数字视频信号的记录和重放设备及其记录和重放的方法

文档序号:7907013阅读:265来源:国知局
专利名称:数字视频信号的记录和重放设备及其记录和重放的方法
技术领域
本发明涉及记录和重放数字视频信号的数字视频信号的记录和重放设备,具体说,涉及用于记录和重放诸如光盘的介质上根据动补偿预测和正交变换进行编码的数字视频信号的数字视频信号的记录和重放设备。
图1为日本专利申请特一开 平4-114369(1992)号中所示的常规光盘的记录和重放设备的电路方框图。参看图1,其中标号201表示用于将视频信号、音频信号等转换成数字信息的A/D(模/数)转换器。标号202表示数据压缩电路,203表示用于将压缩数据转换成等于一帧周期整数倍的扇区数据的帧扇区转换电路,204表示用于将纠错信号加到扇区数据中的纠错编码器,205表示用于将记录介质中各编码之间的干扰信号调制成预定的调制码以减小干扰的调制器,206表示按照调制码来调制激光的激光驱动电路,207则表示激光输出开关。此外,标号208表示发射激光的光头,209表示使来自光头208的激光束按轨迹扫描的作动器,210表示用于使光头208伸出的往复电机,211表示使光盘212旋转的盘电机,219表示电机驱动电路,220表示第一控制电路,而221则表示第二控制电路。另外,标号213表示用于放大来自光头208的重放信号的重放放大器,214表示用于从已记录的调制信号中获取数据的解调器,215表示纠错解码器,216表示帧扇区反向转换电路,217表示使压缩数据扩展的数据扩展电路,218则表示使扩展的数据转换成例如模拟视频信号和音频信号的D/A(数/模)转换器。
图2为一方框图,示出图1中数据压缩电路202的内部结构。图2中,从A/D转换器201输入的数字视频信号输到一存储电路301。从存储电路301输出的视频信号321送到减法器302的第一输入端和动补偿预测电路310的第二输入端上。减法器302的输出径一DCT(离散余弦变换)电路303输到一量化器304。量化器304的输出经可变长度编码器305送到传输缓冲器306的一输入端上。传输缓冲器306的输出输到帧扇区转换电路203。与此同时,量化器304的输出经一反向量化器307输到反向DCT电路308。反向DCT电路308的输出送到加法器309的第一输入端上。加法器309的输出322送到动补偿预测电路310的第一输入端上。动补偿预测电路310的输出323则送到加法器309的第二输入端和减法器302的第二输入端上。
图3是一方框图,示出图2中动补偿预测电路310的内部结构。在图3中,加法器309的输出322送到输入端子401a,而存储电路301的输出321送到输入端401b上。从输入端子401a输入的信号322经一开关403输入到帧存储器404a或帧存储器404b中。从帧存储器404a输出的参考图象送到动向量检测电路405a的第一输入端上。由输入端子401b输入的视频信号321输入到动向量检测电路405a的第二输入端上。动向量检测电路405a的输出送到预测模式选择器406。同时,从帧存储器404b输出的参考图象送到动向量检测电路405b的第一输入端上。从输入端子401b输入的视频信号321送到动向量检测电路405b的第二输入端上。动向量检测电路405b的输出送到预测模式选择器406的第二输入端上。从输入端子401b输入的视频信号321送到预测模式选择器406的第三输入端上。一个零信号送到开关407的第二输入端上。预测模式选择器406的第二输出端接到开关407的第三输入端上。开关407的输出323则从输出端子402输出。
图4是一方框图,示出图1中数据扩展电路217的内部结构。在图4中,从帧扇区反向转换电路216输入的视频信号输到接收缓冲器501。接收缓冲器501的输出输到可变长度解码器502,而该解码器的输出则在反向量化器503处被反向量化。然后,其输出在反向DCT电路504处受到反向离散余弦变换。变换后的输出送到加法器506的第一输入端。与此同时,接收缓冲器501的输出送到预测数据解码电路505,而预测数据解码电路505的输出则送到加法器506的第二输入端上。加法器506的输出经存储电路507输往D/A转换器218。
以下说明该设备的工作情况。作为视频信号编码范畴内的一种高效编码方式,有一种借助MPEG(活动图象高效编组)方式的编码算法。这是一种混合编码方式,它将利用动补偿预测的帧间预测编码与帧内转换编码结合起来使用。这方面一个常用的例子是利用有图2所示结构的数据压缩电路202,同时采用了上述MPEG方式。
图5示出了一种简化的MPEG方式的数据编排结构(层状结构)。在图5中,标号621表示一顺序层,其中包括含有多个帧数据条目的一组图象(以后称之为“GOP”)。622表示含有几个图象(屏幕)的GOP层,623表示将一个屏幕分为几个块的片区,624表示有几个宏块的片层,625代表宏块层,626表示由8象素×8象素组成的块层。
此宏块层625是至少由8象素×8象素的单元按例如MPEG方式组成的一个块。该块是用以完成DCT的一个单元。这时,整个6个块,即包括相邻的四个Y信号块、相应于在位的该Y信号块的一个Cb块、和一个Cr块,称为宏块。多个这样的宏块组成了一个片区。此外,若干宏块组成了动补偿预测的一个最小单元,而供动补偿预测用的动向量形成在一些宏块单元中。
接着将说明帧间预测编码过程。图6示出帧间预测编码的概况。将图象分成三种类型,即帧内编码图象(以后称为I图象)、单向预测编码图象(以后称为P图象)、和双向预测编码图象(以后称为B图象)。
例如,假定N幅图象中的一幅图象为I图象,M幅图象中的一幅图象为P图象或I图象,则第(N×n+M)幅图象构成一幅I图象,第(N×n+M×m)幅图象(m≠1)构成一幅P图象,从第(N×n+M×m+1)幅图象到第(N×n+M×m+M-1)幅图象的各图象构成了B图象,其中n和m为整数,并且1≤m≤N/M。这时,从第(N×n+1)幅图象到第(N×n+N)幅图象的备图象概括称为一GOP(象组)。
图6示出N=15和M=3的一种情况,图6中,I图象未经受帧间预测而只经帧内转换编码。P图象经过来自紧靠P图象之前的I图象或来自P图象的预测。例如,图6中的第6幅图象是P图象。该第6幅图象经过来自第3幅I图象的预测。还有,图6中的第9幅P图象经过来自第6幅P图象的预测。B图象经过来自紧靠B图象前后的I图象或P图象的预测。例如,图6中第4和第5幅B图象既经过来自第3幅I图象又经过来自第6幅P图象的预测。因此,第4和第5幅图象经过第6幅图象编码之后的编码。
以下,按照图2对包括电路202的数据的处理进行说明。存储电路301输出按编码次序重新安排信号后而输入的数字视频图象信号。换句话说,例如按以上所述,在图6中第3幅I图象之后对第1幅B图象编码。因此,图象的次序要重新安排。图7示出这种重新安排的操作。按图7A所示顺序输入的图象这时按图7B所示的次序输出。
进而,由存储电路301输出的视频信号321,在减法器302上经过与来自动补偿预测电路310的输出预测图象323作图象之间的相减以减少时间轴方向上的冗余之后,进行空间轴方向上的DCT。接着使转换系数量化,进行可变长度的编码,再通过传输缓冲器306输出。同时,量化后的转换系数被反向量化和进行反向DCT。之后,将该系数加到加法器309上与预测图象323相加,于是得到一幅已解码的图象322。将已解码的图象322输入到动补偿预测电路310,以供以后对图象编码之用。
下面按图3对动补偿预测电路310的工作进行说明。动补偿预电路310利用了储存在帧存储器404a和404b中的两幅参考图象,以完成来自存储电路301的视频信号321的动补偿预测,以便输出一预测图象323。
开始,在如上述那样编码和解码的图象322或是I图象或是P图象时,将其储存在帧存储器404a或帧存储器404b中,以便对以后的图象进行编码。这时,切换开关403,从而在两个帧存储器404a和404b中选择一个帧存储器,该存储器在时间上优先于另一个而被更新。但是,当已解码的图象322是B图象时,则在帧存储器404a和404b中都不进行写入。
例如,当图7中的第1和第2幅图象以开关403的这种切换方式而编码时,第0幅P图象和第3幅I图象就分别储存到帧存储器404a和404b中。另外,当第6幅P图象被编码和解码时,第6幅P图象的已解码的图象就重新写入帧存储器404a中。
接着,当第4和第5幅B图象被编码时,第6幅P图象和第3幅I图象分别存入帧存储器404a和404b中。进而,当第9幅P图象被编码和解码时,第9幅P图象的已解码的图象就重新写入帧存储器404b中。于是,当第7幅B图象和第8幅B图象被编码时,第6幅P图象和第9幅P图象被分别储存到帧存储器404a和404b中。
当来自存储电路301的视频信号321输到动补偿预测电路310中时,动向量检测电路405a和405b根据储存在帧存储器404a和404b中的参考图象检测一动向量,并输出一动补偿预测图象。换句话说,将视频信号321分成为多个块。然后,选择一个块,使之对于每一块其参考图象中预测的失真最小。然后,该块的相对位置作为动块输出,同时该块本身作为动补偿预测图象而输出。
与此同时,预测模式选择器从来自动向量检测电路405a和405b的两幅动补偿预测图象中选择一幅预测失真最小的图象或其一幅平均图象。接着将该选择出的图象作为已预测的图象输出。这时,若视频信号321不是P图象,则总是选择和输出该动补偿预测图象,该图象相应于按时间计在另一幅图象之前输入的参考图象。进而,预测模式选择器406按照所选择的预测图象,使选择的编码有更好的编码效率,来选择其中预测尚未完成的图象中的编码,或选择预测编码。
这时,当视频信号321是I图象时,总是选择图象中的编码。当选择图象中的编码时,代表以图象模式编码的一个信号作为预测模式而输出。与此同时,当选择图象之间的预测编码时,代表所选择的预测图象的一个信号作为预测模式而输出。从预测模式选择器406输出的预测模式为图象中的编码模式时,开关407输出一个零信号。如果预测模式不是图象中的编码模式时,则预测模式选择器406输出预测图象。
由上述情况可知,当从存储电路301输出的视频信号321为I图象时,动补偿预测电路310总是输出零信号作为预测图象323,I图象不经帧间预测而是受到帧内转换编码。同时,当从存储电路301输出的视频信号为图6中第6幅P图象时,动补偿预测电路310执行来自图6中第3幅I图象的动补偿预测,并输出预测图象323。进而,当从存储电路301输出的视频信号321是图6所示第4幅B图象时,则动补偿预测电路310执行来自图6所示第3幅I图象和第6幅P图象的动补偿预测,并输出预测图象323。
以下将说明传输缓冲器306的工作情况。传输缓冲器306将由可变长度编码器305进行可变长度编码的视频数据转换成MPEG视频信号的比特流。本文中,该MPEG流有一个六层结构,如图5所示。为顺序层621、GOP层622、图象层623、片层624和块层626加入报头信息作为识别码,以形成一个层结构。
接着,传输缓冲器306将视频信号的比特流和音频信号的比特流分别还原成多个信息包,使这些信息包多工化而包括一个同步信号,从而形成一个MPEG2-PS系统流(程序流)。本文中,MPEG2-PS由程序包层和信息包层组成,如图8所示。然后,将报头信息加到信息包层和程序包层中。在通常的实例中,系统流应将视频数据的一个GOP部分的数据包括在内。
这里,程序包层有这样的结构,其中信息包层的上层被“捆”在一起。构成程序包层的每一信息包层被称为PES信息包。此外,图8所示程序包层的报头信息还包括一个程序包识别信号和一个构成视频信号和音频信号基础的同步信号。
同时,在构成信息包层的信息包中,存在如图9所示的三种PES信息包。这里,图9上所示的第二级信息包是一个“视频/音频/专用1”信息包,其中用于识别信息包和时间标记信息的前部或者类似的对作为报头信息的每一信息包进行解码时所需的部分(PTS和DTS)的一个编码被加到信息包数据之前。但是,时间标记信息PTS是一个重现输出的时间控制信息,并且是一个在重现时控制每一信息包的数据流的解码次序的信息。而DTS是解码开始时的时间控制信息,并且是控制解码数据传输次序的信息。
图9上所示的第三级信息包是一个“专用2”信息包,其中写入了用户专用的数据。最下面一级信息包是一个“填充”信息包,其中所有的信息包数据都标上“1”。“专用2”信息包和“填充”信息包的报头信息是由信息包的启动码和信息包长度构成的。
如上所述,视频数据和音频数据是通过传输缓冲器306而转换成MPEG2-PS的系统流的,并且这种转换是对帧向量中每一个进行的。这一信息经过纠错处理,同时,该信息被调制到在光盘上各码之间的干扰最小,且被记录到光盘212上。这时,例如,将每一GOP单元的数据量设定成大致为相等的量。于是很明显,通过将数据分配到等于帧周期整数倍的各扇区上就能完成每个GOP单元的编辑工作。
以下将说明重放时的工作。重放时,用重放放大器213放大记录在光盘212上的视频信息。然后,在解调器214和纠错解码器215处将信息还原成数字数据,接着在帧扇区反向转换电路216处再恢复为纯粹的原视频数据,而不含例如地址和奇偶性的数据。随后将数据输入到其组成如图4的数据扩展电路217中。由MPEG2-PS组成的系统流输入到传输缓冲器501上。
在传输缓冲器501处,输入的系统流被还原成一程序包单元。然后,根据报头信息还原每一个PES信息包,从而重组该PES信息包单元中还原的视频数据和音频数据的比特流。进而,涉及到视频数据,该比特流被还原成图5所示的块层,从而还原和输出块数据和动向量数据。
从传输缓冲器501输出的块数据输往可变长度解码器502,使可变长度的数据成为固定长度的数据,接着被反向量和经过反向DCT,再输出到加法器506上。与此同时,预测数据解码电路505根据动向量对来自传输缓冲器501的预测图象进行解码,然后将其输到加法器506上。
在这种情况下,预测数据解码电路505与动补偿预测电路310一样,提供了一个帧存储器,用于储存由加法器506解码的I图象和P图象数据。顺便提一下,关于更新参考图象数据的方法,不再进行说明,因为该方法是与对该数据编码的方法相同的。
加法器506将预测数据解码电路505的输出与反向DCT电路504的输出加起来,然后输往存储电路307。这里,在编码数据时,按照图7所示的数据编码次序重新安排帧中在时间上连续的视频信息。因此在存储电路507中,重新安排了以图7B次序输入的数据,使得图象数据在时间上连续,然后再将其输到D/A转换器218中。
以下,以这种编码结构的数据记录到光盘上的情况来说明图象的搜索及其高速重放的过程。当编码结构如图6所示时,可以完成图象的高速重放,这时数据是在I图象单元中重放的。在这种情况下,I图象重放之后,可立即进行轨迹的跳跃。然后,随后的或先前的GOP被访问,于是在那里I图象得到重放。对于图6所示的情况,可通过重复这种过程实现高速正向重放和反转重放。
但是,因为该GOP速率是一可变的比特率,因此不可能完全区分出随后的GOP的前部位于何处。于是,要使光头适当地跳到GOP前部的位置上。这样,就不可能确定哪条轨迹应当被访问。
此外,I图象有大量的数据,因此,当只有I图象以连续方式重放时,例如一种专用的重放时,图象不能以一般活动图象那样的30Hz频率重放,因为对盘的读取速度是有限的。即使光头在完成I图象的重放以后跳跃,因为重新跳到下一个I图象的间隙较长,其工作也缺乏平稳性。
常规的数字视频信号的记录和重放设备是按上述方式构成的。在用I图象和P图象的几倍速度进行高速重放的情况下,I图象数据和P图象数据是在从记录介质等(例如光盘等)记录的比特流中检测出GOP的前部之后被读出的。因此,当I图象和P图象的数据量非常大时,或者当花很长时间去搜索GOP的前部时,用于从记录介质上读取数据的时间就不够,于是会出现不能读取I图象和P图象的全部数据从而不能实现高速重放的问题。
在常规的数字视频信号的记录和重放设备中,即使只通过用I图象来进行高速重放时,若其有大量的数据,也要花很多时间去输入I图象数据。因此,超过数十倍的专用重放不能实现。这时,可通过只重放供几个GOP用的一幅I图象来实现较高速度的专用重放。问题在于更新重放图象的间隙将增长,因而图象的内容就变得模糊。
由于常规的视频信号的记录和重放设备是按上述方式编码的,所以只有具有大量数据的I图象在跳越搜索(通过快速重放观察数据)时被解码。因此,可使光头跳跃而不重放足以供解码的数据。否则,当重放足够量的数据时,数据的重放时间就要拉长,GOP要跳到的部位就必须设定在相当远的地方,从而产生输出到屏幕上的画面数目减少的问题。
此外,由于随后的GOP的扇区地址因可变速率而不能被识别,所以难以鉴别GOP的前部是否位于“跳跃”所达到的轨迹上。因此带来这样的问题,即对于许多次的光盘旋转,须要将GOP的前部定位到目标轨迹上,于是在专用重放的时候,输出到屏幕上的画面数据目太少。再有,还带来这样的问题,即使扇区能被识别出,也没有什么办法来判断光头跳跃时多大范围的数据能被重放,从而在没有通过视频解码器前不能作出判断,于是光头跳跃的作用就减小了。
作为其他一些常规的数字视频信号的记录和重放设备,提出过某些设备,例如日本专利申请特-开平6-98314(1994)号、6-78289(1994)号等中所提出的。图10示出一个例子。其中标号775为视频信号发生器,例如摄象机、VTR等;776为音频信号发生器,例如话筒、VTR等;762为视频信号编码器;763为音频信号编码器;777为系统层比特流发生器;778为纠错编码器;779为数字调制器;780为光盘;756为重放放大器;786为检测器;781为数字解调器;758为纠错器;759为系统流处理器;782为视频信号解码器;783为音频信号解码器;784为监视器;785为扬声器。
目前,通常所用的光盘其直径为为120mm,这种光盘一般能记录600M字节或更多的数据。最近,这类光盘能以数据率1.2M bps左右记录视频信号和音频信号达到74分钟。数据记录时,从视频信号发生器775将视频信号输入到视频信号编码器762以对该视频信号进行编码。从音频信号发生器776将音频信号输入到音频信号编码器763以对该音频信号进行编码。将报头等多路转换成这两个编码信号的处理过程是由系统层比特流发生器777进行的。纠错编码器778将纠错码附加上以后,由数字调制器779对该纠错信号进行数字调制,以产生供记录用的比特流。由该比特流制出带记录装置(未示出)的母盘,再将母盘的内容复制到光盘780上,于是就得到了一个市场上所售的软盘。
在供使用者的重放设备中,用重放放大器756对来自光盘的视频软盘的信息放大,再将重放信号输往解调器786。该重视信号在检测器786中经检测后,由数字解调器781对其进行数字解调,再以纠错器758纠正错误。之后,从已被纠错的信号中取出视频信号部分,取出的数据在视频信号解码器782中被解码,然后与用音频信号解码器783解码的音频信号一起,分别输往监视器784和扬声器785中。
对这种视频信号编码的典型方法是称为MPEG(活动图象专用编组)方法的MPEG1和MPEG2,这是一种国际标准的编码法。编码方法的具体实例可用MPEG2的例子加以说明。
图11示出常规数字信号的记录和重放设备中视频信号编码部分的方框图,用以说明MPEG2的编码方法。图12是常规数字信号的记录和重放设备中视频信号解码单元的方框图,用以说明解码方法。图13表示了常规数字信号的记录和重放设备中视频信号编码所用的活动图象处理的概念,用以说明按照MPEG2的编码方法对活动图象编组的情况。参看图13,图中IBBPBBP…等标志中,I代表一幅I图象,B代表一幅B图象,P代表一幅P图象。例如图13A中,在有限数目的帧中,对从I到出现另一幅I的紧靠前的一幅的各活动图象进行编组。构成这一组的图象的帧数在大多数情况下通常是15帧。但是,该数目并不限于任何特定的数目。
GOP,即构成这一组的象组,包括至少一帧可完全在一帧中被解码的I图象。该GOP还包括一幅P图象和一幅B图象,该P图象是根据I图象通过由时间系统的单向预测进行的动补偿预测而编码的,该B图象是根据I图象和P图象由时间系统的双向预测而编码的。附带说一下,图13A和图13B中的箭头表示出预测关系。
换句话说,B图象只能在I图象和P图象准备好以后才能被编码和解码。GOP中开始的P图象可在P图象之前的I图象准备好了之后被编码和解码。第二幅P图象和其后的P图象可在紧靠该P图象之前的P图象准备好了时被编码和解码。因此,没有I图象时,不管P图象还是B图象都不能够被编码和解码。
参看图11,其中标号787为图象重排器,788为扫描转换器,789为编码器缓冲器,790为模式判定器,702为动向量检测器,706为减法器,而708为一DCT电路,其中包括字段存储器、帧存储器和DCT计算器。标号710为量化器,714为反向量化器,761为反向DCT电路,718为加法器,720为影象存储器,722为速率控制器,726为可变长度编码器。
参看图12,其中标号733为可变长度解码器,736为反向DCT电路,737为影象存储器,788为加法器,739为反向扫描转换器。顺便说一下,动向量检测器702与模式判定器790组合在一起代表了一个动向量检测单元。
以下,根据图11至13说明数字视频信号的记录和重放设备的工作情况。参看图11,其中图象重排器787对图象重新安排,以便按图13中所示次序进行编码。然后,扫描转换器788转换扫描过程,使之从光栅扫描转换为块扫描。这种重新安排图象和从光栅扫描转为块扫描的转换处理通常称为预处理过程。而图象重排器787和扫描转换器788总称为预处理器。输入的图象数据按编码次序经受块扫描。当图象为I图象时,该图象穿过减法器706。当图象为P图象或B图象时,该图象在减法器706中与参考图象相减。
这时,动向量检测器702确定运动方向和运动量(送到该动向量检测器702的原图象的输入可以是图象重新安排以后的一幅图象或者是原图象块扫描后的一幅图象,而后一种情况下电路尺寸较小。另外,参考图象必须从影象存储器720中输入,而省略了图中的箭头),于是,可以从影象存储器720中读出该区域中的信号,其中考虑了方向和量值部分。这时,由模式判定器确定790确定是用双向预测还是用单向预测。
