介绍是本发明的实施例。
实施例1制备各层分别为0.05/0.005/1/0.05/0.005/0.5/1μm厚的Pt/Ti/PZT/Pt/Ti/SiO2/Si3N4的悬臂式振膜结构,振膜长宽分别为1000μm。
(1)在单晶硅衬底上低压化学气相淀积(LPCVD)一层1μm厚的氮化硅,LPCVD的条件为温度830℃,压强90Pa,反应气体SiH4与NH3体积之比为6∶1,淀积时间约为3小时;(2)50℃下用50%的KOH溶液从背面各向异性腐蚀硅衬底约5小时,制作背腔;(3)在正面化学气相淀积5000的二氧化硅,反应气体为SiH4和O2,其体积之比为1∶2,淀积温度500℃;(4)射频磁控溅射500/50的金属Pt/Ti层作底电极,负胶光刻,ICP刻蚀金属Pt/Ti层形成底电极;(5)用sol-gel法八次旋涂制备1μm厚的PZT铁电薄膜,钛锆酸铅(Pby(Zrx,Ti1-x)O3)中的组分参数为x=0.53,y=1.06;(6)在PZT铁电薄膜上旋涂一层正胶,光刻后在其上射频磁控溅射厚度为500/50的金属Pt/Ti层,溅射频率13.56MHz,溅射温度46℃,再在室温下用丙酮浸泡10分钟左右,有胶部分金属Pt/Ti层发皱剥落,即可形成Pt/Ti顶电极;(7)从正面的M点往下刻蚀各层薄膜,去除其中一侧,保留的另一侧形成悬臂振膜结构,悬臂结构的长宽为1000μm,其中PZT薄膜采用反应离子刻蚀,反应气体为SF6和CF4各50%,气体流量均为25毫升/分钟,功率为300瓦,刻蚀时间约需20分钟,二氧化硅层用加入了氟化铵(NH4F)缓冲剂的HF溶液进行湿法刻蚀,腐蚀温度50℃,约需2.5分钟。氮化硅层用湿法刻蚀,腐蚀剂为沸腾的H3PO4溶液,并采用回流蒸发器以防止操作时腐蚀液成分发生变化,刻蚀时间约为100分钟。
经模拟、测试得到此悬臂式微麦克风的第一第二共振频率以及在共振频率处的输出声强级分别为2.33kHz,65 dB;14.6kHz,99dB。悬臂式微麦克风的低频灵敏度为0.8mV/μbar。相同尺寸的ZnO悬臂式微扬声器的第一第二共振频率以及在共振频率处的输出声强级分别为2.75kHz,46 dB;17.2kHz,73dB。悬臂式微麦克风的低频灵敏度为0.7mV/μbar。
实施例2制备各层分别为0.08/0.008/1.5/0.08/0.008/0.4/1.8μm厚的Pt/Ti/PZT/Pt/Ti/SiO2/Si3N4的悬臂式振膜结构,振膜长宽分别为1500μm。
(1)在单晶硅衬底上低压化学气相淀积(LPCVD)一层1.8μm厚的氮化硅,LPCVD的条件为温度830℃,压强90Pa,反应气体SiH4与NH3体积之比为5∶1,淀积时间约为5小时;(2)50℃下用50%的KOH溶液从背面各向异性腐蚀硅衬底约5小时,制作背腔;(3)在正面化学气相淀积4000的二氧化硅,反应气体为SiH4和O2,其体积之比为1∶2.5,淀积温度500℃;(4)射频磁控溅射800/80的金属Pt/Ti层作底电极,负胶光刻,ICP刻蚀金属Pt/Ti层形成底电极;(5)用sol-gel法十次旋涂制备1.5μm厚的PZT铁电薄膜,钛锆酸铅(Pby(Zrx,Ti1-x)O3)中的组分参数为x=0.45,y=1;(6)在PZT铁电薄膜上旋涂一层正胶,光刻后在其上射频磁控溅射厚度为800/80的金属Pt/Ti层,溅射频率13.56MHz,溅射温度46℃。