1比特采样的差分四相相移键控的解调电路及方法

文档序号:7881590阅读:633来源:国知局
专利名称:1比特采样的差分四相相移键控的解调电路及方法
技术领域
数字通信及数字电路领域。
背景技术
数字电路一般只有1和0两种码,常用高、低电平表达,称为基带信号。当短距离通信时可以直接用基带传输,但是在有些情况下不能直接传送基带信号,如无线信道,需要借助连续波调制进行频带搬移,将数字基带信号变换成适于信道传输的数字频带信号,用载波的方式进行传输。通信系统的原理图如图1所示,1是信源,在数字通信中它是数字信号。2是调制,将数字信号按某种方式调制并变换为模拟信号。也称载波,可由(1)式表达,由于通常还需要将已调信号再调制到更高的发射频率,所以调制器2的输出也称为中频信号,3是上变频,其输出s(t)称为载波。4是信道。5是下变频。6是解调部分。7是信宿。和模拟调制一样,数字信号的载波调制也有三种方式,即幅度键控(ASK)、频率键控(FSK)和(PSK)相移键控。相移键控是利用载波的相位变化传递信息,如(1)式中的相位θ的变化传递信息。相移键控分为绝对调相和相对(差分)调相。绝对调相记为PSK,如(2)式所示,1码用0相位表示,0码用π相位表示,其相位图由图2所示。
PSK(t)=Acos(ωot+θ) (1) PSK也称为2PSK或BPSK,2代表它只有2个相位状态,分别表示“1”和“0”,如果利用具有多个相位状态的正弦波来代表多组二进制信息码元,称为多相相移键控,记为MPSK。用4个相位状态的相移键控就是4PSK,常称的QPSK。图3所示是QPSK的一种相位图。QPSK是一种高效的调制方式,从理论上说频带利用率是PSK的2倍。
在实际应用中,有时也采用π/4-QPSK调制方式,如图4所示。
实际应用中常用相对调相,它是利用相邻码元载波相位的相对变化表示数字信号,也称位差分调相,记为DPSK。有时也采用π/4-DQPSK调制方式,如图5所示。
DPSK就是用Δθ的变化对应不同的数字信号码元。(3)式表达的是第k位码元对应的载波信号。单独看该信号的相位,没有任何码元信息,但是用它和前一位的相位相差,如(4)所表达,就可得该码元信息,具体如表1所示是其一种对应关系。
PSK(t)=Acos(ωot+θk) (3)其中k代表当前位,k-1代表前一位,k+1代表后一位。
Δθk=θk-θk-1(4)现有差分解调原理π/4-DQPSK的已调信号,可由(3)式表达,其相位跳变量只有±π/4和±3π/4四种可能的取值,与输入码元的对应关系如表1。其信息完全包含在载波相位跳变量Δθ中,因此能够进行差分解调。
IkQkΔθk00 -3π/401 3π/410 -π/411 π/4表1 现有技术中相位差与解调数码对应值现有的DQPSK数字解调方案如图7所示,设载波或中频信号由(3)式表达,其原理由图7所示,图7中1是A/D变换器,将模拟信号变为数字信号,采样频率为1/Ts,离散信号为k(nTs)=Acos(ωonTs+θk) (6)上式中t=nTs,n为离散采样点数,归一化,即令Ts=1,A=2,]]>故上式可表达为(7)式。
则A/D变换器的输出为 经2延迟电路(一个码元的延迟),可得输出为 又经3移相电路(移相-π/2),移相器输出为 再由4、5分别相乘,乘法器输出分别是xk′(n)=2cos(ωon+θk)cos(ωon+θk-1) (10)yk′(n)=2sin(ωon+θk)cos(ωon+θk-1) (11)再经数字低通滤波器,其输出分别是xk(n)=cos(θk-θk-1)=cosΔθk(12)yk(n)=sin(θk-θk-1)=sinΔθk(13)上述说明式(10)、(11)可分别展开为xk′(n)=2cos(ωon+θk)cos(ωon+θk-1)=cos(θk-θk-1)+cos(2ωon+θk+θk-1) (14)yk′(n)=2sin(ωon+θk)cos(ωon+θk-1)=sin(θk-θk-1)+sin(2ωon+θk+θk-1) (15)经数字低通滤波器,将高频项滤掉,只保留低频项,输出值就由(12)、(13)式表达数字低通滤波器的基本原理可表达(16)式,在此只表达一个通道,另一通道同理。