在减法器706上进行考虑到动向量的与参考屏幕的减法。即使构成的图象只有较小的电功率,其编码效率也很高。减法器706的输出既可集中到一字段单元中也可集中到DCT电路708的帧单元中,从而进行DCT处理,并转换成一频率分量中的数据。将该数据输入到量化器710中,其中对于每个频率有不同的权重。在低频分量和高频分量的两个尺度上对该数据进行Z字形方式的扫描,使其做长度上的编码和Huffman编码。
控制经长度编码和Huffman编码的该数据以进行可变长度的编码,从而用速率控制器722按比例绘制量化表,以使数据符合目标码的量值。已经可变长度编码的数据通常经编码器缓冲器789输出。量化后的数据回到反向量化器714,再由反向DCT电路716恢复成原图象空间的数据,最后利用加法器718将原图象空间的数据和减法器706参照的数据相加,从而获得与已解码数据同样的数据。
图12为解码器结构的方框示意图。可变长度解码器733对包括报头信息(如动向量、编码方式、图象模式等)的图象数据进行解码。在这已解码的数据被量化后,由反向DCT电路736进行反向DCT计算(附带说一下图12中省略了位于反向DCT电路736前级中的反向量化器)。参照来自影象存储器737的图象数据并考虑到动向量,通过加法器738将已对照过的该图象数据与反向DCT后的数据相加,从而对动补偿预测进行解码。用反向扫描转换器739将该数据转换成光栅扫描,于是得到并输出一隔行扫描的图象。
另外,根据Sugiyama等人在1994年电视界年度会议上发表的“可变传输率盘系统和码量控制方法”一文中介绍的可变传输率盘系统,提出了有关一种更高质量的数字视频信号编码方法的建议。该方法用一个程序(例如第一套程序)使编码率固定,于是每个GOP都设定在某一速率上,这与设计和编码的困难程度有关。图14是常规数字信号的记录和重放设备中的视频信号编码单元的方框图。其中,标号791为动补偿预测器,792为码量存储器,793为GOP速率设定单元,794为码量赋值单元,795为减法器,796为码量计数器,797为开关。图14中的GOP设定单元793进行设定,以根据设计方案的困难程度改变量化值的设定。换句话说,当开关797接在虚编码侧时,则将可变长度编码器726的输出输往码量计数器796,由其计算出要储存到码量存储器792中的码量。
GOP速率设定单元793根据储存在码量存储器792中的码量来确定整个一个程序中的虚码量,以设定和计算出每一GOP中的最佳编码率。这时码的赋值是由码量赋值单元794计算出的,以供实编码预测用。当开关797接在实编码侧时,对码量的赋值量与码量计数器796的值进行比较,于是可根据实码量操作开关797来控制量化器710。以这种方式,赋予容易设计的为小码量,而赋予困难的为大码量,于是,程序中逐渐变化的编码困难就被克服。因此据报导,用这种方法以3Mbps速率记录的图象质量接近以6Mbps速率编码的图象质量。
考虑到在用光盘的数字视频信号的记录和重放设备中进行跳越搜索的可能性,当重放I图象和P图象以便即使在GOP的前部也能高速被访问情况下进行快速回绕时,将P图象定位在GOP的一个适当位置,于是在搜索比特流上的数据时,须要操纵光头。但是,这种控制不能按时完成,这是由于伺服机构(如作动器等)有一定的时间常数造成的。一个GOP通常包括15帧图象,而在NTSC扫描方式中,可用0.5秒时间来寻找GOP的前部。但是,为了检测某一GOP的前部,对比特流,即使当试图在跳越搜索时只读出I图象或P图象,也须要以某一帧速率读出其1/2或更多,以便读出1/3的图象,结果,当光头移动时间设定在200毫秒时,读取速度要设定在快于通常速度的2.5倍或更高。这超出了作动器的反应限度。以通常的重放方法,实际上不可能完成跳越搜索。
对于常规的数字视频信号的记录和重放设备,其信号是按这种方式编程的。于是,当试图进行如磁带录象机中的跳越搜索时,不可能得到一幅完美的重放图象,这时重放数据,不能从一幅B图象之类的图象数据条目中获得全部原来的图象。特别是,在跳越搜索时,会发生突变(非正常移位),这影响了帧单元中的输出的处理。要以高质量的重放图象来进行可变速率的读取时,会出现访问GOP前部困难本身增大的问题,这是因为GOP前部的地址位置发生变化的缘故,结果,在一段盘区域中因GOP有不均匀的单元而形成了一个空间。
本发明的目的是要提供一种数字视频信号的记录和重放设备,它能用具有大数据量的I图象进行专用的重放,并能获得高质量的重放图象,同时给出其记录和重放的方法。
本发明的另一目的是要提供一种数字视频信号的记录和重放设备,它能用具有大数据量的I图象和P图象进行高速重放,并能获得高质量的重放图象,同时给出其记录和重放的方法。
本发明的再一目的是要提供一种数字视频信号的记录和重放设备,它能改进在采用可想到的可变比特率情况下GOP的存取性能,从而获得良好的跳越搜索,同时给出其记录和重放的方法。
本发明的又一目的是要提供一种数字视频信号的记录和重放设备,它能改进在采用可想到的可变比特率编码情况下GOP的存取性能,以及有效地利用存储介质上的空间区域,从而完成跳越搜索,同时给出其记录和重放的方法。
按照本发明的数字视频信号的记录和重放设备,当视频信号记录在GOP单元上时,将其一帧分为涉及I图象的n个区域,使得每一区域按照从位于屏幕中心部分区域开始的次序编码和记录在一个GOP的前部。同时,将I图象每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出位于屏幕中心部分区域中I图象的数据,并输出专用的重放图象,其中掩藏有涉及未读出数据区域中的数据的确定数值。因此,与重放有大量数据的全部I图象的情况相比,专用重放能以更快的速度进行。
在上述数字视频信号的记录和重放设备中,通过扩展中心区使之在整个屏幕上被读出,以输出各专用视频图象。因此,由于屏幕中心部分的数据被扩展而综合为重放图象,因而不能读出数据的区域就不明显,于是重放的图象看起来很舒适。
按照本发明的数字视频信号的记录和重放设备,其视频信号记录在GOP单元上,并且一帧被分为涉及I图象的n个区域,使得每一区域按照从位于屏幕中心部分开始的次序编码和记录在一个GOP的前部。当从光盘等记录介质上读取和重放视频信号时(其中I图象中每一区域的地址信息同时被作为报头信息而记录),若这时进行专用重放,则只有位于屏幕中心部分区域中的I图象数据被读出。而其中不读出数据的区域,则在专用重放图象输出时以掩藏一定数值的数据方式而隐含在其中。因此,与重放全部I图象的情况相比,专用重放能以更快的速度实现。
在上述数字视频信号的记录和重放设备中,通过扩展所读出的中心部分区域到整个屏幕,可输出专用重放图象。因此,不能读出数据的区域不明显,重放的图象看起来很舒适。
按照本发明的另一个数字视频信号的记录和重放设备,当视频信号记录在GOP单元上时,将其一帧分为n个区域,使得每一区域按照从位于屏幕中心部分区域开始的次序编码和记录在一个GOP的前部。同时,将I图象每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出该区域单元中的I图象的数据,并将该数据作为重放图象输出。在一定时间内,当I图象的全部区域都不能读出时,可通过使该图象与前一屏上的数据进行内插而使专用重放图象输出。因此,屏幕中心部分的区域就得到重放的优先权,结果内插后的重放图象看起来很舒适。
按照本发明的再一个数字视频信号的记录和重放设备,当视频数据记录在GOP单元上时,将其一帧分为n个区域,使得每一区域按照从屏幕中心部分开始的次序编码和记录在一个GOP的前部。同时,将I图象的每一区域的地址信息作为报头信息也记录不来。在专用重放时,仅读出该区域的单元中的I图象的数据,并且从连续的n幅图象中一幅接一幅地读出各区域1、2、…n中的范围,结果,可综合一个屏幕部分的各图象,并作为重放图象输出。当I图象的全部区域都不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。因此,位于屏幕中心部分的区域就得到重放的优先权。由于是以n幅I图象综合成一个屏,因此内插的重放图象不明显。
按照本发明的另一数字视频信号的记录和重放设备,当视频图象记录在GOP单元上时,将其一帧分为涉及I图象的n个区域而对每个区域编码。当I图象对于每个区域综合记录在一个GOP的前部时,将GOP单元中开始时记录的该区域的位置“卷动”以便记录。同时,将I图象每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出该区域单元中的I图象数据,并将其作为重放图象输出。在全部I图象都不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。于是,在GOP单元中将该区域的位置“卷动”,从而可以平稳方式重放一屏图象。
按照本发明的另一数字视频信号的记录和重放设备,当视频数据记录在GOP单元上时,将其一帧分为涉及I图象的n个区域而对每个区域编码,并分为一纠错块单元,以及按位于屏幕中心部分的区域开始的次序记录在一个GOP的前部。同时,将I图象的每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出纠错块单元中的I图象数据,并作为重放图象输出。当I图象的全部区域都不能在一定时间内读出时,则通过使图象与前一屏的数据进行内插而使专用重放图象输出。于是,由于位于屏幕中心部分的区域得到重放的优先权,因而重放的图象看上去很舒适。
按照本发明的另一个数字视频信号的记录和重放设备,当图象数据记录在GOP的单元上时,将其一帧分为涉及I图象和P图象的n个区域而对每个区域编码,并且按位于屏幕中心部分的区域开始的次序记录在一个GOP的前部。同时,将I图象和P图象的每一区域的地址信息作为报头信息也记录下来。在专用重放时,读出该区域单元中的I图象和P图象,并作为重放图象输出。当I图象或P图象的全部区域不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。于是,由于位于屏中心部分的区域得到重放的优先权,因而内插的重放图象看上去很舒适。
按照本发明的数字视频信号的记录和重放设备,当视频信号记录在GOP的单元上时,将其一帧分为涉及I图象和P图象的n个区域而对每个区域编码,并且按位于屏幕中心部分的区域开始的次序记录在一个GOP的前部。同时,将I图象的每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出该区域单元中的I图象和P图象的数据,以及从连续的n幅I图象和P图象中读出各区域1、2…n的范围,以便综合出一个屏幕部分的图象,并作为重放图象输出。当I图象或P图象的全部区域不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。于是,由于位于屏中心部分的区域得到重放的优先权,因而内插的重放图象不明显。
按照本发明的另一数字视频信号的记录和重放设备,当视频信号记录在GOP的单元上时,将其一帧分为涉及I图象和P图象的n个区域而对该帧单元中的每一区域编码。当所分出的帧对一个GOP前部处的每一区域呈固定时,则使该帧单元中开始记录的区域的位置“卷动”。同时,将I图象中的每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出该区域单元中的I图象数据,并作为重放图象而输出。当全部I图象不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。于是,I图象和P图象区域的记录次序在GOP单元中被“卷动”,从而能以平稳的方式重放一个屏部分的重放图象。
按照本发明的另一数字视频信号的记录和重放设备,当视频信号记录在GOP的单元上时,将其一帧分为涉及I图象和P图象的n个区域而对每个区域编码,并分出纠错块单元。然后按位于屏幕中心部分区域开始的次序将所分出的帧记录在一个GOP的前部。同时,将I图象的每一区域的地址信息作为报头信息也记录下来。在专用重放时,仅读出纠错单元中的I图象的数据,并作为重放图象输出。当全部I图象不能在一定时间内读出时,则通过使该图象与前一屏的数据进行内插而使专用重放图象输出。于是,由于位于屏幕中心部分的区域得到重放的优先权,因而内插后的重放图象看起来很舒适。
按照数字视频信号的重放方法(设备),至少将经帧内编码的I图象依据频域、量化水平或空间分辨率分开,以构成一视频数据的比特流,其中分出的至少涉及I图象的数据中的图象之类的更重要的数据被安排在前部。而将分出的数据中的地址信息作为报头信息安排在视频数据的比特流的前部,以构成一信息包。记录在记录介质上的数据,在通常重放时,须在数据分开前按照待输出的信息包中的报头信息,对其数据次序作重新安排。进行专用重放时,对安排在前部的数据进行解码,用作专用重放的输出。这样,通过按频域、量化水平或空间分辨而将数据划分开,就使专用重放时被访问的数据减少了,于是可获得平滑的专用重放图象。另外,由于记录了作为系统流的报头信息的已划分的数据的地址,因此能够知道重放时应即时加以重放的字节数目,这样,在专用重放时光头就能有效地跳跃。再有,在通常的重放时,数据根据地址被重新安排,于是可以避免重放时因划分数据而带来的缺点。
按照数字视频信号的记录和重放方法(设备),至少将经帧内编码的I图象依据频域、量化水平和空间分辨率分开,以构成一视频数据的比特流,其中分出的至少涉及I图象的数据中的图象之类的更重要的数据被安排在前部。而将分出的数据中的地址信息作为报头信息安排在视频数据的比特流的前部,以构成一信息包。记录在记录介质上的数据,在通常重放时,须在数据分开前按照待输出的信息包中的报头信息,对其数据次序作重新安排。进行专用重放时,对安排在前部的数据进行解码,用作专用重放的输出。这样,通过按频域、量化水平或空间分辨而将数据划分开,就使专用重放时被访问的数据减少了,于是可获得平滑的专用重放图象。另外,由于记录了作为系统流的报头信息的已划分的数据的地址,因此能够知道重放时应即时加以重放的字节数目,这样,在专用重放时光头就能有效地跳跃。再有,在通常的重放时,数据根据地址被重新安排,于是可以避免重放时因划分数据而带来的缺点。
按照另一个数字视频信号的记录和重放方法(设备),至少将在记录时经帧内编码的I图象分成n个区域(n>1),从而在区域的单元中重新安排已分成n个区域的I图象,以形成一视频数据的比特流,其中位于屏中心的区域安排在前部。然后,将已分成n个区域的I图象的地址信息安排在数据比特流的前部以构成一信息包,并记录在记录介质上。在通常重放时,按照安排在信息包前部的报头信息重新安排该区域单元中的I图象数据,并将其输出。在专用重放时,可通过仅输出在一定时间内能从信息包前部读出的I图象的数据来完成该专用重放。于是,通过记录时划分屏区域中的数据减少了专用重放时应访问的数据。由于已划分的数据的地址是作为系统流的报头信息而记录的,因此可知道重放时应即时重放的字节数目,于是光头在专用重放时能有效地跳跃,从而在一定的时间单位中可完成地址的跳跃。另外,在通常重放时,由于根据地址重新安排数据,结果记录和重放时因数据划分而造成的缺点能够避免。
按照再一个数字视频信号的记录和重放方法(设备),至少将经帧内编码的I图象数据分成n个区域(n>1),从而在区域的单元中重新安排已分成n个区域的I图象,以形成一视频数据的比特流,其中位于屏中心的区域安排在前部。然后,将已分成n个区域的I图象的地址信息安排在视频数据比特流的前部作为报头信息,以构成一信息包。在通常重放时,按照安排在信息包前部的报头信息重新安排的I图象数据被重新安排在该区域的单元中,并从记录了该数据的记录介质上输出。在专用重放时,通过仅输出在一定时间内能读出的数据来完成该专用重放。于是,在专用重放时,通过划分屏区域中的数据,能在一定时间单元内完成地址的跳跃,结果减少了专用重放时要编址的数据。此外,由于已划分的数据的地址是作为系统流的报头信息而记录的,因此重放时应重放的字节数目能即刻被检测到,于是光头在专用重放时能有效地进行跳跃。另外,由于通常重放时根据地址来重新安排数据,因此不会产生数据重放时因划分数据而带来的缺点。
按照又一个数字视频信号的记录和重放方法(设备),至少将在记录时经帧内编码的I图象以低频区、高频区、量化水平和空间分辨率加以划分,使得来自已划分的I图象的基本数据被重新安排在屏幕上每一区域的单元中,以构成一视频数据的比特流,其中位于I图象的屏中心部分的区域安排在前部。已划分的区域、划分的数据、以及图象的地址信息,被安排在视频数据的比特流的前部作为报头信息,从而构成一信息包,并记录在记录介质上。在通常重放时,按照安排在信息包前面部分的报头信息对区域单元中的数据重新安排,然后输出数据。已划分的数据按原来数据的次序重新安排。在专用重放时,仅输出在一定时间内能读出的来自信息包前部的I图象数据,以进行专用重放。因此,在记录时,数据是依据频率、量化和空间分辨率划分的,并将其分到屏区的单元中。于是,在专用重放时,被访问的数据减少了,从而通过逐渐减少专用重放时要访问的数据量可获得一平滑的专用重放。另外,由于已分出的数据的地址是作为报头信息而记录的,并且在重放时能即刻检测到应该重放的字节数目,因此在专用重放时能有效地完成光头的跳跃。再有,涉及到以多种划分方式来划分数据,可按照专用重放速度来调整要读出的数据量,从而可适应很宽的专用重放速度范围。此外,在通常重放时根据地址来重新安排数据,因此在重放数据时不会产生因划分数据而带来的缺点。
按照另一个数字视频信号的重放方法(设备),至少将经帧内编码的I图象依据低频区、高频区、量化水平或空间分辨率加以划分,使得来自已划分的I图象的基本数据被重新安排在屏幕上的每一区域中,以构成一视频数据流,其中位于I图象的屏中心部分的区域安排在前部。已划分的区域、划分的数据、以及图象的地址信息,被安排在视频数据的比特流的前部作为报头信息,从而构成一信息包,并记录在记录介质上。在通常重放时,依据安排在信息包前面部分的报头信息来重放安排数据,从而由介质上输出数据。已划分的数据按原来数据的次序重新安排。在专用重放时,仅输出在一定时间内能读出的来自信息包前部的I图象数据,以进行专用重放。因此,数据是依据频率、量化和空间分辨率划分的,并将其分到屏区的单元中。于是,专用重放时被访问的数据由于将数据分到屏区单元中而减少了。另外,由于已分出的数据的地址是作为报头信息而记录的,并且在重放时能即刻检测到应该重放的字节数目,因此在专用重放时能有效地完成光头的跳跃。再有,涉及到以多种划分方式来划分数据,可按照专用重放速度来调整要读出的数据量,从而可适应很宽的专用重放速度范围。此外,在通常重放时根据地址来重新安排数据,因此在重放数据时不会产生因划分数据而带来的缺点。
按照另一个数字视频信号的记录和重放方法(设备)(或数字视频信号的重放方法(设备)),仅读出位于I图象的屏中心部分的区域。对于不读出区域中的数据,则以掩藏数据为一限定值来综合重放的图象。因此,与重放具有大量数据的全部I图象的情况相比,该专用重放能以更高的速度实现。
按照另一个数字视频信号的记录和重放方法(设备)(或数字视频信号的重放方法(设备)),仅读出位于I图象的屏中心部分的区域。通过将读出的区域扩展到整个屏幕上来综合重放的图象。因此,与重放具有大量数据的整个I图象的情况相比,该专用重放能以更高的速度实现,于是数据不能读出的区域并不明显。
本发明的数字视频信号的记录设备包括第一编码装置,用于对含有已编码图象的视频信号进行编码,该编码图象至少包含经帧内编码的出自用动补偿预测和正交变换编码的数字视频信号的一幅图象;第二编码装置,用于以第一编码装置的视频信号输出通过编码而对其余的分量进行编码;数据安排装置,用于对每一象组数据在每一象组数据的预定位置上安排来自第一和第二编码装置的每个输出数据。与第一编码装置对全部视频信号进行编码的情况相比,通过对活动图象的基本部分进行编码至少可以减小要访问的区域。第二编码装置对末被第一编码装置编码的视频信息进行编码,于是用两个编码装置就对全部视频信息作了编码。另外,数据安排装置重新安排用两个编码装置获得的数据,使数据便于光头存取。因此,所作的编码可使至少在专用重放时应被访问的码量减少。于是,至少在专用重放时能有效地进行应被访问的数据的安排。
在上述数字视频信号的记录设备中,相对于含有包含至少一幅帧中已编码图象的编码图象的视频图象,在一预定的间隔内,将视频信息编码成较疏(thin)。于是,第一编码装置对此疏化了的视频图象进行编码,因此至少要被访问的区域就减小了。当只访问第一编码装置的数据时,能将视频图象编码成在其解码后,该画面足以为人理解。
在上述数字视频信号的记录设备中,第一编码装置只对正交变换的低频区域进行编码。第一编码装置对属于一部分频率的图象数据进行编码,这样就至少减小了要被访问的区域。当只有第一编码装置的数据被访问时,能将视频图象编码成在其解码后,该画面足以为人理解。
在上述数字视频信号的记录设备中,第一编码装置粗量化在要编码的量化水平上。第一编码装置通过粗量化对影响图象较大的上比特数据进行编码,于是至少减小了要被访问的区域,而不会降低分辨率。当只访问第一编码装置的数据时,能将视频图象编码成在其解码后,该画面足以为人理解。
本发明的另一数字视频信号的记录设备,从一数据排中提取低频分量中的数据,该数据排中的视频信号是以预定的比特分段的,该视频信号包括含至少一幅经帧内编码的、出自用动补偿预测和正交变换编码的视频信号的图象的已编码的图象。对每一信息块将数据以预定的比特分段,从而对视频信号的低频区域分段。因此,很容易将码量限制在固定的长度内。此外,当进行低频区域中数据的解码时,能将数据编码成可粗略理解图象的内容。