再在室温下用丙酮浸泡10分钟左右,有胶部分金属Pt/Ti层发皱剥落,即可形成Pt/Ti顶电极;(7)从正面的M点往下刻蚀各层薄膜,去除其中一侧,保留的另一侧形成悬臂振膜结构,悬臂结构的长宽为1500μm,其中PZT薄膜采用反应离子刻蚀,反应气体为SF6和CF4各50%,气体流量均为25毫升/分钟,功率为300瓦,刻蚀时间约需30分钟。二氧化硅层用加入了氟化铵(NH4F)缓冲剂的HF溶液进行湿法刻蚀,腐蚀温度50℃,约需2分钟。氮化硅层用湿法刻蚀,腐蚀剂为沸腾的H3PO4溶液,并采用回流蒸发器以防止操作时腐蚀液成分发生变化,刻蚀时间约为180分钟。
经模拟、测试得到此悬臂式微麦克风的第一第二共振频率以及在共振频率处的输出声强级分别为1.38kHz,64dB;8.6kHz,96dB。悬臂式微麦克风的低频灵敏度为1.3mV/μbar。相同尺寸的ZnO悬臂式微扬声器的第一第二共振频率以及在共振频率处的输出声强级分别为1.62kHz,43 dB;10.17kHz,82dB。悬臂式微麦克风的低频灵敏度为1.1mV/μbar。
实施例3制备各层分别为0.1/0.01/0.5/0.1/0.01/0.3/0.5μm厚的Pt/Ti/PZT/Pt/Ti/SiO2/Si3N4的悬臂式振膜结构,振膜长宽分别为2000μm。
(1)在单晶硅衬底上低压化学气相淀积(LPCVD)一层0.5μm厚的氮化硅,LPCVD的条件为温度830℃,压强90Pa,反应气体SiH4与NH3体积之比为8∶1,淀积时间约为1.5小时;(2)50℃下用50%的KOH溶液从背面各向异性腐蚀硅衬底约5小时,制作背腔;
(3)在正面化学气相淀积3000的二氧化硅,反应气体为SiH4和O2,其体积之比为1∶3,淀积温度500℃;(4)射频磁控溅射1000/100的金属Pt/Ti层作底电极,负胶光刻,ICP刻蚀金属Pt/Ti层形成底电极;(5)用sol-gel法四次旋涂制备0.5μm厚的PZT铁电薄膜,钛锆酸铅(Pby(Zrx,Ti1-x)O3)中的组分参数为x=0.58,y=0.94;(6)在PZT铁电薄膜上旋涂一层正胶,光刻后在其上射频磁控溅射厚度为1000/100的金属Pt/Ti层,溅射频率13.56MHz,溅射温度46℃。再在室温下用丙酮浸泡10分钟左右,有胶部分金属Pt/Ti层发皱剥落,即可形成Pt/Ti顶电极;(7)从正面的M点往下刻蚀各层薄膜,去除其中一侧,保留的另一侧形成悬臂振膜结构,悬臂结构的长宽为2000μm,其中PZT薄膜采用反应离子刻蚀,反应气体为SF6和CF4各50%,气体流量均为25毫升/分钟,功率为300瓦,刻蚀时间约需10分钟。二氧化硅层用加入了氟化铵(NH4F)缓冲剂的HF溶液进行湿法刻蚀,腐蚀温度50℃,约需1.5分钟。氮化硅层用湿法刻蚀,腐蚀剂为沸腾的H3PO4溶液,并采用回流蒸发器以防止操作时腐蚀液成分发生变化,刻蚀时间约为50分钟。
经模拟、测试得到此悬臂式微麦克风的第一第二共振频率以及在共振频率处的输出声强级分别为1.0kHz,63dB;6.5kHz,102dB。悬臂式微麦克风的低频灵敏度为1.7mV/μbar。相同尺寸的ZnO悬臂式微扬声器的第一第二共振频率以及在共振频率处的输出声强级分别为1.22kHz,42dB;7.65kHz,72dB。悬臂式微麦克风的低频灵敏度为1.5mV/μbar。
权利要求
