高速、硅基电-光调制器的制作方法

文档序号:7606089阅读:400来源:国知局
专利名称:高速、硅基电-光调制器的制作方法
技术领域
本发明涉及硅基电-光调制器,尤其涉及通过把信道均衡技术结合到该调制器和相关电驱动电路中来提供高速(例如大于1Gb/s)的调制器。
背景技术
光传输系统通常基于光信号的两个调制方法之一,直接调制或外调制。在第一个方法中,施加到激光器的偏置电流被调制,以″接通″和″断开″激光器。这个方法的缺点在于当需要较高的开关速度时,激光器本身的半导体材料的动态特性主要以啁啾声形式引入了失真。具有调制电信号的光信号的外调制产生啁啾声大大减少的调制的光输出信号,并且外调制器已经优选地用于高速应用。特别地,诸如马赫曾耳(Mach-Zehnder)干涉仪之类的电-光调制器一般用于高速应用。
多年以来,外调制器一直由诸如铌酸锂之类的电光材料制造。光波导形成在电光材料内,在每个波导支路的表面上设置金属触点区。向金属触点施加电压将改变触点下的波导区的折射率,从而改变沿该波导的传播速度。通过施加电压来制造两个支路之间的π相移,形成非线性(数字)的Mach-Zehnder调制器。特别地,光信号被射入该波导,并且1/0电数字信号输入被施加到触点(如上所述的,使用适当的电压电平)。然后光输出被″调制″以生成光1/0输出信号。用线性(模拟)的光输出信号可以得到类似的结果。
尽管已经证明这类的外调制器非常有用,然而一直以来都希望在硅基平台上形成各种光学元件、子系统以及系统。还希望把与此类系统(例如电-光调制器的输入电数据驱动电路)有关的各种电子元件与光学元件一起集成在同一个硅基片上。无疑,在这类情况下不会选择使用基于铌酸锂的光学装置。各种其它常规的电光装置是没有直接与硅平台兼容的类似的材料(比如III-V化合物)。
然而如在2004年3月8日申请的我们的未决的申请序列号10/795,748中所公开的,能够在硅基平台中提供光学调制的一个重要发展已经做出。

图1说明在我们的未决申请中公开的硅基调制器装置的一个示例的布置。在这种情况下,依据掺杂(即″类金属″)的硅层2(通常是多晶硅)的MOSCAP″结构1被放置在硅绝缘体(SOI)晶片4的相对较薄(亚微米)表层3的掺杂部分上,这个薄表层3在本领域常常称为″硅绝缘体层″。薄介质层5位于掺杂的、″类金属″多晶硅层2和掺杂的SOI层3之间,这样放置这些层以形成如图1所示的重叠来定义装置的活动区。作为施加到SOI层3(VREF3)和/或多晶硅层2(VREF2)上的电压的函数,自由载体将在介质层5的两侧上累加和消耗。自由载体的浓度的调制导致活动区中的有效折射率改变,从而引入沿着在活动区形成的波导传播的光信号的相位调制(波导方向垂直于纸面)。
现在,这类硅基电-光调制器已经被优化以最小化光损耗。光损耗通过减少沿波导范围的光信号吸收来控制。因为吸收直接与载体掺杂密度相关,所以最小的光损耗要求在多晶硅层2和SOI层3中都要最小的掺杂密度。然而,这个光损耗技术要求直接与高速运行的需求背道而驰。即,提供高速(即开关速度大于1Gb/s)装置,则需要相对较高的掺杂密度。因为系统需求即使现在向10Gb/s靠拢,非常需要提高硅基电-光调制器的开关速度,而不需要很大的光能来获得高速运行。

发明内容
先有技术中剩余的需要由本发明来解决,涉及硅基电-光调制器,尤其涉及通过把信道均衡技术结合到该调制器和相关的电驱动电路中提供高速(例如大于1Gb/s)调制器。
根据本发明,信道均衡是通过开发提供光损耗的期望限制的装置终端的掺杂分布(profile)实现的。对于给定的掺杂分布,有一个相关的最大开关速度,在使用简单驱动电路时(即,在比如VDD和VSS两个参考电压电平之间转换来在光″0″和光″1″之间切换),调制器以该开关速度运行。根据本发明,为了提高开关速度,在″1″和″0″(下降沿转换)以及″0″和″1(上升沿转换)之间转换期间施加预加重电压,该预加重电压将加快MOSCAP(或调制器有效电容)的充电和放电,因此分别减少在状态之间的下降和上升时间。应当懂得,这类预加重电路的输出阻抗应尽可能低并且实际上接近由电压类型信号驱动的那些调制器的电压电源。因此,在下文中描述的预加重电路和技术还允许数据源的阻抗(通常为50Ω的阻抗)变换为低得多的值(当然小于25Ω并且通常大约为1Ω),从而接近理想的电压源。