本发明的数字视频信号的重放设备,对低频区域中的数据和高频区域中的数据进行重新安排,以成为预定的次序,使得对重新安排的数据进行解码的方式或对数据进行选择性解码的方式处于低频区域。在通常重放时,通过连接两个分段的编码数据,可得到一幅完整的解码图象。在专用重放时,只对低频区域的数据进行解码。因此,能依据设备的工作状态对数据进行解码,从而使所获得的图象达到其内容大致能被了解的程度。
在上述数字视频信号的重放设备中,当以只对低频区的数据进行解码的方式对数据进行解码时,只有能被解码的数据得到解码。在预定数目比特的边缘附近的不能被解码的数据被丢弃,于是高频区域中的数据就被为反向正交变换的固定数值所代替。当在专用重放时对出自两个分段编码数据的低频区域进行解码时,只有能被解码的数据得到解码,而不能解码的比特则被丢弃。于是可避免对反常的数据进行解码。对于剩下的高频区域,则以固定的值来代替并进行解码,于是可获得解码后的图象,而避免了失真。
另一数字视频信号的记录设备中,将信息块码的一端加到视频信号的每一信息块的编码数据上,该视频信号包括含有至少一幅经帧内编码的、出自当获得作为低频区数据的预定数目的比特时用动补偿预测和正交变换的已编码的数字信号的图象的一幅编码图象。超出预定比特数目的上述已编码的数据作为高频范围的数据而被编码。无论是信息块的低频区域还是高频区域均以这样的方式进行编码,即信息块表面上看来要终止在信息块(EOB)码的端部。因此,当只有低频数据被解码时,能获得可被解码的编码数据,而不需要多余的例如用来丢弃数据的电路。
本发明的另一数字视频信号的记录设备,根据低频区域中的数据、高频区域中的数据和EOB码来重组数据。然后,选择对重组的数据进行解码的方式,或是只对低频区域的数据进行选择性解码的方式,从而对根据选择的结果进行重组的编码数据进行解码。对于高频区域,则以一固定值替换其数据,以执行反向正交变换。在通常重放时,从以EOB分别分段的编码数据中可获得一幅完全的解码的图象。在专用重放时,只有低频区域中的数据从编码的数据中解码出来,从而无论对于通常的重放还是专用的重放都能依据设备的工作状态而运作,于是可获得我们可理解其画面的粗图象。另外,当低频区从编码的数据中解码出来时,剩下的高频信息块区域则以固定值代替,并进行解码,于是该区域可被解码,避免了数据的失真。无论是信息块的高频区还是低频区都能被解码,好象该信息块看上去是终结在EOB处似的。
本发明的另一数字视频信号的记录设备包括低分辨的编码装置,用于对低分辨率分量的数据进行编码,该分量中的象素相对于视频信号来说是变疏了的,所述视频信号包括含有至少一幅帧中图象的编码图象,该图象是出自利用了动补偿预测和正交变换的已编码的数字图象;差分分量编码装置,用于通过内插低分辨率的编码装置的输出数据对带有象素疏化前的图象的差分分量进行编码;以及信息相加装置,用于将低分辨率的编码装置及差分分量编码装置的输出分成预定的区域以加上纠错码,从而构成数据。当空间疏化了的图象数据被编码并且仅访问这种编码数据时,该图象数据能被编码,于是该图象被解码后,其画面足以被人理解。从低分辨率的编码装置来的解码后的数据被内插,从而通过将该图象与低分辨率转换前的图象作比较而获得了一个差分分量,于是不能由低分辨率编码装置获得的高分辨率部分的图象数据可被编码。这样,不只是低分辨程度的图象信息就都可以得到编码。
本发明的另一数字视频信号的重放设备,综合了已被解码的低分辨率分量的数据和差分分量的数据。在通常重放时,将低分辨率分量的编码数据与高分辨率分量(它是低分辨率部分与被疏化为低分辨率之前的数据之间的差分分量)的编码数据综合起来,于是具有全部分辨率分量的图象可被解码。
在本发明的上述数字视频信号的重放设备中,将通过综合低分辨率的数据与差分分量的数据而将图象解码的方式切换为只解码低分辨率分量的方式。在通常重放时,分段成两个的低分辨率分量的编码数据与高分辨率分量(它是被疏化为低分辨率之前的数据与低分辨率部分的数据之间的差分分量)的编码数据综合起来,使得具有全部分辨率的图象可被解码。在专用重放时,根据设备的工作状态来切换解码方式,使得只通过对低分辨率的编码数据进行解码就可对粗图象进行解码。
在上述数字视频信号的重放设备中,当对低分辨率的图象解码时,只产生解码后内插的图象。在专用重放时,当只对低分辨率的编码数据进行解码,则内插低分辨率分量的视频数据,以便将图象的尺寸变回到其原来的尺寸。
本发明的另一数字视频信号的记录设备包括判断装置,用以判断图象根据动补偿预测和正交变换进行编码和解码时失真的程度;自适应编码装置,用以根据判断装置的判断输出,通过自适应地改变速率,对数据率进行编码;信息相加装置,用于将音频信号、报头等附加信息、以及纠错码加在一起;数据率设定装置,用以设定离散值,以自适应地改变数据的速率。在可变速率的编码装置中,速率被限制为仅能达到一个有限的值。因此,GOP的数据率信息(相当于GOP的码量)能以少量的比特代表。
本发明的另一数字视频信号的记录设备包括判断装置,用以判断图象根据动补偿预测和正交变换进行编码和解码时失真的程度;自适应编码装置,用以根据判断装置的判断输出,通过自适应地改变速率,对数据率进行编码;信息相加装置,用于将音频信号、报头等附加信息、以及纠错码加在一起,其中所述设备被组成为可在光头等上对数据率信息进行多路转换,或者在记录介质的预定区域上将其写入。除视频数据外,当图象数据是以可变速率进行编码时,还要将数据率设定信息记录在记录介质上,于是,数据率信息能一起被读出,所以在记录信息时也要能将预定的GOP在光盘上的位置即刻记录下来。
另一个数字视频信号的记录设备包括判断装置,用以判断图象根据动补偿预测和正交变换进行编码和解码时失真的程度;信息相加装置,用于将音频信号、报头等附加信息、以及纠错码加在一起;第一编码装置,用于对相对于一视频信号在预定的间隔被疏化了的视频信号进行编码,前述一视频信号包括一幅含有经帧内编码的图象的编码图象;第二编码装置,用于对由第一编码装置编码而输出后的其余视频信号的分量进行编码,其中所述设备被组成为能根据判断装置的判断输出使第一或第二编码装置至少之一的数据率自适地改变和被编码。利用可变的速率,可实现高质量的编码。在速率大为增加的GOP中,空间疏化了的视频数据被编码,其完成的编码至少可使被访问的区域减小。
本发明另一个数字视频信号的记录设备包括判断装置,用以判断图象根据动补偿预测和正交变换进行编码和解码时失真的程度;信息相加装置,用于将音频信号、报头等附加信息、以及纠错码加在一起;第一编码装置,用于只对相对于视频信号作了正交变换的低频区域进行编码,所述视频信号包括一幅含有经帧内编码的图象的编码图象;第二编码装置,用于对由第一编码装置对信号进行编码后的其余视频信号的分量进行编码,其中所述设备被组成为能根据所设计的判断装置的判断输出使第一或第二编码装置至少之一的数据率自适应地改变,以此对视频信号进行编码。利用可变的速率,可实现高质量的编码。对于速率大为增加的GOP,对每一个信息块的局部频区中的视频数据进行编码,其完成的编码至少可使被访问的区域减小。
另一个数字视频信号的记录设备包括判断装置,用以判断图象根据动补偿预测和正交变换进行编码和解码时失真的程度;信息相加装置,用于将诸如音频信号、报头等附加信息与一纠错码加在一起;第一编码装置,用于相对于一视频信号通过将粗量化设置在一量化水平上而对视频信号进行编码;所述视频信号包括一幅含有经帧内编码的图象的编码图象;第二编码装置,用于对由第一编码装置对信号进行编码后的其余视频信号的分量进行编码,其中所述视频信号是根据所设计的判断装置的判断输出使第一或第二编码装置至少之一的数据率自适应地改变来编码的。利用可变的速率,可实现高质量的编码。在借助可变速率使速率大为增加的GOP中,对影响图象很大的上比特中的数据进行编码,其完成的编码至少可使被访问的区域减小。
本发明的另一个数字视频信号的重放设备使重放模式在通常重放模式与专用重放模式之间切换,以提取数据率信息。在用专用重放模式时,记录介质在专用重放数据所在的位置,是根据专用重放模式时的数据率信息加以计算的。当以不同的数据率通过提取每一GOP的数据率信息进行重放时,在通常重放情况下,将分成两个的编码数据综合起来并加以解码。在专用重放时,则计算要访问的记录介质上的GOP的位置。然后,至少重放要访问的数据,以便再对下一个目标GOP进行访问。这时,计算记录介质上要访问的GOP的位置信息,以有利于专用重放和得到高质量的可变速率。
在上述数字视频信号的重放设备中,依据位置计算的结果和专用重放速率,控制光头到记录介质上的位置。根据专用重放速率计算作为访问目标的GOP在光盘上的位置信息。依据专用重放速率可将光头的位置控制到目标GOP的位置,于是在专用重放模式中可用各种速度作高质量可变速率的重放。
在本发明的另一个数字视频信号的记录设备中,将码量控制为相应于分配到一个象组的区域,该象组是由根据动补偿预测和正交变换而编码的数字视频信号形成的,所述本发明的该设备包括编码装置,用于编码;码量比较装置,用于比较编码装置的输出与预定量的数据;以及数据馈送装置,用于将多余的数据埋藏到具有空白区的象组的空白区域中。在以可变速率对数据进行编码和记录的情况下,可通过使GOP定位在光头容易访问的位置上来缩短访问时间,从而在专用重放时增加了数据编码和记录过程中所读出的数据量。此外,识别光盘上例如空白部分的不必要部分,从而利用这些部件改善图象质量,或者借助这些部件帮助延长记录时间。
本发明的另一种数字视频信号重放设备包括用以重建嵌入原来那组图象的视频信号编码数据的数据重建装置、以及用以对由数据重建装置所重建的数据进行解码的数据解码装置。空白部分嵌有其它GOP数据的编码数据可以予以重建,以致能无失真地对数据进行解码。而且,在特定的重放时,数据量仍然增加,仍然能获高质量的重放图象。
本发明的又一种数字视频信号重放设备根据特定的重放速度就三个解码装置的哪一个进行切换。这三个解码装置中第一解码装置用以解码第一和第二编码数据以及获得重放图象,第二解码装置用以解码第一编码数据以及获得这样的重放图象,该重放图象对应于经过帧内编码的图象的低频区域,象素的数目变稀疏或粗量化,以及第三解码装置用以解码第一编码数据以及获得这样的重放图象,该图象对应于帧间预测图象和帧内编码图象的低频区域,象素的数目变稀疏,或者粗量化。由于在只解码和显示I图象的模式及显示I图象和P图象的模式之间进行模式切换,所以能以较慢的专用重放(例如双速重放)实现I图象和P图象的专用重放,其结果是与只有I图象的专用重放相比,可以实现无跳帧的精密专用重放。而且在高速专用重放时,可以处理例如专用重放I图象的各种重放速度。
本发明的再一种数字视频信号重放设备包括用以抽取对应于来自重放码的视频信号的数据的视频数据抽取装置、用以解码和重放从视频数据抽取装置输出的视频数据的图象数据解码和重放装置、以及模式切换装置。模式切换装置切换正常重放模式、重放和显示奇数场或偶数场的模式、以及通过颠倒场结构显示奇数场或偶数场的模式。在专用重放时,根据模式而使场结构最优化。在反向重放时。直至场显示为止设备以反向方式工作给出显示。在例如快速卷带等的跳帧重放时,通过在偶数场和奇数场都输出同一视频图象,把场数设定在一定值而可以获得容易观看的专用重放图象。
从以下的详尽描述连同附图本发明的上述以及其它目的和特征就会显得更加清楚。
图1是传统的光盘记录和重放设备的方框图。
图2是传统的MPEG中的视频信号编码单元的方框图。
图3是传统的动补偿预测电路的方框图。
图4是传统的MPEG的视频信号解码单元的方框图。
图5是表示传统的MPEG的视频编码算法的数据排列结构的示意图。
图6是表示传统的MPEG的视频编码算法的GOP结构的实例的示意图。
图7A和7B是表示传统的MPEG的视频比特流的一个实例的示意图。
图8是表示传统的MPEG的PS中系统流的实例的示意图。
图9是表示传统的MPEG的PES数据包流的实例的示意图。
图10是传统的数字信号记录和重放设备的方框图。
图11是传统的数字视频信号记录和重放设备中视频信号编码单元的方框图。
图12是传统的数字视频信号记录和重放设备中视频信号解码单元的方框图。
图13A和13B是说明传统的数字信号记录和重放设备中动态图象处理的原理的示意图。
图14是传统的数字信号记录和重放设备中的视频信号编码单元的方框图。
图15是根据实施例1的数字信号记录和重放设备中的记录系统的方框图。
图16是根据实施例1的数字信号记录和重放设备中的重放系统的方框图。
图17是例示宏块的原理图。
图18是例示画面划分的原理图。
图19是例示数据排列的原理图。
图20A至20D是例示专用重放的重放方法的原理图。
图21A至21B是在数据扩充的情况下进行专用重放的方法的原理图。
图22是例示根据实施例3的画面划分的原理图。
图23是例示根据实施例3的数据排列的原理图。
图24A至24E是例示根据实施例3进行专用重放的方法的原理图。
图25A至25B是例示根据实施例3的纠错块排列的原理图。
图26A至26D是例示根据实施例4进行专用重放的方法的原理图。
图27A至27F例示在实施例4中进行数据插值的情况下进行特定重放的方法的原理图。
图28是例示实施例5中的数据排列的原理图。
图29A至29E是例示根据实施例5的专用重放的重放方法的原理图。
图30是例示实施例6中数据排列的原理图。
图31A至31F是例示在实施例6中进行专用重放的方法的原理图。
图32A至32B是例示在实施例6中纠错块排列的原理图。
图33A至33G是例示在实施例7中的重放方法的原理图。
图34A至34F是例示在实施例7中进行数据插值的情况下进行特定重放的方法的原理图。
图35是例示实施例8中数据排列的原理图。
图36A至36F是例示在实施例8中进行专用重放的方法的原理图。
图37是实施例9中的数字视频信号编码单元的方框图。
图38是表示实施例9和11中频率划分原理的示意图。
图39是实施例9中数字视频信号编码处理的流程图。
图40是例示实施例9中比特流的报头的示意图。
图41A至41D是表示实施例9中比特流重新排列的示意图。
图42是表示实施例9中系统流的地址信息实例的示意图。
图43是实施例9中的数字视频信号解码单元的方框图。
图44是表示实施例9中的解码处理原理的示意图。
图45是实施例9中解码处理的流程图。
图46是实施例10中数字视频信号编码单元的方框图。
图47是实施例10中数字视频信号解码单元的方框图。
图48是表示实施例10画面区域的实施例的示意图。
图49是表示在实施例10中当视频数据以画面区域为单元重新排列时的比特流实例的示意图。
图50是实施例10中数字视频信号编码处理的流程图。
图51是表示实施例10中系统流的地址信息实例的示意图。
图52是表示实施例10中系统流的实例的示意图。
图53A至53E是表示在重放时能重放图像中重放画面的实例的示意图。
图54A至54E是表示在实施例10中在重放时只有画面的中心部分输出的重放画面的实例的示意图。
图55A和55b是表示在实施例10中画面的中心部分被放大及显示的重放画面实例的示意图。
图56是实施例10中数字视频解码处理的流程图。
图57是实施例11中数字信号编码单元的方框图。
图58是实施例11中数字视频信号编码处理的流程图。
图59A至59D是表示实施例11中系统流实例的示意图。
图60是表示实施例11中系统流的地址信息实例的示意图。
图61是实施例11中数字视频信号解码单元的方框图。
图62是实施例11中数字视频信号解码处理的流程图。
图63是实施例11中数字视频信号编码单元的方框图。
图64是表示实施例12中画面上的分辨率变转的原理的示意图。
图65是例示实施例12、13和14中的数据组成结果的实例的示意图。
图66是实施例13中数字视频信号编码单元的方框图。
图67是例示DCT块内DCT系数的数据排列的一个实例的示意图。
图68是实施14中数字视频信号编码单元的方框图。
图69是例示实施例12、13和14中编码数据统计量的实例的示意图。
图70是表示实施例12、13和14中处理顺序的一个实例的示意图。
图71A至71D是例示实施例15在一个块中DCT块的比特流的频率分量的分布形状的示意图。
图72A是实施例15中数字视频信号解码单元的方框图。
图72B是例示实施例15中数字视频信号解码处理的工作原理的示意图。
图73A是表示实施例16中数字视频信号编码单元的方框图。
图73B是例示实施例16中数字视频信号编码处理的工作原理的示意图。
图74是实施例16中数字视频信号解码单元的方框图。
图75是实施例17中数字视频信号解码单元的方框图。
图76是实施例18中GOP地址发生器及光盘控制器的方框图。
图77是实施例18中包括重放处理在内的GOP地址发生器及光盘控制器的方框图。
图78是当在实施例19中进行按频率划分和按量化划分时数字视频信号解码单元的方框图。
图79是当在实施例19中进行按比特长度划分时数字视频信号解码单元的方框图。
图80是当在实施例19中进行按分辨率划分时数字视频信号解码单元的方框图。
图81是实施例20中数字视频信号编码单元的方框图。
图82是实施例20中数字视频信号解码单元的方框图。
图83A和83B是例示用实施例20中数字视频信号记录和重放设备进行处理的原理的示意图。
图84是在实施例21中进行按频率划分或按量化划分时数字视频信号解码单元的方框图。
图85是在实施例21中进行按比特长度划分或按量化划分时数字视频信号解码单元的方框图。
图86是在实施例21中进行按分辨率划分和按量化划分时数字视频信号解码单元的方框图。
图87是在实施例22中进行按频率划分及按量化划分时数字视频信号解码单元的方框图。
图88是在实施例22中进行按比特长度划分及按量化划分时数字视频信号解码单元的方框图。
图89A和89B是表示在实施例22中跳跃搜索时进行处理的原理的示意图。
图90A和90B是表示在实施例22中反向重放时进行处理的原理的示意图。
现在根据表示各实施例的附图对本发明进行详细解释。
首先解释本发明的实施例1。图15是表示实施例1中数字视频信号记录和重放设备的记录系统的方框图。参阅图15,从输入端子1输出的数字视频信号输入格式化电路3。从格式化电路3输出的视频电信号输入减法器4的第一输入端以及动补偿预测电路11的第二输入端。减法器4的输出信号经DCT电路5输入量化器6。量化器6的输出信号经可变长度编码器7输入缓冲存储器12的第一输入端。同时,量化器6的输出信号还经反向量化器8输入反向DCT电路9。反向DCT电路9的输出信号则送到加法器10的第一输入端。
加法器10的输出信号送到动补偿预测电路11的第一输入端。动补偿预测电路11的第一输出送到加法器10的第二输入端以及减法器4的第二输入端。此外,动补偿预测电路11的第二输出送到缓冲存储器12的第二输入端。缓冲存储器12的输出则经格式编码器13输入调制器14。调制器14的输出经输出端子2记录在诸如光盘等的记录介质上。
图16是表示根据实施例1的数字视频信号记录和重放设备中重放系统的电路方框图。参照图16,从记录介质读出的视频信息从输入端子20输入调制器21。解调器21的输出则经缓冲存储器22输入格式解码器23。格式解码器23的第一输出则输入可变长度解码器24,并且在反向量化器25进行反向量化。然后输出信号在反向DCT电路26经受反向DCT,再送到加法器28的第一输入端。同时,格式解码器23的第二输出则输入预测数据解码电路27。然后把预测数据解码电路27的输出送到加法器28的第二输入端。加法器28的输出则经非格式化电路29从输出端子30输出。
接着解释设备的工作情况。数字视频信号是以行为单位从输入端子输入的,并输送到格式化电路3。这里在动补偿预测时,如在图6中所示象传统实例那样,一个GOP被设定成15帧,进行预测编码,1帧I图象,4帧P图象(P1至P4),以及10帧B图象(B1至B10)。在这种情况下,以连续方式输入的视频数据在格式化电路3中重新排列,并以帧为单位以图7中所示的次序输出。
此外,以行为单位输入的数据以8×8象素的块为单位重新排列,从而构成宏块(总共6个块,例如相邻的四个亮度信号Y块以及位置上与Y块相对应的两个色差信号Cr和Cb块。数据是以宏块为单位而输出的。这里,宏块是以动补偿预测的最小单位所确定的,而动补偿预测的动向量是以宏块为单位所确定的。
而且,对于I图象,用格式化电路3把一帧视频数据分成三个区域,因此在这个区域中以8×8象素为单位进行分块,构成及输出宏块。这里,三个所划分的区域如图18中所示的那样从画面顶起设定为区域1、2和3。在图18中,位于画面中心部分的区域2的尺寸为720象素×288行,画面两端区域的尺寸为720象素×96行。同时,在P图象和B图象中,不分成各区域地进行分块,并以宏块为单位地输出。
格式化电路3的输出被输入至减法器4及动补偿预测电路11。减法器4、DCT电路5、量化器6、可变长度编码器7、反向数字转换器8、反向DCT电路9、加法器10以及动补偿预测电路11的工作情况是与传统的实施例相同的,有关它们工作情况的说明就预以省略。
从可变长度编码器7输出的视频数据以及从动补偿预测电路11输出的动向量输入至缓冲存储器12。在缓冲存储器12中记录一个GOP部分的动向量和视频数据,数据然后顺序输出到格式编码器13。格式编码器13的输出被输入调制器14,纠错码等加到及记录在诸如光盘等的记录介质上。
在格式编码器13内,一个GOP部分的视频数据以如图19中所示的数据排列方式重新排列,再输出到调制器14。这里,I图象划分成如图18中所示的三个区域。当对应于这些区域1至3的I图象的数据被设定为I(1)、I(2)和I(3)时,就构成了I图象数据,因而数据就以I(2)、I(1)和I(3)的次序记录在一个GOP部分的数据串的前端部分。
此外,每个图象区域的数据存储在GOP前端部分的地址作为报头信息存储起来。分成三部分的每个图象区域的数据在图19所示格式中所占有的字节数也作为报头信息存储起来。因此,根据在报头信息中所记录的每个区域所占有的字节数,在重放时可以把每个区域的终止位置看作从GOP前端起的相对位置。因此,在专用重放时,光头以一定时间为单位跳到GOP的前端地址,从而根据从GOP前端起的报头信息可以读出每个区域的数据。