xk(n)=Σm=1Nh(m)xk′(n-m)---(16)]]>其中N是数字滤波器的宽度,或称阶数,数字滤波器的表达形式很多,(16)式是一种典型表达式,在实际电路设计中,可取64位或32位。
由于调制信号相位跳变量只有±π/4和±3π/4四种可能值,那么其xk(n)、yk(n)的值也只有四种可能的组合。经判决可得到解调结果,具体判决由表2所示,再经并/串转换可得到解调信号。
现有的数字式DQPSK解调系统框图如图7所示,在数字电路中,乘法器所占硬件资源很多(在芯片中设计乘法器占用大量的门电路),现有技术方案中,数字低通滤波器(图7中6、7)中需要大量乘法器,乘法器(图7中4、5)也需要乘法器。现有这种载波或中频差分解调方法的计算量很大,很难进行高速的解调处理。
Δθkxk(n)yk(n) IkQk-3π/4 -0.707-0.707003π/4 -0.7070.707 01-π/4 0.707 -0.70710π/4 0.707 0.707 11表2现有技术中相位差、低通滤波器输出值和解调数码对应值发明的内容本发明的目的是为了减少解调电路的计算量,提高解调的速度,特提出了一种新的DQPSK解调电路及解调方法。即称为1比特采样的差分四相相移键控的解调电路及方法。
本发明的方案从原理图8可见,解调电路仍由原模拟信号变换为数字信号电路(A/D变换器)、延迟电路、移相电路、乘法器、低通滤波器、判决电路、同步电路和并/串转换电路组成,其不同之处,是用一个1bit采样电路(或用一个比较器、或用一个取符号电路)替代了原有的A/D变换器。
本发明的方法是1bit差分解调方法,是在1bit采样电路(或者比较器电路、或取符号电路)的输出处只有1位数据线,仅用1位二进制替代多位二进制数据,该1bit采样电路将调制信号转变为1bit数字信号,当该调制信号大于0电平时,判为“1”,小于0电平,判为“-1”;或采用其它约定编码,只有1条数据线,2种状态,将多bit数字信号变为1bit数字信号。
本发明主要应用在π/4-DQPSK(π/4四相相移键控)方式中,该方式首先是用编码电路将信号映射到星座点上以实现调制,信号星座如图6所示。图中有8个相位状态,分成偶数(2k)和奇数(2k-1)两组,分别用○和●表示。两信号点之间的连线表示可能的相位跳变。相位跳变只能在偶数组和奇数组之间发生,在偶数组和奇数组内没有跳变。
下面通过对1bit差分解调原理分析证明它的可行性。
本发明提出的1bit差分解调与一般的差分解调方法不同,它是将调制信号用符号位表示,也就是1bit的采样,模拟信号只要大于0均判为“1”,只要小于0均判为“-1”。在实际电路中,也采用约定的编码,用“0”(低电平)表示1,用“1”(高电平)表示-1。其基本原理由图8所示,输入的载波或中频信号仍由(3)式表达。图8中1是取符号,也是1bit的采样,在实际电路可以用一个比较器实现同样的作用。符号函数定义为
定义函数signa(x)=1x≥0-1x<0---(17)]]>此时,采样频率=信号频率,t=nTs,采样输出精度只有1bit,实际上就等于对(3)式表达的载波或中频信号取符号函数,归一化后,即Ts=1,A=1,图8的1(取符号电路)的输出为k(n)=signa[cos(ωon+θk)] (18)实际它只有“1”和“-1”两种值。同样经2(延时电路)、3(移相电路)可分别得其输出k-1(n)=signa[cos(ωon+θk-1)](19)k′(n)=signa[sin(ωon+θk)] (20)式(19)、(20)也是符号函数,也只有“1”和“-1”两种值。