1.一种用于微麦克风和扬声器的悬臂式振膜结构的制备方法,其特征在于,该方法包括以下各步骤(1)在单晶硅衬底上低压化学气相淀积一层氮化硅,气相淀积的条件为温度830℃,压强90Pa,反应气体为SiH4与NH3,其体积之比为8~5∶1,使氮化硅层厚度为0.5~2μm;(2)硅衬底背面腐蚀,形成背腔,腐蚀液为浓度50%的KOH溶液,反应温度50℃,腐蚀速率约为1μm/min;(3)在氮化硅上淀积一层厚度为3000~5000的二氧化硅,反应气体为SiH4和O2,两种气体的体积之比为1∶2~3,淀积温度500℃;(4)射频磁控溅射金属Pt/Ti层,其中Pt层厚度为500~1000,Ti层厚度为50~100,溅射频率13.56MHz,溅射温度120℃,再光刻金属Pt/Ti层,以形成底层电极,去除边缘部分,使其与二氧化硅层成阶梯状;(5)用溶胶-凝胶法在Pt/Ti层上制备PZT铁电薄膜,PZT(Pbx(ZryTi1-y)O3)的组分中x=0.9~1.1,y=0.4~0.6,每次旋涂之后得到的湿膜经过380℃和800℃的预热处理去除有机溶剂,最后将PZT薄膜置于900℃的环境中退火处理30分钟,得到PZT铁电薄膜的厚度为0.5-2μm;(6)在上述PZT铁电薄膜上制备顶层电极首先旋涂一层正胶,根据顶层电极位置有选择地进行光刻,再在其上射频磁控溅射金属Pt/Ti层,溅射频率13.56MHz,溅射温度46℃,其中Pt层厚度范围为500~1000,Ti层厚度范围为50~100,再在室温下用丙酮浸泡10分钟,有胶部分金属Pt/Ti层发皱剥落,即形成Pt/Ti顶层电极;(7)从正面的M点往下刻蚀各层薄膜,去除其中一侧,保留的另一侧形成悬臂振膜结构,使悬臂结构的长度为1000~2000μm,并去除PZT层的端部,使其与顶层电极的长度相等,并与底层电极成阶梯状,即为本发明的用于微麦克风和扬声器的悬臂式振膜结构。
2.一种用于微麦克风和扬声器的悬臂式振膜结构,其特征在于,该结构依次由硅衬底、氮化硅层、低温淀积的二氧化硅层、底层Pt/Ti电极、PZT铁电薄膜、顶层Pt/Ti电极相互排列而成,所述的氮化硅层、低温淀积的二氧化硅层、底层Pt/Ti电极、PZT铁电薄膜、顶层Pt/Ti电极排列而成的薄膜,从硅衬底上伸出,形成长度为1000~2000μm的悬臂结构。
3.如权利要求2所述的结构,其特征在于,其中所述的底层Pt/Ti电极中,Pt层厚度为500~1000,Ti层厚度为50~100。
4.如权利要求2所述的结构,其特征在于,其中所述的顶层Pt/Ti电极中,Pt层厚度范围为500~1000,Ti层厚度范围为50~100。
全文摘要
本发明涉及用于微麦克风和扬声器的悬臂式振膜结构及其制备方法,首先在单晶硅衬底淀积一层氮化硅,硅衬底背面腐蚀,形成背腔,在氮化硅上淀积一层二氧化硅,射频磁控溅射金属Pt/Ti层,再光刻金属Pt/Ti层,以形成底层电极;用溶胶-凝胶法在Pt/Ti层上制备PZT铁电薄膜,在PZT铁电薄膜上制备顶层电极,去除其中一侧,即为本发明的悬臂式振膜结构。采用本发明制备的悬臂式振膜结构,集成微麦克风和扬声器,其灵敏度和声输出有了明显提高。
文档编号H04R7/00GK1265000SQ0010555
公开日2000年8月30日 申请日期2000年3月31日 优先权日2000年3月31日
发明者任天令, 张林涛, 李志坚, 刘理天 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1