采用一般的视频信号记录和重放设备,按照数据记录时的记录格式,I图象以帧为单元予以记录。相比之下,在图19中,将优先权给予位于分成三部分I图象数据中画面中心部分的区域,使得这个区域位于一个GOP的前端。因此,在高速重放时只有I图象的这个区域的一部分能在一定时间内予以解码的情况下,至少画面中心部分的重放图象能被输出。
接着根据图16说明重放时间的工作情况。解调器21进行纠错处理,使得以图19中所示格式记录在缓冲存储器22中的视频信号在格式解码器23中分成动向量和视频数据,分别输出至预测数据解码电路27及可变长度解码器24。这里,在正常重放时的工作情况是与传统实施例相同的,有关其工作情况的说明予以省略。
在高速重放时,对于以一个GOP单位记录在诸如光盘等的记录介质上的数据,光头以一定时间为单元跳到一个GOP的前端,从而根据记录在前端的报头信息以区域为单位读出I图象的数据部分,使数据在解码器21中获得解码并输入缓冲存储器22。这里,在高速重放时从诸如光盘等的记录介质读出数据的情况下,即使知道记录在光盘上的GOP的前端地址,跳到GOP的前端时等候光盘旋转的时间也会增加。因此,当高速重放时速度增加,用于读出光盘的上数据的时间缩短。由于等候光盘旋转的时间是变化的,所以不可能以稳定的方式读出所有的I图象数据。
因此,当高速重放的速度上升时,在只有位于画面中心部分的区域2的数据读出后,光头就跳到后面的GOP的前端,因而只有能被读出的区域2的数据输入缓冲存储器22。在这种情况下,格式解码器23只解码能被读出的I图象的区域2。另一方面,其数据未被读出的区域1和3用灰色数据掩蔽,并输出高速重放图象,因此,在一个GOP设定为15帧的情况下,可以获得15倍速度的专用重放图象。
图20表示在通过只重放从一个GOP的第n GOP至第n+3 GOP的I图象的区域2而进行高速重放情况下的重放图象。在图20中,图中画面两端的区域1和3为灰色数据所掩蔽。此外,当I图象的信息量少,光盘旋转等候时间短,以及可获得读取区域1和3中数据的时间时,区域1和3中的数据就不进行解码。这是由于在高速重放时,一个画面部分的所有数据不能以稳定的方式读出,而且如果只在当区域1和3中的数据能读出时才输出屏蔽,这些区域就不能在一定的时间间隔内输出,从而使高速重放图象显得不自然。
如上所述,由于如图19中所示的用于专用重放的I图象排列成优先权给予位于一个画面中心的区域,I图象记录在记录介质上一个GOP的前端。即使高速重放的速度增加,为了进行高速重放,也只有位于中心的区域2的数据被读出,其结果是容易看到重放图象的内容。此外,由于只有区域2范围内的数据从记录介质上读出,因此与读出整个I图象的情况相比,能实现更高速的专用重放。
在上述实施例1中,I图象如图18中所示沿垂直方向分成三个区域记录下来,但是图象并不是非分成三个区域不可。可以用记录数据的国际标准MPEG所规定的片区为单位分成n个区域(n<1)。这里,片区具有任意数量(一个以上)长度的宏块的一维结构,因此当到达画面的右端时,就继续显示下一行左端。
下面就参照


本发明的实施例2。图21是用以说明在实施例2中进行数据扩充的情况下的专用重放方法的原理图。在实施例1中,I图象如图18中所示分成三个区域,使得只有位于画面中心的区域2的数据被读出重放。因此对于区域1和3,只输出掩蔽数据。然而,区域2的数据如图21所示的那样扩展到一个画面的大小。
在这种情况下,在用非格式化电路29把视频信号转换成以行为单位的数据时,将区域2的数值进行插值,扩展至一个画面部分的尺寸,再予以输出。在图21的情况下,区域2的大小为720象素×288行,从画面中心起沿垂直方向形成144行对称。
这里,在专用重放时,如果如图21A中所示的那样把区域2的上半部分设定为AR2a,下半部分设定为AR2b,AR2a和AR2b就沿垂直方向分别扩展1.5倍,使重放图象AR2a′和AR2b ′如图21B所示的那样地对称。对于扩展图象的方法,当以AR2a的每一行为单位的数据定义为AT(l)(l行数,1≤l≤144),及扩展画面的上半部分的行数据设定为DT(m)(1≤m≤240)时,所作的扩展用下列公式表示DT(3n-2)=AT(2n-1)DT(3n-1)=AT(2n-1)DT(3n)=AT(2n)(n=1至80)同时,当以AR2b的每一行为单位的数据定义为AB(l)(l行数,1≤l≤144),及扩展画面下半部分的行数据设定为DB(m)(1≤m≤240)时,所作的扩展可由下列公式表示。
DB(3n-2)=AB(2n-1)DB(3n-1)=AB(2n-1)DB(3n)=AB(2n)(n=1至80)如上所述,在高速重放时,只读取位于画面中心的区域2的数据、使之扩展到一幅画面的大小、且作为重放图象输出。因此,由于在高速重放时图象两端未被掩蔽,所以重放图象不再难看。
在上述实施例2中,通过简单地以行为单位插入数据而使画面沿垂直方向扩展。行数据可以相对垂直方向进行线性插值。
现在说明本发明的实施例3。在实施例3中数字视频信号记录和重放设备记录系统和重放系统的结构是与实施1相同的(见图15和16)。
下面就介绍设备的工作情况。数字视频信号以行为单位从输入端子1输入,输送到格式化电路2。这里在动补偿预测时,一个GOP象图6中所示的传统实例那样设定为15帧。于是。GOP经过预测编码,作为一帧I图象、4帧P图象(P1至P4)、10帧B图象(B1至B10)。在这种情况下,在格式化电路2中,象传统的实例那样以连续方式输入的视频数据以如图7中所示的次序以帧为单位重新排列,再予以输出。此外,以行为单位所输入的数据以具有8×8象素的块为单位重新排列,以构成如图17中所示的宏块(相邻的四个亮度信号Y块及两个色差信号Cr和Cb块,一共六块),使得数据以宏块为单位予以输出。这里大块是动补偿预测的最小单位,而且动补偿预测的动向量是以宏块为单位而确定的。
此外,在格式化电路3中,I图象沿一帧视频数据的垂直方向分成五个区域,每个区域为720象素×96行。在这个区域中,以8×8象素分块,构成宏块而输出。在这种情况下,所划分的五个区域定义为区域1、2、3、4和5。同时,P图象和B图象被分块,但不划分区域,以宏块为单位予以输出。
格式化电路3的输出被输入至减法器4和动补偿预测电路11。减法器4、DCT电路5、量化器6、可变长度编码器7、反向 量化换器8、反向DCT电路9、加法器10以及动被偿预测电路11的工作情况是与传统实施例相同的,在关这些器件的说明予以略去。
从可变长度编码器7输出的视频数据和从动补偿电路11输出的动向量输入缓冲存储器12。在缓冲存储器12中记录一个GOP部分的视频数据和动向量,上述数据顺序输出至格式编码器13。格式解码器13的输出则输入调制器14,从而加上纠错码等并记录在诸如光盘等的记录介质上。
在格式编码器13中,通过在如图23所示的数据排列中重新排列视频信号而将GOP部分的数据输出至调制器14。I图象分成如图22所示的五个区域,使得对应于区域1至5的I图象的数据定义为I(1)、I(2)、I(3)、I(4)及I(5)。在图23中,I图象的数据结构成以I(1)、I(2)、I(3)、(I4)及I(5)的顺序记录在一个GOP的数据流前端,使得优先权给予位于画面中心的区域。
此外,在图23中,存储每幅I图象的数据的地址是作为报头信息而写入的。作为报头信息,记录了每个区域的数据在数据格式中所占的字节数,区域是通过把I图象分成五部分而获得的。因此在重放时,根据记录在报头信息中每个区域所占有的字节数,可以在重放时把每个区域所占有的字节数,可以在重放时把每个区域的末端位置看作相对于GOP前端的相对地址。结果,光头以一定时间为单元跳到GOP的前端地址,使得I图象的数据可以根据来自GOP前端的报头信息而予以读出。
对于常用的一般视频信号记录和重放设备,以记录时的数据格式将I图象以帧为单位予以记录。相比之下,在图23中,优先权给予位于由划分待排列在一个GOP前端的I图象所获得的五个区域中的画面中心部分的区域,结果是即使只有I图象中的部分区域能被解码,至少画面中心部分的重放图象可以输出。
然后就根据图16说明重放时的工作情况。在解调器21中经过纠错处理且以图23中的格式记录在缓冲存储器22中的视频信号分为动向量和视频数据,动向量和视频数据分别输出至预测数据解码电路27和可变长度解码器24。这里,正常重放时的工作情况是与传统实施例相同的,其详细介绍就予以省略。
在高速重放时,对于记录在诸如光盘等的记录介质上的数据,光头以一定时间为单位跳到GOP的前端,根据报头信息读取I图象的数据部分,数据在解调器21中进行解调,以输入缓冲存储器22。然而,在I图象的信息量太大而不能在一定时间内读出的情况下,已经读出一半的数据直至数据的最后项读出,光头跳到下后面GOP的前端,只将能读取的数据输入缓冲存储器22。在这种情况下,在格式解码器23中,只解码能读取的I图象的区域,而且作为高速重放图象予以输出。因此,当GOP设定为15帧时,可以获得15倍速度的专用重放图象。
图24表示重放一个GOP的I图象的情况下的重放图象。在这种情况下,I图象所有区域的信息量太大了而不能从记录介质读出,对于不能读取的区域,使前面区域保持原样予以输出,从而合成了高速重放图象。在图24中,在不能读取第n+1个GOP区域5及第n+3个GOP区域1和5的情况下,这幅重放图象的前一幅重放图象就保持原样。
以这种方式,如图23中所示用于专用重放的I图象设置成使得优先权给予位于记录在记录介质上一个GOP前端的画面的中心部分的区域,因此,即使不能读取整个I图象时,在重放时优先权也给予画面的中心部分,使得重放图象的内容容易理解。
在上述实施例3中,当不能读取整个I图象时,重放图象就以区域为单位进行插值,若不以区域为单位进行插值,则可以纠错块为单位进行插值。
在这种情况下,根据图23中所示的数据排列,解调器21把数据分成若干字节长的数据包并且把纠错码加到每个数据包上。图25表示在五个区域以连续方式输入的数据以纠错块单元为单位分成几个数据包的情况下的实例。图25A表示数据包划分前的数据串。图25B表示数据包划分后的数据串。I图象的五个区域分成一定容量的若干数据包,区域I(3)分为从I至i的数据包,区域I(4)分为从i至j的数据包,以便输入。
在高速重放时,对于以GOP为单位记录在诸如光盘等的记录介质上的数据,光头以一定时间为单位跳到GOP的前端,按照报头信息以区域为单位读取I图象的数据部分。数据部分由解调器21进行解调,输入缓冲存储器22。然而,在因I图象的信息量大而不能在一定时间内读取整个I图象的情况下,甚至当正在读取数据的一个区域时,光头也跳到后面GOP的前端。此外,能读取的数据经受纠错处理,使得能被纠错的数据输入缓冲存储器22。在这种情况下,格式解码器23能识别解码途中的I图象区域的地址,使得能被读取的数据以宏块为单位进行解码,以及作为高速重放图象予以输出。在这种情况下,对于不能解码的宏块,就按原样保持前一幅画面予以输出。
在上述实施例3中,I图象每个区域中的数据以连续方式分为若干数据包。然而,可以把数据划分成使得两个以上区域的数据可以不包括在一个数据包内。在这种情况下,一个区域部分的数据是以纠错块的整数倍而封闭的,其结果是紧接纠错处理后数据能以区域为单位重新排列。当每个区域的数据划分成数据包单元时,数据一半输入至每个区域的最后的数据包,使得剩余的数据需要放置在数据掩蔽中(例如,所有数据都掩蔽为“1”)。
此外,在上述实施例3中,以3、2、4、1和5的次序给予优先权。然而,并不只限于这种次序。次序例如可以是3、4、2、5和1。
而且,在上述实施例3中,I图象沿水平方向分为五个区域,并如图22所示那样地予以记录。数据不一定要分成五个区域,而是可以国际标准MPEG所限定的片区为单位分为n区域(n>1)。这里,片区具有任意长度数(一个以上)的宏块的一维结构。片区是一条到达画面右端时连续到下一行左端的带。
下面就根据附图解释本发明的实施例4。图26是表示实施例4中专用重放方法的示意图。在实施例3中,是用图24中所示的重放方法进行专用重放的。然而,也可以进行专用重放,输出如图26所示那样的重放图象。在这种情况下,通过重放如图26中所示那样连续的五个GOP的I图象的每一个区域,格式解码器23就合成一幅画面。例如在图26A中,重放图象的一个画面部分是从第n至第n+4 GOP的I图象合成的,使得第n+4 GOP的I图象在区域1重放、第n+3 GOP的I图象在区域2重放、第n+2 GOP的I图象在区域3重放、第n+1 GOP的I图象在区域4重放、以及第n GOP的I图象在区域5重放。此外,参照图26,当注意区域5时,第n、n+1、n+2……GOP的I图象作为重放视频数据进行重放。
此外,当由于I图象的信息量大而不能在一定时间内读出整个I图象时,前一幅画面的数据保持原样予以输出,以合成高速重放图象。图27是当第n+1 GOP区域5及第n+3 GOP区域1和5不能读取时的重放图象。在这种情况下,由于数据排列是通过将优选先权给予位于如图23所示的画面中心部分的区域而记录在记录介质上的,因此即使整个I图象不能按照时间读出的情况下,重放时也将优先权给于画面的中心部分,结果是不会发生重放图象难看的情景。而且,即使在两个以上区域的数据不能读出的情况下,一幅画面也分成五个区域。由于在各区域中重放的帧是不相同的,难以检测在重放图象中所缺的数据。
接着参照附图介绍本发明的实施例5。图28是表示根据实施例5的数字视频信号数据的排列结构的示意图。在实施例3中,数字排列是如图23中所示那样对于I图象以区域3、2、4、1和5的次序写成的。数字排列也可以具有图28中所示的结构。在图28中,当I图象的数据记录在一个GOP部分的数据排列前端部分时,各GOP的前端上的区域号被上卷。换言之,如图28中所示,当I图象数据以I(5)、I(1)、I(2)、I(3)和I(4)的次序记录在第n GOP上时,I图象数据就以I(1)、I(2)、l(3)、I(4)及I(5)的次序记录在第n+1 GOP中。而且,I(2)首先进入第n+2 GOP。当GOP号成为n+3、n+4等……时,前端区域顺序上卷,以I(3)、I(4)、I(5)、I(1)等……予以记录。
此外,在GOP的前端,存储各I图象的数据的地址及用以识别前端区域类型的信息是作为报头信息写入的。作为报头信息,包括记录在前端的区域号以及表示如图27中所示在每个区域的数据格式上所占的数据量的字节数。因此,在重放时,有了记录在报头信息中的前端E域号以及每个区域在记录介质上所占有的字节数就可以把I图象区的数据次序及记录介质上每个区域的末尾位置看作关于GOP前端的相对地位。因此在专用重放时,光头以一定时间为单位,跳到GOP的前端地址,便得I图象数据对于从GOP前端起的每个区域都能根据报头信息读出。
在这种情况下,记录分成五个区域的I图象区域的位置以GOP为单位上卷,因此即使在专用重放时I图象只有一部分区域能被解码,不能被解码的区域也不会集中在画面中的固定位置上。
在高速重放时,对于记录在例如光盘等的记录介质上的数据,光头以一定时间为单位跳到GOP的前端,根据报头信息以区域为单位读出I图象的数据部分,在解调器21内进行解调,再输入至缓冲存储器22。然而当I图象的信息量太大而不能在一定时间内读出整个I图象时,在被读途中的那个区域的最后数据读取后,光头就跳到下一个GOP的前端,以便只有能被读取的区域的数据输入缓冲存储器22。在这种情况下,格式解码器23只解码作为高速重放图象输出的、能被读出的I图象的区域。因此,在一个GOP设定为15帧的情况下,获得15倍速度的专用重放图象。
图29表示在高速重放时重放一个GOP的I图象的情况下的重放图象,在这种情况下,I图象以图28中所示的次序记录在记录介质上。这里,在I图象的信息量大、整个I图象不能及时读出的情况下,前一幅画面的数据就保持原样予以输出,以便合成高速重放图象。图29表示第n+1 GOP区域5及第n+3 GOP区域1和2不能完全读出的情况。在这种情况下,前一幅画面的数据就保持原样。
如上所述,如图28中所示的记录用于专用重放的I图象的次序以GOP为单位上卷。因此,即使在专用重放时只有I图象的某些区域能被解码的情况下,不能被解码的区域也不会集中在画面的固定位置上。
下面参照附图介绍本发明的实施例6。图30是表示根据实施例6的数字视频数据的数据排列结构的示意图。在这种情况下,I图象和P图象分为五个区域,各为720图素×96行,使得各区域以宏块为单位进行分块,且如图22中所示的那样进行编码。然而,P图象被分成五个区域。以动补偿预测的参考型式的检索范围封闭于区域内的方式进行动补偿预测及编码。这里,所划分的五个区域从顶部起定义为1、2、3、4和5。此外,对于B图象,不划分区域就进行动补偿预测并予以编码。
用格式编码器13,以图30中所示的数据排列用一个GOP部分的数据重新排列视频信号,并输出至调制器14。这里,对于I图象和P图象,一幅画面如图22中所示的那样分成五个区域。I图象以及P1、P2、P3和P4图象定义为I(1)至I(5)以及Pi(1)至Pi(5)(i=1至4)在图30中,I图象、P1、P2、P3和P4图象的数据结构成从一个GOP部分的数据串的前端起以3、2、4、1和5的次序予以记录,使得优先权给予位于画面中心部分的区域。此外,在图30中,每个区域的数据量作为报头信息记录在GOP的前端,从而可以识别每个I图象和P图象区域中的数据的地址。
在高速重放时,对于以一个GOP为单位记录在例如光盘等的记录介质上的数据,光头跳到GOP的前端,从而以区域为单位读出I图象和P区域的数据部分,由解调器21予以解调,并输入缓冲存储器22。然而,当I图象和P图象的信息量太大而不能在一定时间内读出整个I图象和P图象时,读取途中的区域直至最后的数据被读出。此时光头以一定时间为单位跳到GOP的前端,使得只有被读出的数据输入缓冲存储器22。在这种情况下,格式解码器23只对能被读出的I图象和P图象的区域进行解码,然后输出数据作为高速重放图象。因此,在一个GOP设定为15帧的情况下,可以获得三倍速度的专用重放图象。
此外,由于优先权给予位于画面的中心部分的区域,以便排列在分为五个区域的I图象中一个GOP的前端,即使在只有I图象或P图象的一部分能被解码的情况下,至少也能输出画面的中心部分。此外,图象是以I图象、P1图象、P2图象、P3图象及P4图象的次序记录在记录介质上的。因此,即使当所有数据都不能读出时,也不会发生测数据解码电路27不能重放参考数据的情况。
图31表示在通过只重放一个GOP中的I图象和P图象而进行图象的高速重放的情况下的重放图象。在这种情况下,当图I图象和P图象的信息量大而不能在一定时间内从记录介质上读出整个I图象和整个P图象时,上一幅画面的数据就保持原样予以输出,以便对于不能读出的区域合成高速重放图象。图31表示第n GOP的P4中区域3、4和5不能读出的情况。在这种情况下,前一幅画面的数据保持原样。
如上所述,如图30中所示,通过以一个GOP前端的区域为单位收集和排列专用重放时所用的I图象和P图象,而在专用重放时重放I图象和P图象,输出专用重放图象。此外,在因时间限制而不能读出整个I图象和整个P图象的情况下,上一幅画面的数值就会插值,以允许输出重放图象。
在上述实施例6中,在不能读取整个I图象和P图象的情况下,以区域为单位对重放图象进行插值。然而,也可以不以区域为单位进行插值,而是以纠错码为单位进行插值。
在这种情况下,对于图30中所示的数据排列,解调器21把数据分成若干字节的数据包,使得纠错码加到每个数据包上。图32表示以连续方式输入的五个区域的数据分为若干个由纠错块组成的数据包。图32A表示数据包划分前的数据串。图32B则表示数据包划分后的数据。在图32中,数据分成区域P1(3)中的第i至第j数据包。
在高速重放时,对于以GOP为单位记录在例如光盘等的记录介质上的数据,先头以一定时间为单位跳到GOP的前端,从而根据报头信息以区域为单位读出I图象的数据部分,在解调器21进行解调,再输入缓冲存储器22。然而在I图象的信息量大到使整个I图象和整个P图象的不能在一定时间内读出的情况下,即使在读取一个区域部分的数据的途中,光头也会跳到下一个GOP的前端。此外,已被读取的数据经受纠错处理,经过纠错的数据输入缓放存储器22。在这种情况下,格式解码器23识别解码途中的I图象和P图象的地址,使得能被读取的数据以宏块为单位进行解码,且作为高速重放图象予以输出。在这种情况下,对于不能解码的宏块,上一幅画面的数据就保持原样予以输出。
在上述实施例6中,在动补偿预测时,检测范围设定成封闭在每个区域内,但是并不总是需要封闭的。
下面参照图33介绍本发明的实施例7。图33是表示实施例7的特定重放方法的示意图。在实施例6中,用图31所示的重放方法进行特定重放。然而,可以进行专用重放,使得重放图象如图33中所示那样地输出。在这种情况下,通过从如图33所示的连续五帧逐个重放区域,格式编码器23合成一幅画面。在图33A中,一个画面部分的重放图象是从I图象、P1至P4图象合成的。此外,在图33A中,在区域1重放P4图象,在区域2重放P3图象,在区域3重放P2图象,在区域4重放P1图象,以及在区域5重放I图象。此外,在图33中,要注意区域5经过的时间。重放的视频数据包括第n GOP的I图象,P1、P2、P3及P4,以及第n+1 GOP的I图象,以及P1图象。
此外,在I图象和P图象的信息量大到所有I图象和P图象不能在一定时间内读出的情况下,上一幅画面的数据保持原样予以输出,合成高速重放图象。图34表示第n GOP的区域1、4和5不能读出的情况下的重放图象。在这种情况下,如图30中所示,对于数据串,优先权给予位于中心部分的区域,以便记录在记录介质上,从而不会发生重放时因优先权给了画面中心部分而重放图象难看的情况。此外,即使在两个以上区域的数据不能读取的情况下,一幅画面也分成五个区域,各区域中所重放的帧是各不相同的,在重放图象中所缺少的数据就难以看见。
接着参照附图介绍本发明的实施例8。图35是表示实施例8数字视频数据排列结构的示意图。在实施例6中,数据排列是以如图30中所示的区域3、2、4、1和5的次序写成的,但是这种排列也可以具有如图35中所示的结构。