按图8所示的连接关系,再经4、5“乘法器”,在此乘法器的输入信号均只有“1”和“-1”两种值,因此并不需要设计数字乘法器,只要简单的门电路就可以完成该“乘法器”的功能,实际上用一个异或门电路来完成该功能。4、5的输出可表达为xk′(n)=signa[cos(ωon+θk)]*signa[cos(ωon+θk-1)](21)yk′(n)=signa[sin(ωon+θk)]*signa[cos(ωon+θk-1)](22)实际上取符号函数后,正弦信号变为方波,付里叶展开可表示为xk′(n)=Σl=-∞∞Sa(lπ/2)ej(lωon+lφk)·Σm=-∞∞Sa(mπ/2)ej(mωon+mφk-1)]]>=Σl=-∞∞Σm=-∞∞Sa(lπ/2)·Sa(mπ/2)ej(l+m)ωcnej(lφk+mφk-1)---(23)]]>令Δφk=φk-φk-1信号经过低通滤波(图8中6)后,只有当m=-l,才能通过低通滤波器,其余均被滤掉。
xk(n)=Σl=-∞∞Sa(lπ/2)2ejl(φk-φk-1)]]>=Σl=1∞1/(2l-1)·cos[(2l-1)Δφk]---(24)]]>同理另一通道(图8中7)的输出为yk(n)=Σl=1∞1/(2l-1)·cos[(2l-1)(Δφk-π/2)]---(25)]]>低通滤波器输出xk(n)、yk(n),由(24)、(25)表达,它们虽然是无穷级数,可取前有限项近似表达,实际上得到同式(12)、(13)表达一样的结果。取前1024项,经计算机计算得(12)式和(24)式的结果如图9所示。因此可以看出,只要相位跳变Δθk的误差在±π/4之内,不会出现符号的变化,判别也不会出错。所以经判决电路(图8中8、9)解调的Ik、Qk通道的数据与现有技术方案完全一样,其对应关系如表3,与表2比较,得到完全相同的解调数据。
Δθkxk(n) yk(n) IkQk-3π/4 <0<0 0 03π/4<0>0 0 1-π/4>0<0 1 0π/4 >0>0 1 1表3本发明解调数码与相位差和低通滤波器输出对应值经过以上的理论分析和实际电路设计,本发明1bit差分解调的数据与现有数字解调结果一样。证明了本发明的可行性。
从已有技术图7和本发明图8的原理图工作流程可以看出本发明的优点本发明提出1bit差分解调的原理及实现方案,1bit是指调制信号用符号位表示,1位数据线,已有技术方案的调制信号是用多位(一般取8位)表示,需要多位数据线。也可这样表达,仅用1位二进制替代多位二进制(常见数字信号是8位)将载波或中频调制信号采样出来后,再恢复解调出数字信号。
(1)图8中4、5的表示乘法。如果该乘法器的两路输入均是8bit,则输出一般是16bit,该乘法器需要用大量的门电路来设计。本发明采用1bit方式,该乘法器的两输入均是1bit数字信号,即只有“1”、“-1”两种可能,其输出也只用1bit表达,也只有“1”、“-1”两种结果。乘法运算实际就是符号相乘,在此处(4、5)可以用异或门替代该乘法器,而乘法器所需的硬件资源比异或门需要的硬件资源多得多。因此本发明能大幅度节省硬件资源、提高解调速度。
(2)图8中6、7表示低通滤波器。其输出可由(16)式表达,该滤波器需要大量的乘、加运算。在本发明方案中,由于乘法器(4、5)的输出也是1bit,那么滤波器的输入也只有“1”、“-1”两种,即xk′(n-m)在任一时刻点总是等于“1”或“-1”,(26)式滤波器的表达式就可以不需要乘法运算。