在本发明的一个实施例中,在制造期间最佳的预加重电压电平和脉冲持续时间可以一个装置一个装置地定义,并且存储在与该调制器共同设置的微处理器相关的存储器(或其它存储器类型的装置)中。在这个实施例的进一步发展中,反馈技术可以使用参考电压表和相关的预加重电压/持续时间值(存储在查找表中),随着调制条件的变化(即温度、电源电压变动、使用期限时效等等),最佳参数值可以从数据库中选择以调整装置性能。最后,通过增加信道带宽,使用预加重来扩展信道带宽减少了模型相关抖动。特别地,一部分光输出信号可以分出和分解以确定必要的变化。
本发明的一个优选布局安排利用沿接触区中的多晶硅层和SOI层长度的多个分开的接触点。因为光速在硅中是有限的,所以光信号沿调制器长度的″飞行时间″可能变成比特周期的一个重要部分。从而,通过沿活动区范围的扇形扩大(即分配)电信号输入,整个波导基本上同时地加能以至于波导的所有部分立即看到电压的变化。
本发明的其它以及进一步的优点、实施例和特点将参考附图在以下说明的过程中变得明显。
附图简单说明现在参见附图,图1是硅基调制器装置的示例性安排;图2(a)以简化的方框图形式说明带宽有限的非线性信道,图2(b)说明同一个信道,但是显示使用本发明的均衡器/预加重电路改善高速光调制器的光输出特性;图3以简化的方框图形式说明线性信道均衡安排,失真受限信道安排(图3(a))和使用根据本发明的均衡器/预加重电路的安排(图3(b))之间的对比用以线性化该调制器信道;图4说明Mach-Zehnder干涉仪调制器的简化方框图,示出该设计的各个累加和消耗支路;图5包含一组参考电压和与图2(a)的带宽有限信道安排和图3(a)的失真受限信道安排有关的驱动模型;图6包含根据本发明的示例性组的参考电压和驱动模型,包括可用于完成增加的开关速度(大于1Gb/s)的预加重;图7是简化形式的根据本发明形成的Mach-Zehnder电-光调制器的示例性的俯视图,以提供高速(大于1Gb/s)操作;图8是按照用来定义参考电压和预加重电压的电压电平的图7的调制器的优选安排;图9是与图8安排有关的参考电压和驱动模型的图;图10以方框图形式说明本发明的示例性的调制器安排,包括调制器输出和均衡器/预加重电路之间的反馈回路;图11说明反馈安排的另一个实施例,该安排可以与根据本发明形成的电-光调制器一起使用,其中分出的输出信号由光电二极管转换成模拟电信号;图12说明示例性的基于吸收的调制器,它可以使用本发明的预加重技术来增加调制器的开关速度;图13是与图12安排有关的参考电压和驱动模型的图;图14包含一个绘图,说明使用根据与累加情况有关的本发明的均衡器/预加重的电-光调制器的开关速度的改善;图15包含一个曲线图,说明使用根据与消耗情况有关的本发明的均衡器/预加重的电-光调制器的开关速度的改善;和图16说明在施加和不施加预加重脉冲情况下作为时间函数的载体浓度性能的变化。
具体实施例方式
图2以简化形式说明非线性信道均衡安排,示出使用本发明的均衡器/预加重电路来改善高速光调制器的光输出特性。图2(a)说明带宽有限的信道安排,其中来自数据源10的电输入数据信号作为电输入加在硅基调制器结构12,如图1中所示的调制器。应当懂得,本发明的理论同样适用于任何类型的电驱动光调制器,即通过调制电输入信号产生调制的光输出信号从而改变光波导的折射率性质的调制器。这类的电-光调制器包括但不限于基于自由载体的调制器,特别是硅基电光调制。
再参见图2,来自光源14的光输入作为第二输入加在调制器12,如在我们上述的未决申请中所述的,光信号耦合到相对薄的SOI层(比如图1的SOI层3),随后沿波导结构的活动区传播。一旦来自源10的电输入信号的开关速度超过一定值(例如高于1Gb/s),硅基调制器中的自由载体就不能足够快地充电和放电调制器以在比特期间完全地改变状态。因此在这时,调制器性能开始退化,并且光输出信号变得失真,如图2(a)中的元件16所示。