在图35中,当I图象和P图象的数据记录在一个GOP部分的数据排列的前端时,对于每一帧,前端上的区域号都上卷。换言之,如图28中所示,在第n GOP中I图象数据是以P1(2)、P1(3)、P1(4)、P1(5)及P1(1)的次序记录的。此外在P2图象中,P2(3)成了前端。在P3图象及P4图象中,前端区域被上卷,并且象P3(4)和P4(5)那样地顺序记录。
此外,在GOP的前端,存储I图象和P图象的数据的地址、以及识别各帧前端上的区域的类型信息作为报头信息记录下来。这里,作为报头信息记录了在每个区域前端所记录的区域号以及表示分成五个部分每个区域中的数据量的字节数。因此,在专用重放时,光学装置以一定时间为单位跳到GOP的前端,从而根据报头信息可以区域为单位读出数据。
在这种情况下,由于I图象和P图象分成五个部分的位置以帧为单位上卷,即使在只有I图象和P图象的一部分区域能被解码的情况下,也不会发生未被解码的区域集中在画面的固定位置上的情况。
在高速专用重放时,以一个GOP为单位记录在例如光盘等的记录介质上的数据是根据报头信息以区域为单位而读出的。此时,数据由解调器21进行解调,并输入缓冲存储器22。然而,当I图象和p图象的信息量大到不能在一定时间内读出整个I图象和P图象时,对于读取途中的区域,读出最后数据。然后光头跳到GOP的前端,只输入能输入缓冲存储器22的区域的数据。在这种情况下,格式解码器23只解码I图象和P图象的区域,并且作为高速重放图象予以输出。
图36表示在只有一个GOP中的I图象和P图象被重放的情况下的高速重放的重放图象。在这种情况下,当I图象和P图象的数据量大到不能在一定时间内读出整个I图象和P图象时,通过使上一幅画面的数据保持原样予以输出就能合成高速重放图样。图36表示第n GOP的P4中区域3、4和5不能读出的情况。在这种情况下,上一幅画面的数据保持原样。
如上所述,由于记录I图象的次序如图35中所示那样地以GOP为单位上卷,即使在专用重放时只有I图象的一部分区域可以解码的情况下,不能解码的区域也不会集中在画面的固定位置上。
接着参照图37介绍本发明的实施例9。图37是表示数字视频记录和重放设备中的数字视频信号编码处理单元的记录测的方框图,其中DCT块分为低频区和高频区级,使得只有低频区位于GOP的前端。在图37中,编号51表示缓冲存储器、52表示减法器、53表示DCT电路、54表示数字转换电路、55表示可变长度编码器、56表示反向数字转换电路、57表示反向DCT电路、58表示加法器、59表示动补偿预测电路、60表示计算事件数及代码量的计数器、61表示格式编码器、以及65表示输入端子。
下面介绍设备的工作情况。待输入的视频数据是隔行扫描图象,其有效的画面尺寸为水平704象素及垂直480象素。这里,减法器52、DCT电路53、数字转换电路54、可变长度编码器55、反向量化器56、反向DCT电路57、加法器58及动补偿预测电路59的工作情况是与传统实施例中的对应装置相同的,有关它们的说明就予以省略。
现参照图38说明可变长度编码器55的工作情况。图38表示DCT块内DCT系数的数据排列。在图38中,低频分量位于左上部分,高频分量的DCT系数的数据位于右下部分。DCT块内所排列的DCT系数的数据中,直至特定位置(事件的结束处)系数的数据(例如图38中的阴影部分)被编码成可变长度码,作为可变长度区域,并且输出至格式编码器61。于是,对上述位置的DCT系数的数据后的DCT系数的数据进行可变长度编码。换言之,空间频率区域的数据通过分割进行编码。
低频区和高频区之间的界线称为拐点。拐点设定为假定在特定重放时光头可以到达的低频区的预定代码量。可变长度编码器55根据拐点把DCT系数分成低频区和高频区,以输出至格式编码器61。
在事件的界线处确定编码区。不消说可以用其它方法作出确定。例如,可以在一定数量的事件的边界处确定编码区。用由量化器54经过粗量化的量化数据及细量化和粗量化的差分值,对数据进行划分。此外,可以对用缓冲存储器将其分辨率变稀疏到一半程度的图象进行编码以及对分辨率从一半程度恢复的图象和原有分辨率的图象之间的差分图象进行编码而将数据进行划分。换言之,数据划分不限于频率区的划分。不消说,可以用量化及空间分辨率的划分而对图象的高效编码数据进行划分。
这时,按频率划分时作为图象的较重要的数据是低频数据。当划分是用量化剂分时,为了编码,数据经受粗量化。当数据用空间分辨率划分时,对变稀疏(thinned)的图象进行编码。通过只对那些重要数据进行解码就,可以获得人们就容易感觉到的解码图象。用这种方式,一种高效的编码数据能分成更基本的重要数据和其它数据(这个过程叫做分层化),加上纠错误,进行调制;以便记录在光盘上。
用这种方式,由于只划分I图象和P图象的低频分量,在特定重放时只读出及重放这些低频分量就大大地减少了专用重放时所读出的数据量。结果,从介质读出数据的时间就较短,在跳跃搜索时可以实现平稳移动的高速重放。而且,当只有I图象和P图象以连续方式排列时,就能方便地从光盘读出I图象和P图象的低频分量的数据,以便解码。在这种情况下,比起在GOP前端排列I图象和P图象的整个区域,只要抽取和排列低频分量就可以形成更有效的数据结构。
下面就介绍格式编码器61的工作情况。图39是表示格式编码器运行情况的方框图。一开始当编码工作起动时,判断编码模式是否处在分层模式。当模式不是分层模式时,信息被插入系统流,该信息表示模式是非分层模式,以服从传统的流结构。在分层模式的情况下,确认设定了次序报头。具体的说是确认次序可测延伸的数据。当数据正确地写入时,就认别图象的前端,使得I图象和P图象分成低频分量数据和高频分量数据,以检测各自的数据长度。
同时,为各图象检测B图象的数据的长度。此外,在紧跟GOP的前端排列I图象和P图象的低频分量数据的情况下,制作只记录地址信息的数据包。在这个数据包中,包含了I图象和P图象的低频分量、I图象和四幅P图象的高频分量、以及十幅B图象的地址信息,从而记录各数据的数据长度。
因此,根据这个数据长度,可以获得各数据流的前端位置,作为相对于GOP报头前端的相对地址。含有这个地址信息的数据包、I图象和四幅P图象的低频分量以及剩余的数据顺序地排列,以进行格式化。
其中,上述次序报头的可测延伸部分上的可测模式的确认涉及图40中MPEG2的句法中所确定的可测模式设定的确认以及片区报头上优先权拐点的描述的确认。优先权拐点位于图40中的预定数量事件处(对应于上述拐点),而且涉及表示所划分的低频分量和高频分量之间的界经的数据。
当扰频模式假设为“00”时,表示后续的比特流是数据分割的比特流,也表示分为低频分量和高频分量的比特流是连续的。当B图象是由低频分量组成以致不会产生高频分量时,B图象就不予划分。
以这种方式产生的比特流的一个实例示于图41。图41A表示未经分层的比特流。当比特流用图37中所示的电路分层时,比特流就如图41B所示那样地分割和分层。当考虑到这种专用重放而将数据排列成阵列时,I图象和P图象的低频分量就如图41C所示排列在GOP的前端。
图41D表示在地址信息如图39中的流程图所示那样包含在专用数据包的情况下的数据排列。在这种情况下,如上所述,地址信息可以用相对于GOP报头前端的相对地址予以表示。然而,地址信息可以用哪个数据包的哪个字节是各图象的前端的方式予以表示。不消说,地址信息也可以用光盘上的扇区地址表示。
图42表示专用数据包中包含地址信息的实例。当经过数据包化的基本比特流(称为PES)数据包用作专用数据包时,比特流ID表示为BF(十六进制表示法)。在描述了数据包长度后,字节MSB设定为1,其后的比特设定为0,使得代码与所有的起始码(数据包的起始码和比特流的起始码)显得不相同。于是用剩余的六比特描述分层模式、分层种类、专用重放时所要使用的图象种类、以及起始地址数等。
其后,描述21比特长的地址信息,从而可以表示高达2M字节的最大长度的GOP数据量。然而,100(用二进制法表示)插入21比特数据的首三比特,使得该数据与上述起始码的前24比特000001(十六进制表示法)显得不相同。这里,起始地址包括I图象低频分量的起始地址,四个P图象的低频分量的起始地址,I图象的高频分量、四个P图象的高频分量的起始地址,以及十个B图象的起始地址。此外,添加上记录有前、后GOP的数据的光盘上的扇区地址,以便在特定重放时使光头跳动。
当I比特的奇偶校验位加到21比特地址时,就提高了数据的可靠性。在这种情况下,10(二进制表示法)可以加到相对于21比特+1比特的前端。此外,考虑到专用重放的高速倍数,当加上若干前后GOP的扇区地区以及前一及后一GOP的地址时,就可以扩大专用重放的高速倍数的就化。此外,这表明在PES的数据包的专用2数据包中描述了地址信息。不消说,地址信息可以写在例如程序流图等的专用描述符(descripter)的其它用户区等上。
现在根据图43和44介绍实施例9的重放侧。图43是数字视频信号解码处理部分的方框图。在图43中,编号71表示程序流报头检测器,72表示PES数据包报头检测器,73表示视频比特流发生器,74表示数据重排器,75表示地址存储器,76表示模式转换开关,77表示可变长度检测器,78表示开关,79表示反向量化器,80表示反向DCT电路,81表示加法器,82表示预测数据解码电路,83表示帧存储器,以及84表示可解码判定器。图44是表示图43的工作原理的示意图。
下面根据图45说明图43的工作情况。图45是表示重放时格式解码器工作情况的流程图。从ECC输出的比特流经受程序流报头的检测,以便分成各PES数据包。此外,检测PES数据包报头,以区别含地址信息的专用数据包及视频数据包。
在专用数据包的情况下,将数据包中所含的地址信息抽取出来加以存储。同时,在视频数据包的情况下,则抽取视频数据的比特流。这里,在正常重放的情况下,对于I图象和P图象,从视频数据的比特流中抽取低频分量和高频分量的数据,从而重新排列数据及输出重放图象。同时,在专用重放时,只抽取视频数据的低频分量加以重放。这里,在重放低频分量后,允许光头跳到后面GOP的前端。
在这种情况下,当在视频流描述这些地址时,地址信息转换成比特流后才抽取及存储。因此,在当地址信息用程序流图的专用描述符描述的情况下,以程序流图报头的检测电平抽取及存储地址信息。不消说,地址信息可以是相对地址或绝对地址。
实际上,诸如跳跃搜索及正常连续重放等的模式信号输入模式转换开关76。同时,来自光盘等的重放信号由放大器进行放大,从而用由PLL等输出的经过相位同步的时钟重放信号。接着为数字解调进行辨别操作。于是在进行纠错处理后,程序流报头检测器71就获得了首标后的数据信息。
此外,PES包报头检测器72例如检测在PES数据包的专用2数据包(private 2 packet)中所述的各图象的地址信息以及专用重放的数据的地址信息,该信息存入地址存储器75。这里,将用于音频的PES数据包、用于例如字符等的PES数据包以及用于视频的PES数据包进行分类,以致只有视频数据包输出至视频比特流发生器73。
这里,视频比特流发生器73擦去来自PES数据包的附加信息,构成比特流。具体地说,诸如各类控制码及时间标记(stamp)的数据予以消去。此后,根据从地址存储器75中所获得的地址信息,用模式转换开关76的输出,由数据重排器74在正常重放时重新排列比特流。
模式转换开关76的输出(控制信号)输送到数据重排器74和可解码判定器84。通过获得控制信号,数据重排器74从被划分及分层的低频分量及高频分量重建划分前的数据。否则,只向可变长度解码器77输出低频分量。换言之,在正常重放时,各低频分量与高频分量合成起来,使得设备以普通图象的次序重排数据的方式工作。在专用重放时,根据高速倍数,只输出I图象的低频分量或I图象和P图象的低频分量。
在只允许通过低频分量的专用重放时,不采用时间标记。相比之下,可变长度解码器77连同可解码判定器84抽取由片区报头的优先权拐点所表示的低频分量区中的事件的边界,使得直至边界的数据被解码,且输出至开关78。这个开关78连接成在正常重放时不会插入零。同时,在专用重放时,用可解码判定器84控制开关78,使零插入特定重放时优先权拐点后的高频分量区。
现在根据图44说明上述工作情况。参照图44,当分割拐点是E1至E3时,E1至E3存入低频分量流。E4至EOB则存入高频分量流。在低频分量流中,存有E3后的后面DCT块中的低频分量数据。
这里,在正常重放时,数据重排器74从低频分量流抽取数据E1至E3,以及从高频分量流抽取数据E4至EOB。而且,数据重排器74分别抽取数据,顺序重建DCT数据。相比之下,在专用重放时,数据重排器74抽取数据E1至E3,接着由可变长度解码器77进行可变长度解码,可解码判定器84检测优先权拐点,使零插入图44中的阴影部分,以便只用低频分量构成DCT块。
转换成DCT块的数据根据动向量进行解码。这里,由于解码是与传统实例相同的,所以略去了有关动向量解码的说明。然而,在特定重放时解码P图象所用的基准通过采用只用低频分量解码的I图象或P图象予以解码。
以数据块为单位进行解码的数据输入帧存储器83。这里,帧存储器83以GOP结构的原有次序恢复图象,并且通过从块扫描至光栅扫描的转换而予以输出。顺便说,帧存储器83通常可以与装在预测数据解码电路82中的存储器配用。
编码区限定在事件的边界处,但是不消说也可以用其它方法限定边界,换言之,除了频率区划分,图象的高效编码数据还可以用量化划分,或者空间分辨率划分。
此时,频率划分情况下作为图象更重要的数据是低频区数据。在量化划分的情况下,数据涉及通过粗量化而编码的数据。在用空间分辨率划分数据的情况下,数据涉及通过将变稀疏的图象编码所获得的数据。在这种情况下,在只用这些数据项所解码的重放图象中,人们容易觉察到的区域定义为重要数据。换言之,一个高效编码数据分为基本的重要数据及不那么重要数据(这个过程称为分层),使得数据从光盘重放时,只有基本的重要数据可在专用重放时重放。
实施例9描述了对应于重放侧的记录侧的情况。这也考虑到记录和重入组合成一组,例如硬盘等的情况下,只考虑重放侧,预先假定数据是根据一般可获得的激光盘等的原理所记录的。
下面介绍本发明实施例10。图46是表示根据本发明实施例10的数字视频信号记录和重放设备的记录系统的方框图。图46中相同的编号表示图37中的相同部件或对应部件。编号65表示输入端子、51表示缓冲存储器、52表示减法器、53表示DCT电路、54表示量化器、56表示反向量化器、57表示反向DCT电路、58表示加法器、59表示动补偿预测电路、55表示可变长度编码器、62表示区域重排器、以及61表示格式编码器。
图47是表示根据本发明实施例10的数字视频信号记录和重放设备的重放系统的电路方框图。图47中相同的编号表示图43中相同的部件或对应的部件。编号71表示程序流报头检测器、72表示PES数据包括检测器、73表示视频比特流发生器、85表示区域重排器、75表示地址存储器、76表示模式转换开关、77表示可变长度解码器、79表示反向量化器、80表示反向DCT电路、81表示加法器、82表示预测数据解码电路、以及83表示帧存储器。
下面介绍实施例10的工作情况。来自输入端子65的数字视频信号是以行为单位输入的,输送到缓冲存储器51。从缓冲存储器51至可变长度编码器55的工作情况是与上述实例相同的,有关其说明就予以略去。
对于从可变长编码器55以GOP为单位输出的视频信号的比特流中的I图象,区域重排器62重排数据,使得位于画面中心部分的区域排列在比特流的前端。这里,I图象分成如图48中所示的三个区域。I图象中对应于区域1-3的数据定义为I(1)、I(2)和I(3)。然而,图48中所示的各区域是多个MPEG片区层的集合。在图48中,区域1和3由6个片区所组成,区域2则由18个片区所组成。
实际上,区域重排器62检测比特流的I图象的片区报头,把每个片区分为三个区,如图48所示,从而对每区形成一比特流,为每个区重排比特流。换句话说,如图49所示,比特流在这个区单元中被重排,这样,比特流以I(2),I(3)和I(1)的顺序安排在GOB的前头。该重排的比特流被输出列GOP单元的格式编码器61。
接下来,根据图50解释格式编码器61的操作。图50是一个流程图,说明把视频数据格式化为GOP单元中的PED包的算法。在屏幕中心部分优先模式情况下,检测要输入的比特流图象报头和图象信息。在I图象的情况下,图49所示的图面I(2)、I(3)和I(1)的中心部分被提取,并检测各数据长度,检测的每个区的数据长度转变为24位宽的二进制数,制成地址信息。另一方面,数据长度在图象单位中相对于P和B图象被检测,这样,数据长度被转换为24位宽(3个位组)的二进制数,制成地址信息。
格式化单元收集输入地址信息和视频数据比特流,分为两类PES包。换句话说,构成了只具有地址信息的PES包和只具有音频的PES包。
因此,在一个GOP由15帧构成的情况下,如图6所示,有17类图象作为地址信息,例如,3种I图象,4种P图象,10种B图象。而且,在盘上有引导GOP和跟随GOP的两类地址信息(盘上的绝对地址)作为特殊重放时刻的地址信息。这些条目的地址信息的收集在一个包中,并格式化为PES包。实际上,这些地址信息项目收集在一个包中,并格式化为图51所示的PES包的专用I包。在图51中,在盘上引导GOP和跟随GOP的绝对地址安排在包数据的前面。然后,每个图象的地址信息依次安排。然而,对每个地址信息指定了3位组(24位)长的地址信息,所以包的长度为57位组。
在此期间,就地址数据以外的比特流的一个GOP部分而言,比特流被格式化为PES包(视频包),方法是把比特流分为多个数据包,并加上同步信号等报头信息。
此外,格式编码器61把输入的音频数据的比特流分为许多PES包,构成具有视频数据PES包的MPEG2-PS系统流。实际上,如图52所示,视频数据的一个GOP部分的比特流和音频数据比特流被分割并安排在同一组的多个数据包中。在这种情况下,一代表前述地址信息的包安排在图52的系统流的前包中。然后,以如下方式构成装置,即在I图象的屏幕中心部分含有比特流的包被构成。
下面,结合图47解释重放时的操作。在图47中,由于程序流报头检测器71、PES包报头检测器72、视频比特流发生器73和模式转换器76的操作与传统方法是相同的,所以略去解释。
在解码的视频比特流中,在I图象的屏幕中心部分的数据位于比特流的前面。区重排器85根据从地址存储器75输出的比特流I(2)、I(3)和I(1)的数据长度,并按I(1)、I(2)和I(3)的顺序重组I图象数据。重组的比特流输入到可变长度解码器77,解码成块数据,动向量等。因为可变长度解码后的操作在正常重放时刻与传统方法相同,因此,其解释从略。
在高速重放中,如上所述,是把一个GOP数据部分分配给一组系统流,所以认为有一种方法,当光头从盘上读取数据时,就跳到每个GOP的前面地址,以只读取放在系统流前面的I图象数据,这样,光头跳到后继GOP的前面。在这种情况下,检测具有一安排在系统流前面的地址信息记录的PES包,通过解码后继GOP的盘上的地址和I图象的地址信息来控制盘驱动。
在图6的情况下,当每个GOP中的所有I图象能在一帧中读取时,可以实现15倍的高速重放。当在每个GOP中的I图象在两帧中读取时,能实现7.5倍的高速重放。在这种方式中,高速重放时,读取盘上数据的时间较短。
在从记录媒体,例如光盘等上读取数据的情况下,即使知道前地址,也存在盘的转动等待时间,在这个时间,光头要跳到实际记录了数据的位置。当视频信号以可变速率编码时,I图象的信息量是不定的,读取I图象的时间也是可变的。因此,高速重放的速度越高,读取盘上数据的时间越短。因为盘旋转的等待时间是不定的,不可能稳定地读取I图象的整个数据。
在实施例10中,在高速重放时刻,对于记录在记录媒体(光盘等)上GOP单元的数据,光头在有限时间单位跳到该GOP记录的数据。这样,从盘读取I图象的数据部分。在这种情况下,似乎I图象的整个数据不能被读取,光头跳到后续GOP的前面。换句话说,光头在一特定时间单元中跳到每个GOP的前地址,以从系统流的前面读取尽可能多的数据,然后跳到后续GOP的前部。
在这种情况中,包含盘数据地址和后续GOP地址的PES包以及包含I图象中心部分数据的PES包被安排在系统流的前面部分。因此,即使当在专用重放时刻不能读取I图象的整个数据的情况下,至少后续GOP盘上地址和I图象中心部分的数据可以被解码为控制盘驱动的地址和数据。
在专用重放时刻,只有屏幕中心部分能被解码的情况下,只有能被区域重排器85解码的数据输出到可变长度解码器77,这样,可变长度解码的视频数据通过反向量化器和反向DCT被输入到帧存储器83。同时,区域重排器85把不能被解码的区信息输入到帧存储器83。关于不能被解码的区,前一帧的输出数据原样保留并被输出。
图53示出了重放图象的一个例子,其中,高速重放是通过只重放第n个GOP到第n+4个GOP中的I图象完成的。图53A示出了一种情况,整个I图象能被解码。图53B的情况是区2和3能被解码。在不能被解码的区1中,前一帧的值被原样保存并输出。此外,图53C的情况是只有区2能被解码。在区1和3,前一帧的值被照样保存。
在一般的视频信号记录和重放装置中,采取的格式是I图象被记录在记录时刻的帧单元中。相反,在图52,位于屏幕中心部分、I图象数据(分为三部分)之外的区因具有优先权而安排在GOP的前面。因此,即使在只有I图象部分的区能在专用重放时刻以确定时间从盘读取的情况下,至少在屏幕中心部分的重放屏幕被输出。
如上所述,在实施例10中(图52),关于用于专用重放的I图象,位于屏幕中心区的数据安排在一个GOP的前面,该区具有优先权被记录在记录媒体上,使位于屏幕中心部分的区2在即使高速重放的速度很高的情况下具有重放优先权,易于看到高速重放图象的内容。完成专用重放时,光头在确定时间单元中跳到GOP的前面,结果,输出的画面以预定的高速度被更新。
顺便说一下,前叙实施例可如下构成,在专用重放时刻能被解码的区的数据被全部输出,对于数据不能被解码的区,前一帧的数据原封不动地保存下来。然而,只有屏幕中心部分可以在专用重放时刻重放。