xk(n)=Σm=1Nh(m)x′(n-m)---(26)]]>采用本发明方案,该低通滤波器输入为“1”和“-1”构成的数据序列,不可能出现其它数值。当x′(n-m)为“1”时,所对应的响应就是h(m)本身,h(m)是单位脉冲响应。当输入单独的“-1”时,h(m)取非输出。因此,不需要乘法运算,只需要加法运算。由于该低通滤波器的输入信号只有“1”或“-1”两种,只需要将单位脉冲响应h(m)存储在某个固定空间,当输入“1”时,直接将其读出,当输入“-1”时,读出并取反,再移位相加(如果数字滤波器的位数取64,共计有64项移位相加),因此,省了乘法器,变乘、加运算为单纯的加法运算。又因为单位脉冲响应事先按低通滤波器的特性设计,因此,该电路(图8中6、7)同样起到低通滤波器作用。其输出就是(24)、(25)式所表达,也可以由图9表达。
图7所示的现有技术方案中,低通滤波器的输入xk′(n)为多bit数据,其低通滤波器(图7中的6、7)需要乘法和加法计算。显然比本发明方案多用硬件资源,且速度也慢。
(3)图8中2、3的表示延迟和移相;图7中2、3也表示延迟和移相。原技术方案k(n)为多位数据;本发明方案k(n)为一位数据。因此本发明在延迟和移相过程中所需更少的存储空间,节省硬件资源。
另外,1bit的采样,在实际电路设计中,可以直接用一个比较器完成其功能,因此与原技术方案比较,又节约了A/D变换器。
综上所述,说明本发明原理及方案比现有技术计算量减少、硬件资源节省、解调处理速度提高。同时减少了幅度变化对解调结果的影响,而且又简化了电路结构。


图1通信系统原理2PSK系统相位3QPSK系统相位4π/4-QPSK相位5π/4-DQPSK相位6π/4-DQPSK信号星座7现有解调技术方案原理8本发明解调技术方案原理9判决曲线其中点划实线“__”表示现有技术的判决曲线星号划实线“*”表示本发明方案判决曲线实施例利用本发明,设计解调电路。具体指标位为压缩数字语音信号,其码率8Kbit/s,调制中频频率是455KHz,所有数字电路(在实际电路中设计为双工,调制、解调设计在一块芯片上,故D/A和A/D设计为外围电路)可设计在一块芯片上,芯片选用可编程逻辑器件,(实际用XILINX公司的xc2s100)。解调工作时钟设计为256KHz,静噪情况下,采用13位PN码进行测试,无误码达到实用要求。传送语音信号,声音清楚。
为了了解时钟频差对系统性能的影响,采用调制时钟频率和解调时钟频率偏差为当误差|f|<100Hz时候系统能正常工作,误差|f|>200Hz系统无法正常工作。该系统达到实际应用的要求。
权利要求
1.1比特(bit)采样QDPSK解调电路是由模拟信号变为数字信号电路(A/D变换器)、延迟电路、相移电路、乘法器、低通滤波器、判决电路、同步电路和并/串转换电路组成,其特征是用一个1bit采样电路(或比较器、或取符号电路)替代原有的多比特A/D变换器。
2.1比特(bit)采样DQPSK解调电路的解调方法,其特征是在1bit采样电路(或比较器、或取符号电路)输出处只有1位数据线,仅用1位二进制替代多位二进制数据,该1bit采样电路将调制信号转变为1bit数字信号,当该调制信号大于0电平时,判为“1”,小于0电平,判为“-1”;或采用其它约定编码,只有1条数据线,2种状态,将多bit数字信号变为1bit数字信号。
全文摘要
1比特(bit)采样DQPSK解调电路及方法,属于数字通信及数字电路。该电路是在现有的解调电路上,用1bit采样电路(比较器或取符号)替代原有的A/D变换器。其解调的方法是在1bit采样电路输出处仅有一位数据线,它将输入的调制信号变为1bit数字信号,调制信号大于0电平,判为“1”,小于0电平,判为“-1”;或采用其它约定编码,1条数据线2种状态,多bit数字信号变为1bit数字信号。本发明具有计算量少,硬件资源节省,解调速度快等优点,适应技术和市场需要。
文档编号H04L27/22GK1635759SQ200310104110
公开日2005年7月6日 申请日期2003年12月25日 优先权日2003年12月25日
发明者钟洪声, 周国勇 申请人:电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1