图2(b)以简化形式说明本发明所建议的解决方案,其中均衡器/预加重电路18放置在电输入源10和调制器结构12之间。配置均衡器/预加重电路18用于识别输入信号中的逻辑电平之间的每个转换,并向在转换时施加的电压插入一个附加的″引导″。这个预加重电压脉冲的作用是加速自由载体运动,以使基本上所有的充电和放电都能在比特周期结束之前完成。因此,如元件20所示的,光输出信号仍然是清洁的,并且清晰的、清楚地定义光″1″和光″0″之间的转换。因此均衡器/预加重电路18允许调制器结构12的带宽扩展而不增加系统的光损耗。实际上,活动区内的掺杂分布可以保持在相对低的水平(例如1×1019厘米-3)并仍然提供大于1Gb/s的光交换。
如上所述,本发明的信道均衡技术同样适用于使用模拟输入信号(例如调幅信号)的线性系统。图3以方框图形式说明一个简化的线性信道均衡安排,失真限制信道安排(图3(a))和使用根据本发明的均衡器/预加重电路(图3(b))来线性化该调制器信道的安排之间的对比。在这种情况下,调制器12和光源14是与图2相关的装置相同。线性的电信号源22被说明为给调制器12加入电输入。一旦这个电输入信号的幅度增加高于预定电平,光输出再不能跟踪线性输入信号并且光输出就开始饱和,导致输出失真。这个饱和导致在图3(a)的输出元件24中所示的″急剧″转变。根据本发明,预加重电路26的使用起着推进线性输入电压信号(即预加重)末端的作用,从而增加调制器的线性范围。如元件28中所示的,从而结果输出更加紧密地跟踪输入的形状(和频率)。有利地,将使用预加重作为线性信道均衡技术提供光输出功率的改善,正如图3(c)中所说明的,其包含作为电输入功率函数的光输出功率的曲线图,与该安排有关的虚曲线没有预加重。如图所示,对于这个安排来说存在着朝向最大功率的渐变的渐近曲线。相反,包括预加重的本发明的安排允许光输出功率的恒定增加从而增加了线性动态范围,达到最大值而没有增益压缩,避免信号失真。最终在一些功率电平处出现导致失真的消波,但是线性化的装置不工作在该饱和点或高于该饱和点。实际上,在到达饱和点之前很好地使用预加重得到重要的线性范围。饱和点只能通过增加操作电源电压来增加。
图4说明一个示例性的Mach-Zehnder干涉仪调制器的简化方框图,示出该设计的各个累加和消耗支路。干涉仪的每个支路都包含具有两个终端的调相器。终端1由图1中描述的硅(常常是多晶硅)层2、累加支路中和消耗支路的n型掺杂区50和60构成。终端2由图1中也示出的SOI层3、累加支路中和消耗支路的p型掺杂区56和62构成。
图5包含一组参考电压和与图2(a)的带宽有限信道安排及图3(a)的失真限制信道安排有关的驱动模型。被发射的示例性的光数据被说明为沿着图5中的顶部轨迹。提供这个数据模型为调制器12的输入的一个安排是让电数据源10的输出保持一个终端在预定义的参考电势(在这种情况下″终端2″被保持在VDD),如轨迹B所示。然后剩余的终端(″终端1″)移动到第二参考电势(REF1A/REF1D)以定义光″1″和″0″,如轨迹C所示。参见图5,当图4调制器的累加和消耗支路的终端1都保持在这个预定义参考电压(即REF1A_REF1D)时,光″1″的状态被定义。对于光″0″,消耗支路终端1切换到较高电压(REF0D),其可以高达VDD(而不一定必须等于VDD),而累加支路终端1切换到较低电压(REF0A),其可以低到VSS(而不一定必须等于VSS)。如果该安排轨对轨地(即在VDD和VSS之间)被驱动,则存在一个自然的阻容时间常数,则限制调制器的开关速度。