在这种情况下,区域重排器85只解码从盘读取的I图象区2的数据。关于其数据不能解码的区1和3,例如,用灰色数据罩住以输出帧存储器83的高速重放图象。
图54亦示了一重放图象,其中,只有第n个GOP到第n+4个GOP的I图象的区2用于高速重放。在图54中,屏幕两端的区1和3由灰色数据罩住。即使在I图象的信息量很小、盘转动的等待时间很短,有足够的时间读取区1和3的数据的情况下。区1和区3的数据也不解码。
这是因为,如果区1和3的数据能被读取,并在屏幕上输出,区1和3在一定时间内不被更新的情况下,高速重放图象变得不自然,因此,只有在I图象的屏幕中心部分在专用重放时间重放时,要更新的区不变,重放图象才变得自然。
在上述的实施例中,只有I图象中心部分的区(这些区能在专用重放时被解码)被显示以罩住屏幕的两端。然而,屏幕的中心部分可以扩展到一个屏幕大小并被输出。
在这种情况下,在帧存储器83中,解码的区2的数据被扩展到一个屏幕的大小,如图55所示。然而,在图55的情况下,由点线包围的区2的中心部分借助于水平和垂直方向的线性内插扩展到2倍大小。换句话说,在图55的情况下,由点线围绕的部分的尺寸是水平360象素X垂直240线。这个虚点部分被线性内插而扩展到一个屏幕的尺寸,水平72O象素X竖直480线。
因此,只有当屏幕中心部分的数据在特殊重复时候被解码以把其扩展到一个屏幕的尺寸时,输出数据的区变小。以这种方法,可以消除屏幕两端罩住的部分,该部分只有在屏幕中心部分被输出时才是显著的。
在上述实施例中,只有I图象的屏幕中心部分有优先权安排在比特流上。然而,其他的结构也是可能的,例如,P图象的屏幕中心部分以及I图象的屏幕中心部分都有优先权。在这种情况下,P图象的屏幕面中心部分的数据安排在I图象的比特流之后。
在上述的实施例中,图象数据先转换为比特流,然后再在区单元中重排。然而,图象数据可能不必在转换为比特流之后重排而在转换为比特流之前重排。
图56示出了实施例10的重放部分的流程图。流程图的过程前面已描叙过,在此略去。
实施例10的记录部分类似于重放部分被描述。还有一种情况,记录和重放构成一对类似硬盘的东西。还可以考虑一种情况在重放部分时假定记录数据类似现在袖珍盘(CD)情况。显然,通过使用片区头的片区开始码的较低的8位长片区垂直位置的数据,能在预测数据解码电路82和帧存储器83中实现区单元的屏幕数据重排。
实施例11下面,将说明本发明的实施例11。图57显示了一数字视频信号记录和重放装置中的数字视频信号编码处理单元,其中,框DCT数据分层为低频区和高频区。图57是记录时的框图,这时,屏幕分为多个区,低频区的屏幕中心部分有优先权安排在GOP的前面。在图57中,参考号62表示一区域重排器。图57中类似的部分和相应的部分都用相同的标号,在此不述。
下面,解释该装置的操作。要输入的视频数据包括有效的屏幕尺寸,水平740象素X垂直480象素。运动补偿和DCT用于将高效编码加到图象数据上。这里,数据划分和分层之前的操作都与实施例9相同,在此不再述。
实施例11与实施例9的相同点在于,可以用限制条件、空间分辨率以及与划分分层有关的频率区把数据分割。在实施例11中,被数据重排器62进一步划分和分层的重要数据如实施例10一样对屏幕每个区分割,使屏幕中心部分有优先权安排在GOP的前面。换言之,数据被分为重要数据和不重要数据,使其可按区中预先决定的优先顺序记录在盘上。
在这种方法中,I图象和p图象的低频分量被分割,使屏幕中心部分有安排上的优先权。只有当这些低频分量的屏幕中心部分在特殊重放时刻被读取和重放时,在专用重放时刻读取的数据量才会大大降低。因此,读取记录介质的速度可以允许为十几倍甚至几十倍实现极快地跳步检索。
这里,屏幕的低频的屏幕中心部分安排在在GOP的前面,P图象的数据跟在I图象的低频区中屏幕周边部分的数据后面,结果,因为只重放I图象的低频中的屏幕中心部分,所以能实现十几倍甚至几十倍的高速重放。而且,I图象和P图象的低频分量的屏幕中心部分,对特殊重放来说,数据量很小,所以在屏幕中心部分的数据能容易地从盘上读取并解码。这样,能以几倍速度实现高速重放。换言之,因为对I图象和P图象的低频分量而言,屏幕中心部分的数据量小于整个低频分量的数据量,所以能以比实施例9更快的速度实现重放。
下面,描述区重排器62和格式编码器61的操作,图58是其流程图。开始,即编码开始,检测低频分量部分的I图象的片区报头,每个片区分为三个区,如图48所示。然后,制备每个区的比特流,以重组每个区的比特流。换言之,对每个区重组数据,以低频区I(2)、低频区I(3)和低频区I(1)的顺序将比特流安排在与低频区I图象有关的GOP的前面,如图49。
然后,在屏幕中心部分优先模式的情况下,检测要输入的比特流的图象报头,以检测图象信息。这里,在低频区I图象的情况下,提取低频区屏幕中心部分I(2)、低频区I(3)和低频区I(1)以检测数据长度,从而从每个区的数据长度制备地址信息。其间,在P图象和B图象的情况下,在图象单元中检测数据长度,从而制备地址信息。在非画面中心部分优先权模式中,操作如实施例9。
下面,判断分级模式。在非分级模式中,表示该模式为非分级模式的信息插入系统流,遵循传统的流结构。在分层模式的情况下,确认序列报头的设定。即,确认序列可测量扩展的数据。在数据正确限定的情况下,用图象报头辨认图象的前面,这样,提取在屏幕区中重组的I图象和P图象的低频区数据,并检查数据的长度。同时,对每帧图象检查B图象的数据长度。
进尔,制备一包,其中,在I图象和P图象的低频区的屏幕中心部分安排在GOP前面的情况下,只记录地址信息,这个包包括I图象和P图象的低频区部分的屏幕中心部分、屏幕的周边部分、I图象和P图象的高频区部分和B图象的地址信息,以记录各数据的数据长度。因此,各数据流的前面位置作为与GOP报头前面相关的地址而获得。
在图59中,示出了以这种方式制备的比特流。如图59c所示,在区单元中重组的I图象和P图象低频区重新安排在GOP的前面。图59D表示的情况是重组的低频区数据被安排在包中,所以地址信息被安排在专门2包中,如图58的流程图所示。在这种情况下,地址信息可以用前述的与GOP报头的前面相关的相对地址来代替。此外,地址信息也可以这样来表示,即,哪一个包中的哪一个字节落在每个图象的前面。不消说,地址信息也可以用加到盘上的区段地址来表示。
图60示出了地址信息包括在专门2包中的情况,在这种情况下,PES包作为专门2包流ID被设置,所以描述了分层模式、分层类别、在专用重放时刻使用的图象类别和开始地址的号数,其中,开始地址指的是I图象的低频区的屏幕中心部分的开始地址、I图象的低频区的屏幕周边部分的开始地址和保留的B图象的开始地址。
在盘上加上引导和后续GOP的区段地址,使光头在专用重放时刻跳越。在这种情况下,考虑专用重放时刻的高速倍,除了引导和后续GOP地址之外,还加上几个前、后GOP的区段地址,则专用重放的高速倍的变化将再加大。还说明,地址信息在PES包中的专门2包中规定。显然,地址信息可以在程序流图,其他使用者区等专门定义部分中规定。
现根据图61描述实施例11中的装置的重放部分。图61是数字视频信号解码单元的框图。图中类似的部分和相应的部分均以相同的标号标注,在此不重述。
下面,根据图62解释图61。图62是一流程图,示出了重放时刻的格式解码器的流程图。检测ECC输出的比特流中的程序流报头,并且,每个PES包分离比特流。检测比特流的PES包的报头以区分包含地址信息和视频包的专门包。
在专门包的情况下,提取并存储包含在包中的地地址信息。同时,在视频包的情况下,提取视频包的比特流。在专门包和正常重放的情况下,或在视频包的情况下,从I图象和P图象的视频数据的比特流中提取低频分量和低频分量的数据,从而重组数据以输出重放图象。
其间,在专门包和正常重放的情况下,在开始时就判断是否时间适合于重放整个低频I图象。在时间适合于重放的情况下,进一步判断是否时间适合于重放P图象。完成上述的两个或一个判断。因此,在时间适合于重放低频I图象和P图象的情况下,重放I图象和I图象。在时间适合于重放整个低频I图象但不适合于重放低频P图象的情况下,只重放低频P图象。进而,在时间不适合于重放整个I图象的情况下,重放低频I图象的屏幕中心部分。在上述三种情况下,让光头跳到下一个GOP的前头。
在这些地址在比特流中规定的情况下,在比特流形成后,提取并存储地址信息。在这些地址在程序流图的专门定义部分中规定的情况下,在检测程序流报头的级中提取和存储地址信息。显然,地址信息既可以是程序的相对地址,也可以是程序的绝对地址。
实际上,如图61所示,跳越扫描、正常连续重放等模式信号从微电脑输入到模式转换器76。同时,来自盘的重放信号被放大器放大,而且用PLL输出的时钟重放信号,使相位同步。然后,将信号数字调制,纠错,恢复程序流。于是,检测每个程序流头的程序流报头检测器71得到跟随报头的数据的信息。
PES包的专门2包中规定的每个图象的地址信息和专用重放数据(低频数据和屏幕区安排的数据),由PES包报头检测器72检测,并且信息被存储在地址存储器75中。在这里,判断是否PES包是音频PES包、字符PES包还是视频PES包。视频比特流发生器73消去从PES包移下的报头,输出比特流。此后,根据从地址存储器75得到的地址信息,数据重排器74重组从模式转换器76输出的比特流,并在正常重放中输出该比特流。
模式转换器76的输出信号(控制信号)加到数据重排器74和可解码判定器84。在这里,数据重排器74与分层的并对每个区重组的低频分量和高频分量同步,且输出该同步的分量。同时,只将低频分量数据或只将屏幕中心部分的低频分量数据在专用重放时刻输出到可变长度解码器77。换言之,在正常重放时刻,I图象和P图象的低频分量按屏幕上各区的顺序重组。然后,低频分量与高频分量同步,装置进行工作以按图象原始顺序重组数据。在专用重放时刻,在屏幕中心部分的I图象和P图象的低频分量区被转换输出。在只利用低频分量的专用重放时刻,不使用PTS和DTS时间标记。
相反,可变长度解码器77和可解码判定器84提取低频分量区中事件的边界,这些区由优先间断点标注,这样,直到边界的数据都被解码,并输出到开关78。开关78的作用是在正常重放时刻不插0。在专用重放时刻,可解码判定器控制开关78,使0插入到优先中断点后的高频分量中。
低频分量的解码工作原理如图44。其解释在此略去。在这个时刻,对屏幕区的重组与实施例10的解释相同。其解释在此省略。
编码区限定在事件的边界,无须说,事件边界也可由其他方法限定。例如,编码区也可由予定数量事件的结束点分开,还可以通过让数据在量化54进行粗略数据转换取得粗略和精细数字转换差值来分割数据。数据的分割还可用对空间分辨率因疏化降低到一半的图象,分辨率已从一半水平恢复到原水平的图象和与具有原分辨率的图象的差图象进行编码完成。换言之,将高效编码的图象数据分割可以通过(除分割频率区外)分割量化和空间辨率完成。
在此时刻,在频率分割的情况下,一个图象的较重要的数据是低频区的数据。在量化分割的情况下,较重要的数据是粗略量化的编码数据。在空间分辨率分割数据的情况下,较重要的数据是对疏化图象编码得到数据。在这种情况下,仅使用这些条目的数据重放图象,为人更易于接受的区域构成了较重要数据。换言之,一个高效编码的数据被分为较基本、重要的数据和不太重要的数据,在从盘上重放的时刻,基本和重要的数据被重放。
相应于重放部分的记录部分描述实施例11。可能有一种情况,记录和重放构成一对类似硬盘的装置。考虑这样一种情况,假设数据象CD盘一样被记录。关于对屏幕每个区的分量重组,显然,实施例10的图54、55示出的输出屏幕的方法是可用的。显然,如果使用片区报头中的片区竖直位置的数据,在屏幕上区单元中的重组也能够用予测数据解码电路82和帧存储器83实现,在实施例11中,只有I图象的基本数据被屏幕区分割。可以用P图象的低频或其他方式分割数据。
实施例12参照图63解释本发明的实施例12。图63是一框图,示出数字视频信号记录和重放装置中数字视频信号编码处理单元。在图63中,参考号101和104是予处理器,102和105是动向量检测器,103是分辨率转换器,106和107是减法器,108和109是DCT电路,110和111是量化器,112和113是可变长度编码器,114和115是反向量化器,116和117是反向DCT电路,118和119是加法器,120和121是图象存储器,122和123是速率控制器,124是分辨率反向转换器,125是数据重构器做为数据重组装置。图63示出了第一编码装置和第二编码装置做为一个例子。具体来说,减法器106输出第一编码装置和第二编码装置在两个编码过程中的差分量。
下面,解释实施例12的操作。视频数据以隔行栅扫描的顺序输入到分辨率转换器103。分辨率转换器103对输入的视频数据滤波并疏化,去除高频区的重复噪声。图64是对图象进行分辨率转换的原理说明。例如,在数据为水平704象素和垂直480象素的情况下,先滤波,然后疏化到水平352个象素和垂直240个象素,即分别具有原来一半的分辨率,从而转变为低分辨率屏幕数据。
这个低分辨率的屏幕数据输入到予处理器104,从栅扫描转为块扫描。送入块扫描装置中的顺序是DCT块的顺序。I图象的编码不用利用帧内编码的帧存储器的输出信号完成帧间计算。
在I图象的情况下,作为减法器107的输入端的图象存储器121没有输出,所以视频信号通过减法器107。这个数据被DCT电路109正交变换为频率分量。这个正交变换的数据输入到数字转换器111,从低频区锯齿方式扫描顺序数字化。数字转化的图象数据经可变长度编码器113转换为熵编码输出到数据重组装置125。
同时,被数字转换器111数字化的数据用反向量化装置115反向数字化。图象数据被反向DCT电路117从频率分量数据反向转化为空间分量。I图象的解码不用使用帧存储器的帧内编码输出信号完成帧间计算。因此,在I图象的情况下,因为没有来自加法器119的图象存储器121的输入,所以数据通过加法器119。加法器119的另一个输出做为存入图象存储器121的数据。至少,I图象数据或I图象和P图象数据要存入图象存储器。这是因为,I图象和P图象数据用来在MPEG1和MPEG2正常解码为参考数据。
图象存储器120输入来自加法器118的解码数据的输出信号,以及用分辨率反向转换器内插象素完成的恢复象素的数目结果,以存储用一权重平均的图象解码数据。关于权重,为简便起见,有一种情况,权重1用为分辨率反向转换器的输出,权重0用为加法器118的输出。
输出的视频信号在予处理器101中缓冲,以从光栅扫描-转换为块扫描。然后,在减法器106把视频信号从图象存储器120中的、已进行前述低分辨处理(指分辨率剩余分量)的信号数据减去。分辨率剩余分量被DCT电路108从低频区正交变换为能被量化器110合适转换的频率区。这个数据给可变长度编码器112编码为熵码,并输出到数据重排器125。
在此期间,数字转换器110转换的数据在反向量化器中反向转换,并在反向DCT电路116中反向转换为空间区的数据。加法器118把来自图象存储器120的,经过低分辨率处理的反向转换数据与来自反向DCT电路116的转换数据相加,得到该数据的解码结果,作为一个数据(而不是低分辨率)的例子,它由两层形成,即低分辨率数据和剩余分量数据。这个层由分辨率转换的频率决定。有可能用两个分辨率转换将此层形成三个层。以同样的方式,有可能用类似的方法制备任意数量层面的数据。
关于正常MPEG编码,I图象和P图象被解码,并做为解码数据被存储,通过对I图象和P图象的双向予测编码B图象。在这种方法中,I图象和P图象被编码,然后进行B图象处理。
前叙的对I图象、P图象和B图象的编码处理是对低分辨分量和高分辨率分量两者完成的。在这种方式中,能构成一个序列,其中,低分辨率分量R(以后称R分量)和分辨率剩余差分量S并排设置。由数据重排器125进行操作,这样,使数据安排在GOP的前头,其位置使光头便于寻找。例如,数据可以安排为图65的序列。在数据按图65安排时,L分量占据区的一半,能重放低分辨率分量。分辨率剩余差分量的数据量小于非分辨率剩余分量,数据可以有效地分层。换言之,在这里,设置根据予定条件编码的第一编码装置和第二编码装置进行有效分层,第二编码装置对第一编码装置编码的剩余部分进行编码,例如,是对第一编码装置编码的视频数据以外的视频信息编码。
图65示出了数据结构结果的一个例子。在图65中,序列a是实施例12的编码处理过程产生的序列。序列b是另一实施例的编码过程产生的序列。序列c是再一实施例的编码过程产生的序列。在序列b中,符号L是低频分量,H是高频分量。在序列C中,符号C是粗略量化的编码分量,A是粗略量化的剩余分量。如在图70的序列a所示,上述操作仅对I图象和P图象完成。只有这些分量可固定地安排在GOP的前头。
在这种方法中,在只有低频分量固定地安排在GOP前头情况下,L分量占总体的比例大大下降,这样,从媒体上读取速度就合用,容易地实现跳跃检索。此外,例如序列a,只有I图象和P图象的R分量固定地安排在GOP的前面时,执行操作,这样,只有I图象和P图象的低分辨数据被解码。在前述实施例中,解释所针对的情况中,疏化比例为对水平1/2倍,垂直1/2倍。显然,比例值可以设定为不同的值,但人为设定比例值可以加到实施例中。
编码模式包括MPG1、MPG2和JPEG等。在分辨率分层中,并不必采用通用编码技术。这是因为,在降低分辨率对数据编码的情况下,有可能充分相应于MPEG1模式编码。此外,在JPEG模式中,一帧对另一帧的叠加构成了运动图象。因此,即使在数据占据了GOP的特殊位置的情况下,也可能正确地解码。此外,对于两级分辨率的解释被给出,但,显然,可以利用大量分层。以如下方式可以对差分分量编码用图63的第一编码装置对低分辨率分量的数据编码;对该第一编码装置的输出信号内插;在疏化象素和内插数据之前,图象的差分分量从减法器106得到;用差分分量编码装置对差分分量编码。
从图象存储器读出的帧从予测参考帧得到。由于存在低分辨率帧,数据要通过调节时间轴存在存储器(包括存储器地址)。显然,可设置信息装置,把音频信号,报头等以及纠错信号附加信息加到差分分量上。
实施例13本发明的实施例13以图66进行解释。在实施例13中,DCT块分为低频区层和高频区层,只有低频区安排在GOP前头。图66是一数字视频信号编码处理单元的框图。在图66中,标号126和127分别表示第一可变长度编码器和第二可变长度编码器。图66中与图63中类似或相应的部分以相的标号标注,在此不再述。
下面,解释工作过程。这个内插视频数据是一个具有例如水平704象素和竖直480象素有效屏幕大小的数据项。因为I图象的解码不用利用帧存储器的已经帧内编码的输出进行帧间计算,所以视频通过并输出。视频数据由DCT电路108正交变换到频率分量,并从低频区域变换到块扫描。然后,视频数据从低频区域转换到块扫描,由量化器110适当量化。
DCT内的DCT系数的数据重组示于图67。在图67中,低频分量位于左边上部,高频分量位于右边下部。安排在这个DCT块中的DCT系数数据中,一特定位置DCT系数数据之前的低频区DCT系数数据(例如,图67的阴影部分)经第一可变长度编码器126(低频区提取装置)进行熵编码,并输出到数据重排器125。第二可变长度编码器127对上述特殊位置DCT系数数据后面的DCT系数数据进行可变长度编码。也就是说,在这种方式中,数据被划分并编码。
关于动向量和DC分量的编码,可以仅以第一可变长度编码器完成编码。第二可变长度编码器并不需要。这是因为,在正常重放时刻,第一和第二可变长度编码器126、127的输出数据可以同步并编码。
编码区的判断是在DCT系数的固定位置完成的,也可以用其他方式完成。例如,编码也可用固定的事件数判断。换言之,提供可变长度码-霍夫曼码的单元是一个事件。编码区也可用予定数目的事件(例如三个为一单元)来设定。在一个例子中,在数据重排器125输出比特流,具有图65的序列b的重组,只有当低频区的第一半被读取时,低频区图象可以重放。在安排图70的序列b这样的序列中,以可变长度的方式可判断编码区。
同时,量化器110量化的数据进行反向量化。然后,该数据由反向DCT电路116反向转换到空间区数据。I图象的编码不用利用经受了帧内编码的帧存储器的输出信号进行帧间计算。因此,在I图象的情况下,没有来自加法器118的图象存储器120的输入。所以,允许数据通过加法器118。加法器118用为存储在图象存储器120中的数据。
至少,I图象和P图象要存储在图象存储器中,那是因为,I图象和P图象正常情况下要做为在MPEG 1和2中描述B图象的参考数据。
当用这种方法构成以后,L分量的比例大大减小,允许从媒体上读取数据,使得实现跳跃检索。如后所示,只有当I图象和P图象固定安排时,本发明装置能工作,使只有低频分量的数据能被容易地解码。因为高频区的数据量比其他区的数据小,所以与提取低频区的数据并把该数据存在所有区的数据之前比较有可能实现有效地数据构成。
当允许I图象通过减法器106而结束I图象的编码时,根据时间用GOP的最后一个P图象以双向予测对B图象编码。予处理器101的输出和参考帧存储器的数据(图中的箭头略去)相互比较,检测动向量,判断予测模式和帧结构。以判断结果为基础,予处理器101的输出与参考帧存储器的数据最有利地相互一致,读取参考帧存储器的数据做为来自帧存储器120的前进方向部分和后退方向部分的数据。然后,以这种方式读取的数据在减法器106中与B图象的予处理器101的输出结果相减(这个结果是P图象和I图象两者的时间剩余分量)。对该时间剩余分量进行DCT计算,其结果进行量化并可变长度编码。
实施例14本发明的实施例14以图68为基础解释。在实施例14中,数据分为DCT系数粗略量化分量和粗略剩余差分分量分层(粗略量化分量的例子),从而,把粗略数字转换分量安排在GOP的前面。图68是一框图,示出了数字视频信号编码处理单元。在图68中,参考号128是减法器,129是加法器。图68中与图63中类似或相应的部分以相同的标号标注,在此不再述。
下面,解释实施例14的操作。举例来说,其内插的输入图象的有效屏幕大小为水平704象素和垂直480象素。I图象的解码不用利用已帧内编码的帧存储器的输出信号进行帧间计算。因此,在I图象的情况下,图象存储器没有输入,减法器106也就没有输入,结果,视频信号通过减法器106。这个数据被DCT电路108正交转换为频率分量,并从低频区转换到块扫描。然后,量化器110完成适当的粗略量化,把编码的数据量减小到小于一半。这个量化的数据经可变长度编码器112编码为熵码,输出到数据重组装置125。
同时,对量化器110转换的数据进行反向量化(其结果做为粗略量化的结果)。反向量化的数据送到另一编码处理单元(在图68中以点划框表示)。其间,数据被反向转换到空间区数据。这里,描述I图象的编码。虽然图象存储器121没有输出,但在正常情况下,这个编码处理单元的编码结果存储在图象存储器121中,这样,在运动矢量检测器102对数据进行动向量检测,决定予定模式和DCT块模式。适合于判断模式的位置数据送到减法器107的相减输入侧。
对减法器107的输出进行DCT,用粗略量化和减法器的结果确定剩余差(是粗略量化剩余差)。粗略量化剩余差被精细量化(考虑到编码量的控制,精细量化为正常编码相同的水平)。以在反向量化、反向DCT和解码以存在图象存储器121中的同时完成可变长度编码。这个编码结果和粗略量化的编码结果决定了必要数据的位置和要加的报头等。
作为这个输出数据的例子,采用了图6 5所示的序列C。只通过读取GOP的头一半就能得到经过粗略量化的图象的解码结果。此外,因为与精细量化数据相比,粗略量化剩余差数据比较小,所以比起在粗细量化数据之前存储提取的粗略量化数据,可以得到更加数据有效的构成。
在另一个例子中,可以完成对图70所示的序列C的排列的可变处理。这样的构成,C分量(进行粗略量化的编码分量)占整体的比例大大减小,从而满足从媒体上读取速度、使能跳跃检索等。如后面所述,只有当I图象和P图象固定地安排时,本发明装置的操作使得只有I图象和P图象的经过粗略量化的数据被解码。
通过使I图象通过减法器106结束I图象的编码时,根据时间用引导GOP的最后一个P图象以双向予测方式对B图象编码。予处理器101的输出信号与参考帧存储器的数据(图70中的箭头略去)比较,这样,检测动向量,判断予测模式和帧结构。在判断结果的基础上,予处理器101的输出信号最良好地与参考帧存储器中的数据一致,读出的参考帧存储器中的数据做为图象存储器120的正向部分和反向部分,这样读出的数据与B图象的予处理器101的输出结果在减法器106中相减(这个结果是P图象和B图象两者时间剩余差分分量)。从图象存储器121中读取正向部分和反向部分的数据,该数据与予处理器101的输出信号在减法器107中相减,用于正交变换熵编码。相同的过程也对P图象的编码完成。
图69示出了编码数据统计量。该图示出在GOP的帧的数目如下时的码数量N=15,I图象和P图象的周期M=3。在图69还示出,I图象和P图象约占整体的50%。当用分辨率、频率、至少关于这部分I图象的量化进行分层时,要重放的码量进一步减少,光头的行程时间能缩短,从而有利于实现跳跃检索等功能。
图70示出了上述情况中的处理序列。在图70中,原始图象的I图象、P图象和B图象的安排被编码,只对前述图象的I图象和P图象按实施例12、13、14进行处理,而B图象被编码,不用分层。根据实施例12的处理过程对I图象和P图象进行处理的序列是序列b,而根据实施例14处理过程对I图象和P图象处理的序列是序列C。
在每个序列中,数据的构成是通过数据重排器125把各低分辨率分量(R),高频分量(L)和粗略量化分量(C)的I图象分量和P图象分量固定并安排在GOP的前面完成的。关于序列a,I图象和P图象的低分辨率图象可只用I图象和P图象的低分辨率分量(在图70的序列a中,数据重组成的核心区部分)来解码,结果,本发明装置能容易地实现跳跃扫描。实际上,非核心区的数据并不要求按图70安排。显然,在编码时刻能按帧号的顺序安排数据。
关于序列b,能够使用低频分量(在图70的序列b中,数据重组后的核心区部分)形成I图象和P图象的低频分量,所以,本发明的装置能容易地完成跳跃扫描。关于序列C,只用I图象和P图象的粗略量化分量(图70的序列C数据重组后的核心区部分)就能对I图象和P图象的粗略量化图象解码,所以本发明的装置能容易地实现跳跃扫描。
例如,在图63的结构中,包括予处理器104的编码环未用于B图象,因此,本发明装置的操作方式是,只用包括有予处理器101的编码环进行数据编码。在图66所示的结构中,所有的频率分量都用第一可变长度编码器126进行编码。在图68所示的结构中,在数字转换器110中完成精细量化,以对数据编码。
最理想地,象低频部分数据等基本数据可以收集在GOP的前头。显然,这些数据可以稍微移位。与构成纠错码的单元前头重叠。以这种方式安排基本数据与纠错码单元相应地也可以在其他实施例上以相同方式实现。
实施例15本发明的实施例15将参阅图71和72进行解释。图71示出DCT块的结构安排,以及在一个块中比特流的频率分量的结构轮廓举例。图71A示出整个DCT块结构的一个宏块,由宏块报头、亮度信号的DCT块Y1-Y4、色差信号(B-Y)的DCT块U1和色差信号(R-Y)的DCT块V1组成。图71B示出一个关于低频分量DCT块的结构的宏块的低频分量。由宏块报头,亮度信号和DCT块Y1-Y4、色差信号(B-Y)的DCT块UIL和色差信号(R-Y)的DCT块VIL组成。
图71C示出的高频宏块是关于高频分量DCT块的结构,由亮度信号DCT块Y1H-Y4H、色差信号(B-Y)和DCT块U1H和色差信号(R-Y)和DCT块V1H组成。图71D示出了一个块的比特流中频率分量数据安排的原理。图72A和72B的方框图示出了一数字视频信号解码处理单元及其工作原理。在图72A中,参考号130是做为模式转换装置的模式转换器,131是做为数据重组装置的数据重排器、132是可解码的确定器、133是可变长度解码器,134是一开关。可解码的确定器132和开关134构成数据操作装置。参考号135是反向量化器,136是反向DCT电路,137是图象存储器,138是加法器,139是反向扫描转换器。
下面,解释操作。图71的数据是一个例如垂直方向的8位(一个字节)的码结构组合。在每个宏块中,用宏块报头规定信息。这个信息指得是增量地址、量化标度码、动向量、标志位、宏块模型等。
每个DCT块的编码数据跟在宏块报头之后。灌封这个数据的方法是,用比特流构成字节,以顺序安排每个字节。因为每个DCT块具有可变码长度,所以块边界以及报头和数据间的边界在字节单元中未被完成。边界处于一个单位字节中间的情况经常出现。每个块的数据具有可变长度,且在比较靠近宏块报头的一侧设置低频区。
这个数据被分为低频分量(L)和高频分量(H),通过没定一个与事件无关的固定长度的码量做为最大值来构成图71B和图71C所示的编码数据。(该事件是提供一个可变长度码的单元,在DC分量的情况下,DC分量构成一个事件,而在AC分量的情况下,非0的DCT系数和操作长度的组合构成执行操作长度码的一个事件。一个事件的完成用一个码EOB在块的末尾表示)。
下面,说明图72的操作。开始,来自微机等的模式信号输入模式转换器130,正在执行指示跳跃扫描的信号,或执行正常连续重放。同时,放大器放大来自盘的重放信号,并通过对一输出数据完成差分操作进行数字解调从而完成纠错,所述输出数据是在经相同步的时钟信号完成信号重放并从PLL等输出而得到的,然后,从由视频信号数据和音频信号组成的某一系统的层中分离出音频信号。其后,提取视频信号的比特流并输入到重排器131。
模式转换器130的输出(控制信号)加到数据重排器131和可解码确定器132。数据重排器131得到控制信号,重新连接该数据,然后分为图71所示的L分量和H分量,只把L分量输出到可变长度解码器133。可变长度解码器133和可解码判定器132一起提取L分量区中的事件边界。边界以前的部分被解码并输出到开关134。开关134的连接使得,在正常重放时,没有0插入。开关134由可解码判定器132控制,向DCT块输入解码的低频分量。同时,构成整个DCT块,使0插入DCT块的高频侧。
在解码时,以前述方法构成的DCT块数据要进行反向DCT处理。然后,根据要由加法器138进行相加的各图象的情况控制图象存储器137的读取。在I图象的情况下,加法器138的输出被通过。在P图象的情况下,P图象只由欲相加的I图象和P图象的动向量纠正。在B图象的情况下,B图象只由要相加的I图象和B图象的动向量纠正。
根据对报头码的解码得到的信息控制这时的DCT模式和予测模式动向量。根据前述处理过程,经运动补偿予测的数据被解码,并存储在图象存贮器137中。图象恢复到GOP原始构成的顺序。反向扫描转换器139把缓冲和块搜索转换到图象输出顺序的栅扫描。
实施例15提出长度固定,既使该实施例短于宏块的跳跃或予定长度的数据。然而,当长度短于固定长度时,通过每次检测EOB,L分量确定能被取出。显然,既使在L分量数据连接到后续块的情况下,也不会产生什么问题。在长度超过予定长度时,EOB可以加到事件分界处,做为L分量数据。显然,还设置对音频信号、报头等及连接码等附加信息相加装置,以把其加到高频区的数据上,这一点未在前述实施例的图中具体说明。
实施例16接下来,参照图73和74说明本发明的实施例16。图73A和73B是数字视频信号编码处理单元的框图。说明它的工作原理。在图73A中,参考号140是速率控制器。这里,第一可变长度编码器126和第二可变长度编码器127作为编码装置。与图63中类似的部分或相应的部分采用相同的参考号。
下面,解释其工作过程。内插输入图象数据用予处理器101缓冲,把光栅扫描转换到块扫描。I图象的解码不需利用经帧内编码的帧存储器的输出信号进行帧间计算。因此,在I图象的情况下,作为减法器106输入的图象存储器120没有输入信号,因此,视频信号通过减法器106。
这个数据由DCT电路108正交转换到频率分量,并以低频区转换到块扫描,由量化器110进行适当量化。在该量化的数据中的特定位置的DCT系数数据据前的低频区数据被熵编码并经第一可变长度编码器126输出到数据重排器125。
第二可变长度编码器127对上述特殊位置之后的DCT系数进行可变长度编码。关于动向量和DC分量编码,至少可只用第一可变长度编码器。要求EOB加到即使在一个块中的L分量和H分量两者上,所以L分量的边界以没有码限制的速率变化。通过暂时把EOB码安排在L分量和H分量的分界部分,可以使L分量的边界以某一速率改变。
同时,量化器110量化的数据由反向量化器114反向量化,然后由反向DCT电路116反向转换到空间分量。
I图象的解码不需利用经帧内编码的帧存储器的输出信号进行帧间计算。因此,在I图象的情况下,由于没有信号从图象存储器120输入到加法器118,所以数据通过加法器118。加法器118的输出量存储在图象存储器120中的数据。至少I图象的数据,或者I图象和P图象的数据要存入图象存储器120。这是因为,I图象和P图象数据都要用于在MPEG1和MPEG2中把B图象正常解码为参考数据。
在I图象的编码结束时,用GOP前面的最后一幅P图象对B图象进行双向予测编码。然后,予处理器101的输出与参考帧存储器的数据(图中的箭头被略去)进行比较,以检索动向量,并判断予测模式和帧结构。根据判断结果,从图象存储器120中读取与予处理器101的输出信号最适合的参考帧存储器中的数据,该数据分为正向部分和反向部分。数据在减法器106中与予处理器101的输出结果相减(该结果指的是P图象和B图象的时间剩余差分量)。该时间剩余差分量进行DCT处理、量化和可变长度编码处理。
在数据分为低频区和高频区的情况下,速率频率分量方面变为不确定的。因此,由于在低频区的数据速率不确定,所以光头驱动器的可控范围不能完全被补偿。这里,速率控制器140使低频分量区可变。速度控制器140控制速率,所以,低频区的大小关于目标速率是可变的,如图73B所示。
换言之,在监视第一可变长度编码器126输出的同时,速率控制器140减小了低频区域数据占据的面积的大小,这时,受监控的输出大于该应用设定的目标速率。当第一可变长度编码器126的码量小时,速率控制器140扩大低频区域的面积,在这种方式中,当监视码量时,速率控制器140适当地改变第一可变长度编码器126和第二可变长度编码器127中设定的低频区域所占面积。
此外,例如,可以进行瞬时编码,以根据哪一个区域具有较大码数,哪一个区域具有较小码数,以确定一个标准来设定低频区域所占的面积,从而设定目标速率。
图74是数字视频信号解码处理单元的框图。示出对如上编码的数据进行解码的处理过程。在图74中,参考号141是EOB检索单元。其中,与图72A类似或相同的部分用相同的参考号。表示正在进行跳跃检索或正在进行正常连续重放的状态的模式信号从微机等输入到模式转换器130。同时,来自盘的重放信号由一放大器放大,重放信号用PLL的时钟差分,进行数字解调。进行纠错,提取要输入到数据重组器131中的视频比特流,从而将音频信号从一系统层中分离出来。做为模式转换装置的模式转换器130的输出加到数据重排器131和可解码判定器132。数据重排器131得到这个控制信号,把数据连接到L分量和H分量的分离之前。此外,只有L分量输出到可变长度解码器133(解码装置),而不连接到H分量。
理论上说,L分量决不会在事件的中间分割。可以考虑一种情况,当跳跃检索等的信号不够好时,以可变长度解码器133和可变判定器132来确定事件的边界,这样,边界以前的部分都被解码并输出到开关134。开关134的操作方式是,当重放数据的信号质量与正常重放时一样好时,它始终处于“on”。这里,可解码判定器132和开关134构成了数据操作装置。
开关134由可解码判定器132控制,这样,0插入到块的高频一侧,离开已成功解码的低频分量,从而构成DCT块。然后,该数据进行反向DCT,在I图象的情况下,加法器138的输出被通过。相反,在P图象的情况下,数据被校正,与参考I图象的动向量部分相加。关于B图象,对于图象存储器137的读取是受控的,并在加法器138相加,这样,B图象被要相加的I图象和P图象的动向量部分纠正。通过对光头的解出的一个码来控制DCT模式和予测模式动向量。经运动补偿予测的数据以这种方式解码并存入图象存储器137。然后,图象重组成原始构成的顺序。反向扫描转换器139缓冲数据,并把按块的输出顺序的数据转换到光栅扫描。
在上述解释中,以控制DCT系数的大小为例进行了说明。也可以用事件数的控制取代。在这种情况下,有时会出现L分量没有达到予定数目的事件,且EOB被加上的情况。然而,因为EOB检索单元141监视EOB的出现,所以L分量可以用必然性检索。具体来说,分别根据低频区域的数据、高频区域的数据和EOB来构成数据。就是说,数据重组器131和EOB检索单元141构成了一数据重构装置。
因为DCT后的能量很小,显然,L分量和H分量最好与非编码块相同的方式编码。关于H分量,除L分量以外的数据理想地是操作长度编码的。通过把L分量设定为0,H分量可以被编码。因为有可能用与正常MPEG的可变长度解码器一样完成结构,所以可在电路上简化。
实施例17参考图75解释本发明的实施例17。图75示出了数字视频信号解码处理单元的框图。在图75中,参考号142是多路复用器,143是开关,144是第一可变长度解码器,145是第二可变长度解码器,146是第一反向量化器,147是第二反向量化器,148和149是加法器,150和151是图象存储器,152是分辨率反向转换器。图75还示出了一低分辨率解码单元做为解码装置。与图72A中类似或相同的部分以相同的参考号标示,其解释从略。
下面,解释实施例17的工作过程。图75所示的内容可以认为是在图68描述的编码数据记录在光盘等上的情况下,对盘的重放信号视频数据块进行处理的过程。
指示例如正在进行跳跃检索或正常连续重放的状态的模式信号从微机等输入到模式转换器130,130是模式转换装置。同时,来自盘的重放信号被一放大器放大,重放信号用PLL的一时钟进行差分,用于数字解调。然后,从系统层分离出音频信号,以提取视频比特流。
这个提取的视频比特流输入到多路复用器142。多路复用路142把低分辨率分量数据送到第二可变长度解码器145,同时把其他数据经开关143送到第一可变长度解码器144。
开关143由模式转换器130控制。做为一种模式,虽然在跳跃检索等时只需要低分辨率的重放图象输出,但是在分辨率剩余差分量重放的中途,开关143要动作以暂停发送冗余数据。
第二可变长度解码器145对霍夫曼码和操作长度码解码,然后为第二反向量化器147反向量化,其后由反向DCT电路136从频率分量转换到空间分量。
对于I图象,转换的数据通过加法器149存入图象存储器。在P图象的情况下,从图象存储器中的I图象读取第一帧P图象,第二帧P图象或以后的图象是指存在图象存储器中并被动向量部分纠正的后继图象,以在加法器149进行运动补偿予测。在B图象的情况下,按照I图象和P图象进行相同的操作。
在图75中,可变长度解码器输出动向量、反向量化的量化参数及予测模式。这些动向量、量化参数和予测模式都与图74相同。图75中点划线框示出的环是一个对低分辨率分量解码的构成单元。由于解码结果被分辨率反向转换器152(内插视频发生装置)的内插于象素之间,对做为分辨率剩余差分量的解码结果进行补偿,解码结果输入图象存储器150。
在正常重放时的分辨率剩余分量解码结果与低频分量的结果组合(或当时分操作进行分辨率剩余分量的解码的情况下按照时分处理结果)做为图象由反向扫描转换器输出。数据可以经开关143由第一可变长度解码器解码为频率分量。第一反向量化器146对数据反向量化,反向DCT电路136把数据解码为空间区域的分辨率剩余分量数据。
图象存储器150与低分辨率分量的象素内插数据有关,P图象与I图象有关,B图象与I图象和P图象有关,因此,数据被动向量部分在适当位置纠正,结果,数据从图象存储器150中读出,加法器148完成对运动补偿予测的解码。
在跳跃检索的情况,为了防止分辨率剩余差分量中途重放,开关143禁止冗余的数据从反向DCT电路136输出,即中断分辨率剩余差的输出。因此,只有经象素内插的低分辨率分量数据经图象存储器150和反向扫描转换器139输出(操作过程相同,就象在图象存储器150的输入部分设置开关一样)。
实施例18参照图76和77解释实施例18。图76的框图是GOP地址产生单元和盘控制单元的框图,该图特别示出在把前述速率信息记录在相继报头上的情况下的处理框图。在图76中,153是寄存器,154是GOP地址计算器,155是光头/盘转动控制转换器做为光头位置转换装置和盘转动控制转换装置。图77是一框图,示出了包括重放处理的GOP地址产生单元和盘控制单元,该图特别示出了一种结构,用于完成盘的GOP重放,在这种盘上几个位置上收集有前述的速率信息。参阅图77,156是重放放大器,157是数字解调器,158是纠错器,159是系统层处理器,160是速率数据存储器。系统层处理器159和速率数据存储器160构成数据速率信息提取装置。161是GOP数计数器。GOP地址计算器154和GOP数计数器161构成了位置信息计算装置。
下面,解释实施例18的工作过程,通过让每一个GOP速率可变,如惯例一样,可以优化一个程序的整个速率,结果,图象的质量可以认为得到改善。然而,并不是说,在观察到数据内容前,数据都落在GOP的前头。还有,在希望已经匹配的软件在中途再次从那点重放的情况下,唯一的办法是通过不断地检索盘上的数据来检测起始位置。
在这种情况下,在开始阶段,设置可变速率的速率控制为离散的速率目标,如1M比特,1.5M比特,2M比特,2.5M比特,3M比特等,从而,在所有的GOP中的每个速率信息都记录在盘上。具体来说,当每个GOP的速率信息被记录在TOC(内容表记录区被指定到盘的最开始,这样,标题、记录时间等被记录)、半TOC等上应当是最有效的。
关于GOP的速率信息可以和视频比特流的序列报头结合。例如,两小时软件14.4K个GOP(two hour software 14.4k pieces of GOP)。当速率信息能分为5种速率时,此时的速率信息可用3位表示。因此,所有的GOP速率能用5.4K记录在盘上(14.4K个×3位÷8位/字节)。
通过把每个GOP的速率信息存入图77的速率数据存储器160中,并加上与相应于该值的信息长度能够实现高速访问。
参照图76解释本发明的装置。对霍夫曼码、操作长度码解码,译码报头,这样,判断动向量和图象种类。
同时,序列报头被解码,这样,速率信息被输入到GOP地址计算器154。此外,当时正被访问的GOP的地址信息存入寄存器153,这样,计算下一个要访问的GOP前地址,并存入寄存器153。同时,通过使光头/盘转动控制转换器155到下一个要被访问的GOP的前头,根据地址来确定光头的位置。然后,从正在访问的GOP与要访问的前地址的差计算下一个访问的控制信号。根据此控制信号,实现对光头驱动器的位置控制和盘转动的控制。
参照图77说明重放过程。控制光头和光头的转动,直接或间接地从TOC区域或相应TOC的区域读取地址(在指定速率信息说明地址后,访问这个地址部分以读取速度信息)。然后,用重放放大器156放大来自光头的重放信号,用数字解调器157检查这个信号波,将该信号差分为数字解调用的数字信号。
数字解调为数字信号的重放信号输入到纠错器158纠正重放信号中错误。纠错后的数据在系统层处理器159中分离出音频比特流,视频比特流和其他数据条目。
例如,判断这个信号属于哪一类数据(AV(视频和音频)数据、文件数据和程序等的二进制数据),并据此切割划分流通道。在这样的处理中,前述的速率信息存入速率数据存储器160。
相反,用GOP数计数器161产生关于要处理的GOP数目的信息。按照GOP地址计算器154计算的地址,控制光头驱动器和盘转动速度。
在上述的说明中,给出的举例是GOP数计数器接收来自系统层计理器159的信号。在用I/F(如微机)代替处理或操作从重放到跳跃扫描的情况下,从可变长度解码器等输入数据进行视频比特流的处理更有效。
实施例19借助图78、79和80来描述本发明的实施例19。其工作将解释如下。图78示出一信号处理单元,其中执行依数字信号重放单元的频率而进行的分割和依量化而进行的分割,该图为方框图,在此情况下,数据率信息被收集并记录在光盘上的几个地方。与前述实施例中附图中相同或对应的部分由相同的符号表示。
光头或光头转动受到控制,因此,数据可直接地或间接地从TOC区或与TOC区对应的区中读出。重放信号被重放放大器156所放大。随后该信号被数字解调器157所检波。结果,已成为数字数据的重放信号被输入到纠错器158对包含在重放信号中的错误进行纠错。无错的数据被系统层处理器159成分音频比特流和视频比特流,其它数据也如此处理。
例如,判定该信号是AV数据、文字数据或诸如程序之类的二进制数据中的哪种数据以分开数据流通道。前述数据率信息被存入数据率数据存储器160中。相反,需要被处理的与GOP数对应的信息通过使用GOP数计数器161来产生。随后,由GOP地址计算器154计算地址。在由GOP地址计算器154计算的地址基础上,光头激励器和光盘的转速受到控制。
以此方式,在跳越重放时,在光盘上进行跳越以找到将被访问的地址。当进行跳越以访问所需要的GOP时,用如实施例16所述结构所获的低频区数据被重放且以相同方式计算下一地址时在屏幕上描述。
一个代表数据是被跳越搜索的或执行正常重放的状态的模式信号从微机输入到模式切换器130中。如上所述,将被输入到数据重排器131中的视频比特流被提取出来。模式切换器130的输出被加到数据重排器131和可解码判定器132上。数据重排器131获得这样一个控制信号而工作,因此在图71中的L分量和H量中被分割前的数据被重新联接起来。否则,数据重排器131仅将L分量输出到可变长度解码器133上,而不将L分量联到H分量上。
在实施例19中,理论上讲,不会出现L分量被中途切断。但是,考虑到带有不希望的跳越搜索等的信号量被解码,事件的边界是由可变长度解码器133和可解码判定器132来确认的,以使直至边界的部分能被解码并被输出到切换器134上。
切换器134是由可解码判定器132的输出来控制的,因此,从被完全解码构成DCT块的低频分量中将零输入到块的高频端。随后,使对图象存储器137的读出受到控制,并由加法器138提供相加,这样,数据将依下面的方式进行反向DCT变换,在I图象时使加法器138的输出通过,在P图象时数据被将要相加的动矢量部分所校正,在B象时,数据被来自I图象和P图象的动矢量部分所校正并被相加。
此外,在此时刻由对报头码的解码来控制DCT模式和预测模式动矢量。以此方式,进行动补偿予测的数据被解码并存贮在图象存储器137中以依原构成次序构成象。在反向扫描转换器139中,数据被缓存,以将块扫描数据按象的输出次序转换成光栅扫描数据。此外,切换器134未联通,使在正常重放时零被插入,但受到控制后工作并仅重放重放数据。
在数据被分割并编码成低频区和高频区后,将会出现下述情况将重点放在低频端的量化表、将重点放在高频端的量化表以及不管频率区域而相对于一个量化表来说相当平均的细量化。当两组可变长度解码器和反向量化器被用作图68所示的本机解码器时可实现这种情况。此时,数据重排器131将为一复用器。
下面,将在图79的基础上说明实施例19的工作。图79示出信号处理单元,其中分割是依数字信号重放单元的位长度而进行的,该示图为方框图,用于相对于前述数据率信息被收集和录在盘的几个特定地方的情况下的重放处理解释实施例。例如,在光盘重放的最开始,光头或光头转动受控,因而,数据可直接或间接地从TOC区或与TOC区对应的区中读出。来自光头的重放信号被重放放大器156放大,因此,可用数字解码器157来检测该将差分成用于数字解调的数字信号。
结果,已成为数字数据的重放信号被输入到纠错器158中用以对重放信号纠错。无错的数据被分成音频比特流和视频比特流,其它数据也如此处理。
例如,该信号判定数据是否为视频音频数据、文字数据或程序之类的二进制数据,以分开数据流通道。从这数据中,前述数据率信息被存入数据率数据存储器160中。同时,由GOP数计数器161产生信息作为需进行处理的GOP数,并由GOP地址计算器154计算地址去控制激励器和光盘的转速。
以此方式,在跳越重放时将要存取的GOP地址通过在光盘上的跳越而搜索到。当所需的GOP被访问到,则下一地址将被以相同的方式算出,同时,用如实施例15所描述的结构所获的低频区数据被重放出来,以在一个屏幕上再现该数据。
一个代表数据是被跳越搜索的或执行正常连续重放的状态的模式信号从微机等输入到模式切换器130上。视频比特流被提取出来并被输入到数据重排器131中。模式切换器130的输出加到数据重排器131和可解码判定器132上。数据重排器131获得这样一个控制信号而工作,这样在图71中的L分量和H分量中被分割前的数据被重新联接起来。否则数据重排器131仅将L分量输出到可变长度解码器133上而不将L分量联到H分量上。
由可变长度解码器133和可解码判定器132提取在L分量之中的事件的边界,这样,直至边界的部分可被解码并输出到切换器134上。切换器134受可解码判定器132的输出所控制,因而来自完全被解码以构成DCT块的低频分量的零值被插入到块的高频端。该数据被进行反向DCT变换。在为I图象时,使加法器138的输出通过。在为P图象时,该象被将被加上基准I图象中的动矢量部分所校正。图象存储器137的读出受到控制并由加法器138相加,这样,数据可由动矢量部分所校正。
此外,在此时刻由对报头码的解码控制DCT模式和预测模式动矢量。以此方式,进行动补偿予测的数据被解码并存贮在图象存储器137中以依原构成GOP的次序构成象。在反向扫描转换器139中,数据被缓存,以将块扫描数据转换成光栅扫描数据。此外,切换器134不导通,使在正常重放时零被插入,导通后,仅重放重放数据。
下面,解释图80的工作。图80示出信号处理方框,其中数据是依数字信号重放部分的分辨率而分割的,该示意图为方框图,用于相对于前述数据率信息被收集和录在光盘上的几个特定地方的情况下的重放处理解释实施例。在光盘重放的最开始光头或光头转动受控,因此,数据可直接或间接地从TOC区或与TOC区对应的区中读出,来自光头的重放信号被重放放大器156所放大。这样,可用数字解码器157来检测该将差分成用于数字解调的数字信号。
结果,已成为数字数据的重放信号被输入到纠错器158中用以对重放信号纠错。无错的数据被分成音频比特流和视频比特流,其它数据也如此处理。
例如,该信号判定数据是否为视频音频数据、文字数据或程序之类的二进制数据,以分开数据流通道。从这数据中,前述数据率信息被存入数据率数据存储器160中。同时,由GOP数计数器161产生信息作为需进行处理的GOP数,并由GOP地址计算器154计算地址去控制激励器和光盘的转速。
以此方式,在跳越重放时将要存取的GOP地址通过在光盘上的跳越而搜索到。当所需的GOP被访问到,则下一地址将被以相同的方式算出,同时,用如实施例15所描述的结构所获的低频区数据被重放出来,以在一个屏幕上再现该数据。
一个代表数据是被跳越搜索的或执行正常连续重放的状态的模式信号从微机等输入到模式切换器130上。视频比特流被提取出来并被输入到复用器142上。复用器142将低分辨率分量数据加到第二可变长度解码器145上,同时将其它数据经切换器143加到第一可变长度解码器144上。切换器143受控于模式切换器130。尽管只有低分辨率分量的重放象输出需要在跳越搜索等中作为一个模式,但在分辨率其余分量重放途中切换器143断开。此外,当重放工作进行时,切换器143则导通,其中可以获得好的信号传输质量以进行正常重放。
第二可变长度解码器145对Huffman码和运程长度码解码。由第二反向量化器147进行反向量化的数据将由反向DCT电路136将其从频域转为空间域。当数据为I图象时,通过加法器149的数据将被存贮在图象存储器中。当数据为P图象时,将P图象从图象存储器提出随后由动矢量部分校正在正确位置上,以由加法器149解码出动补偿予测。当数据为B象时,相对于I图象和P图象执行同样的操作。
在图80中,从可变长度解码器中输出动矢量、反向量化的量化参数和予测模式。由于信息流与图74的相同,因而不再解释。在图75下部的一个环路为低分辨率分量解码的环路。解码结果由分辨率反向转换器152进行象素内插,以补偿作为分辨率剩余差值的解码结果,该数据被输入到图象存储器150中。
实施例20参照图81、82和83来解释本发明的实施例20。图81和82为解码过程的方框图。在图81和82中,标号162代表作为编码装置的视频信号编码器。163为音频信号编码器、164和167为存储器、165和168为存储器控制器。存储器164和存储器控制器168构成数据提供装置。此外,视频信号编码器162和存贮控制器165构成一码量比较装置。标号166代表系统层比特流发生器。169代表可变长度编码器,170代表可变长度编码器之后的解码的信号处理器。编码器169和170用作数据解码装置。图82的数据重排器131用作数据重构装置。
首先,解释图81所示的结构。在视频信号编码器162与系统比特流发生器166之间安置存储器164。在数据被埋入编码的视频信号的每个GOP之间后,每个GOP被输入到系统层比特流发生器166,以音频信号编码器163编码的音频信号随后与进行加入报头等操作的视频信号一起输入到系统比特流发生器166中。
在此,描述存储器164中的数据埋入操作。存储器控制器165用作存储器164的控制电路以控制用于控制视频信号数据编码的视频信号,从而在每个GOP之间埋置入空间。下面参照图83解释信号处理。图83为示意图,示出在数字视频信号记录和重放装置上的处理概念。例如,当nGOP相对于光头的存取地址以及错误控制的控制单元产生冗余数据时(n+1)GOP相对于光头的存取位置或纠错的控制单元中途截止以产生数据区的空间的情况下,本发明的装置如图83A所示,使nGOP冗余如据埋入(n+1)GOP之后的空间部分,并以相同方式,使因nGOP埋入而不能埋入的(n+1)GOP的少量剩余数据和(n+2)GOP埋入到(n+3)GOP的空间部分中(埋入方向从纸面上看是从左至右)。
此外,作为另一种控制方法,如上所述冗余数据不能反向传送。如图83B所示,当(n+2)GOP超过存取位置一点时,(n+3)GOP相对于光头和错误控制的控制单元的存取位置而中途结束,本发明的装置受到控制,这样,冗余(n+3)GOP数据在(n+2)GOP数据后埋入空间部分,以此方式,使因(n+3)GOP被埋入而不能埋入的(n+2)GOP的其余数据埋入(n+1)GOP的空间部分中,且不能埋入的(n+1)GOP部分埋入nGOP的空间部分(埋入方向从纸面上看是从右向左)。
下面解释图82所示结构的工作。存储器167受控于存储器控制器168,根据前述图83A和83B所描述的规则而重排的数据恢复成原状态。例如在图83A所示数据被恢复后,本发明的装置工作,使GOP数据恢复成原状,跟有(n+1)GOP的n GOP部分联到(n+1)GOP的左侧部分,随后,(n+1)GOP数据联到(n+2)GOP数据上。
这种重排规则将随介质的格式化规则而进行限定,这样,该规则作为跟在诸如TOC区域的重排好的区域中的标志信息而录下,在格式未被限定的情况下,规则必须在介质上的某处清晰地描述出来。
实施例21下面参照图84、85和86来解释实施例21。图84为方框图,代表信号处理单元,其中在数字信号重放部分执行依频率的分割或依量化的分割。图85为代表信号处理单元的方框图,其中在数字信号重放部分执行依位长进行的分割或依量化进行的分割。图86为代表信号处理单元的方框图,其中在数字信号重放部分执行依分辨率进行的分割或依量化进行的分割。在图84、85和86中,标号171代表IP选择指示器,172代表判定器,173代表切换器。在图86中,对应部分示作第一解码装置、第二解码装置和第三解码装置。在图84、85和86中,相似部分以相同标号表示,且省略对其所进行的描述。
下面解释实施例21的工作。在图84和85中,光头或光头的转动受到控制,这样,数据从TOC区或与TOC区对应的区域中直接或间接地读出。来自光头的重放信号被重放放大器156所放大。该信号由数字解调器157检索以差分成用于数字解调的数字信号。结果,已成数字数据的重放信号被输入到纠错器158以对重放信号中所含的错误纠错。无错的数据由系统层处理器159分成音频比特流和视频比特流,其它项数据也如此处理。在图84、85和86中,控制信号从作为模式切换装置的模式切换器130中输入到IP选择指示器171中,以在专用重放速度的基础上切换解码装置。实施例21受到控制,这样,实施例21可用该控制信号和跳越扫描速度在仅显示I图象的模式或显示I图象和P图象的模式间切换。
当跳越搜索速度为100倍时,如果I图象和P图象在屏幕上输出,GOP一定会以相当量的疏化而输出。结果,相对于重放屏幕的移动来说,象似乎相当不自然。在此情况下,为消除这种不自然,需将模式切换到仅重放I图象的模式上。可解码的判定器132(图86中172)不仅用来对B象解码而且也对P图象解码(开关173在图86用作此功能)。同时,图象存储器137(图86中150和151)受控以仅显示I图象。
I图象和P图象的屏幕显示通常偏爱于15倍速度时的速度,但仅I图象的屏幕显示偏爱于15倍及以上的速度。这是因为当整个I图象和整个P象在15倍速度下显示时,由于在后续处理中可重放的GOP位于从甚至屏幕对每帧更新而当前显示的GOP的第五GOP位置,连续运动极度变差。此外,当在GOP中帧数N=15且I图象和P图象周期为3时,所有P图象被解码而仅有I图象和P图象的第二帧(在GOP中第三和第九帧)被输出,可以执行更细的跳越搜索。
如上所述,在下述情况的预定条件的基础上通过将数据状态分割而分割和记录数据状态,这些情况为通过分割频率区将数据录到从记录介质上读出的每个GOP预定位置上,用于记录数据的情况、由分辨率分割数据使数据被录下的情况和通过将被记录的量化电平而分割数据的情况。当为重放数据中基本数据的第一数据和除基本第一数据外的第二数据从集中安置的数据中重放出来时,用一个解码装置来从下述情况中获得重放象之一所有第一和第二数据被解码的情况,以及所获得的数据是与I图象和P图象的低频区或疏化的象素数对应的情况。随后,在专用重放时所用的解码装置可在专用重放速度的基础上切换。
不用多说,显示I图象和P图象的方式在重放时可改为正向和负向。因于P向仅在正向时可被解码,因此存贮在P图象反向重放时解码前所存在的屏幕。结果,需要在那部分上使用冗余存储器。为了便于反向重放而不用这种冗余存储器,在正向跳越搜索的时候可重放I图象和P象,在反向跳越搜索时仅重放I图象。
实施例22参照图87、88、89和90来解释实施例22。图87为方框图,代表信号处理单元,其中在数字信号重放部分执行依频率的分割或依量化的分割。图88为代表信号处理单元的方框图,其中在数字信号重放部分执行依位长进行的分割或依量化进行的分割。图89为解释在跳越搜索时处理概念的示图。在图87和88中,标号174代表场显示控制器。系统层处理器159用作视频数据提取装置。此外,图87和88示出对应部分的视频数据解码和重放装置的实例。标号130代表作为模式切换装置的模式切换器。相同或相似的部分用与前述实施例中相同或相似标号代表。
下面解释实施例22的工作。在图87和88中,光头或光头的转动受到控制,这样,数据从TOC区或与TOC区对应的区域中直接或间接地读出。来自光头的重放信号被重放放大器156所放大。该信号由数字解调器157检索以差分成用于数字解调的数字信号。结果,已成数字数据的重放信号被输入到纠错器158以对重放信号中所含的错误纠错。无错的数据由系统层处理器159分成音频比特流和视频比特流,其它项数据也如此处理。
当在跳越搜索时,诸如I图象和P图象被连续地输出到屏幕上,屏幕则依图89中箭头所代表的次序输出。此时,在跳越搜索时,I图象的偶数场和P图象的奇数场连续起来,而在编码数据中它们之间有四个空场。换言之,在编码数据中的重放速度为I图象的奇偶场之间空间中重放速度的五倍。因此,由于对一场来说重放速度从1倍速度变到5倍速度,则I图象的运动变化不自然。
在同一屏幕上这可由I图象的奇数场或偶数场所替代。否则,屏幕可通过考虑到输出的交界而埋入上下扫描线的平均值来制备。图87和88所示的图象存储器137以场显示控制器174控制,以在后续P图象中构成同一屏幕。结果,在重放象的每场上记录时为编码的场之间空间的场间跳越量可随从跳越(不自然运动)变到不明显的结果而可均匀获得。
此外,图90为解释反向重放时处理概念的示意图,其中特别示出了反向重放时的场次序。下面,将在图90的基础上解释反向重放时的场次序。在反向重放时,反向重放在构成一对奇偶场的帧单元中进行。具体讲,当操作从奇数场变至偶数场时,重放如在图象上时那样在同一方向上执行(重放操作过程a在图90中描述出来)。当操作从偶数场变至奇数场时,两个场部分以与在图象上时的方向相反的方向被反向送出(图90A示出跳越中的过程b)。
但是,当前述重放过程进行时,三倍速度重放的结果,使重放象以不适合的方式运动,这样,运动次序不会感到平稳。当图象存储器137受到图87和88的场显示控制器174控制后,重放象在一屏幕上与图90B所示奇、偶、奇、偶的次序相反的方向显示出来。由于场之间的跳越量可几乎均匀地获得,跳动则变得不明显。但是,相对于此时的同步信号,需要保持正常奇数与偶数场的关系而不必将场同步信号反向。
图象存储器137不接收加法器138的输出,因为它采用了区别于各场的显示方法,但加法器138的输出可单独地从图象存储器137上接收。为执行这种操作,通过提供作为分开装置的缓冲器来改变次序。可以使用具有3个端口的存储器,在3个端口中地址控制可单独地设立。前述操作可在甚至当数据与可在很快速度下读出数据的存储器复用时仍可以实现。此外,由于反向扫描转换器139在至少一场加一个拼接处提供至少一个存储器,不必多说,这种缓冲功能可被引入反向扫描转换器139中。
此外,关于专用重放的慢重放输出,当同一帧被重复输出时,跳越变得不明显。结果,帧被重构和输出,这种重放间隔相同。例如,在1/3倍速度下慢重放时,不会出现解码后的I帧以三倍输出后解码的B帧也以三倍输出。取而代之的是,第一个帧是由I帧的奇数场构成。在偶数场中,可采用上下线的平均值。
在这种构成中,由于交界处象的行移动使屏幕的垂直方向上无象移出现,因而可获得稳定的象。下一帧输出原来的I帧,再下一帧以I帧的奇数场构成一帧(在偶数场端,可取上下行的平均值)。随后,后面一帧输出原来的B帧,再下一帧以B帧的偶数场构成一帧(在奇数场端,可取上下行的平均值)。结果,在此时期间隔内,可以等间隔实现慢重放。
权利要求
1.一种光盘记录方法,其特征在于包括以下步骤使以动补偿预测和离散余弦变换的数字视频信号高效率编码的、并写入到光盘的视频信息,构成为画面内编码图象的I图象、一方面预测编码图象的P图象、和两方向预测编码图象的B图象,使这些图象包含在一个视频信息块中,配置以该视频信息块为基础构成的视频包,和具有专用信息流2的信息流ID的专用包的系统信息流;以及将与所述视频信息块中至少与I图象的扇区对应的地址信息配置在位于所述视频信息块之前的所述专用包中。
2.一种光盘记录设备,其特征在于包括使以动补偿预测和离散余弦变换的数字视频信号高效率编码的、并写入到光盘的视频信息,构成为画面内编码图象的I图象、一方面预测编码图象的P图象、和两方向预测编码图象的B图象,使这些图象包含在一个视频信息块中,配置以该视频信息块为基础构成的视频包,和具有专用信息流2的信息流ID的专用包的系统信息流的装置;以及将与所述视频信息块中至少与I图象的扇区对应的地址信息配置在位于所述视频信息块之前的所述专用包中的装置。
3.一种光盘重放方法,用于重放光盘,该光盘具有使以动补偿预测和离散余弦变换的数字视频信号高效率编码的、并写入到光盘的视频信息,构成为画面内编码图象的I图象、一方面预测编码图象的P图象、和两方向预测编码图象的B图象,使这些图象包含在一个视频信息块中,配置以该视频信息块为基础构成的视频包,和具有专用信息流2的信息流ID的专用包的系统信息流的信息;以及将与所述视频信息块中至少与I图象的扇区对应的地址信息配置在位于该视频信息块之前的所述专用包中,其特征在于,所述方法包括以下步骤将记录在所述专用包中的视频信息块中至少与I图象的扇区对应的地址信息再生;和根据该再生的地址信息,从光盘上的位置读出所述视频信息块。
4.一种光盘重放设备,用于重放光盘,该光盘具有使以动补偿预测和离散余弦变换的数字视频信号高效率编码的、并写入到光盘的视频信息,构成为画面内编码图象的I图象、一方面预测编码图象的P图象、和两方向预测编码图象的B图象,使这些图象包含在一个视频信息块中,配置以该视频信息块为基础构成的视频包,和具有专用信息流2的信息流ID的专用包的系统信息流的信息;以及将与所述视频信息块中至少与I图象的扇区对应的地址信息配置在位于该视频信息块之前的所述专用包中,其特征在于,所述设备包括再生装置,将记录在所述专用包中的视频信息块中至少与I图象的扇区对应的地址信息再生;读出装置,根据该再生的地址信息,从光盘上的位置读出所述视频信息块。
全文摘要
一种数字视频信号记录和重放装置,用于在记录介质上记录以动补偿预测和正交变换编码的数字视频信号,并从记录介质上重放该数据。在数字视频信号的数据结构中,可在象中单独重现的I图象在垂直方向被分成n个区域,并且通过给屏幕中央处的区域一个优先权而将数据安置在区域单元中一个GOP的最前端。通过重放I图象而输出重放象。整个I图象不能在有限时间内读出的情况下,该不能被读出的区域就被前一屏幕的数据所内插。
文档编号H04N7/52GK1487738SQ0312169
公开日2004年4月7日 申请日期1995年9月25日 优先权日1994年9月26日
发明者三嶋英俊, 三 英俊, 浅村吉范, 范 , 子, 幡野喜子, 司, 外田修司, 仓桥聪司, 中井隆洋, 洋, 加濑泽正, 正, 人, 长泽雅人, 大畑博行, 行, 宣, 石田祯宣 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1