正如图2(b)和3(b)所说明的,通过在光″0″和光″1″之间(反之亦然)的每个转换时加上电信号预加重,可以分别克服带宽限制和失真限制信道的限制,其中预加重将加快载体运动并提高开关速度。图6包含根据本发明有预加重的一个示例性组的参考电压和驱动模型,可用于实现提高开关速度(大于1Gb/s)。如图5所示的先有技术的驱动模型组,在预加重情况中的″终端2″可以保持在预定的参考电势(例如VDD),并且施加到″终端1″的电压被改变为数据模型的函数以将这个数据模型叠加在传播光信号上。也类似于与图5驱动模型有关的安排,当图4的调制器的累加和消耗支路的终端1都基本上保持在相同的预定义参考电压(即REF1A≈REF1D)时,光″1″的状态被定义用于本发明的安排。
如图6所示,在从光″1″到光″0″的第一次转换(后沿转换)期间,施加到消耗支路的终端1的电压包括一个起始脉冲,它将过冲与光″0″的稳态值有关的电压电平(REF0D),起始脉冲具有足以加快消耗支路装置信道输出的自由载体运动的幅度MD10和持续时间tD10。这个阴影脉冲区被说明为图6中的″D10″,其中在从光″1″到光″0″的每次转换,相同的脉冲D10施加到消耗支路。以类似的方式,施加到累加支路的终端1的电压包括一个起始脉冲,其过冲与光″0″的稳态值有关的电压电平(REF0A),其中脉冲幅度MA10和持续时间ta10被选择来加快累加支路装置信道中的自由载体的累加。这个阴影脉冲区被说明为图6中的″A10″,其中在从光″1″到光″0″的每次(下降沿)转换,相同的脉冲A10将被施加到累加支路。
以类似的方式,预加重也可以在从光″0″到光″1″的转换期间使用,再次提高自由载体的运动并实现较高的开关速度。参见图6,在从光″0″到光″1″的转换期间,表示为D01的过冲脉冲被加到需要把累加支路从REF0D切换到REF1D的电压变化,其中脉冲D01被说明为包括预定的幅度MD01和持续时间tD01。与累加支路有关的预加重被说明为脉冲A01,具有幅度MA01和持续时间Ta01。应当注意,用于累加和消耗支路的″1″到″0″的转换和″0″到″1″的转换的不同脉冲幅度和持续时间可能是不同的,因为在每个状态中的自由载体的运动可能是不同的并且可能在较长/较短的持续时间中需要较高/较低幅度的脉冲。本发明的一方面是对于每种情况分别地定制这些变量的每个变量,从而最优化自由载体的运动并实现光调制器的高速运行。此外,只希望″上升沿″预加重或许只希望″下降沿″预加重的情况也是存在的。所有这些情况都被认为落入本发明的范围。
图7是一个简化形式的根据本发明形成的、以提供高速(大于1Gb/s)运行的一个示例性的Mach-Zehnder电-光调制器30的俯视图。光信号Iin被说明沿着输入波导32传播并进入分光器34。传播在此处,如在我们上述的未决申请中所述的并参考图1,其中输入波导32和分光器34可以形成在SOI晶片的SOI层内(比如图1的SOI层3)。分光器34可以把信号中存在的光能简单地分成两半,以使得平衡的50/50拆分的信号Iin提供给调制器30的每个支路。然而也可以使用任何其它的拆分,或者期望,根据累加和消耗支路的参数(参数比如掺杂浓度、每个有效面积的长度、形成终端1和终端2使用的材料等等)。如图7所示,来自分光器34、表示为IinA的第一输出此后作为累加支路36的光输入信号,其中光信号IinA沿光波导38传播,光波导38沿着累加支路36的范围形成。来自分光器34、表示为IinD的第二输出此后作为消耗支路40的光输入信号,其中光信号IinD沿光波导42传播,光波导42沿着消耗支路40的范围形成。应当指出,分光器34内不可避免地将出现一些损失,这个损失由图7中的信号Iloss表示。在它们各自的活动波导区域内调制之后,调制的光信号IoutA和IoutD将在光组合器44内组合,然后作为调制信号Iout沿着输出波导46传播。
在我们上述的未决申请中详细叙述的,发生调制的活动波导区域由SOI层(比如图1的SOI层3)和覆盖硅层(例如,图1的多晶层)的重叠部分形成,它们之间放置一个相对较薄的介质层(层5)。介质层在图7的调制器30俯视图中不明显,但是在图1的装置侧视图中是可见的。参见累加支路36,表示为区50的″终端1″材料包括图1的一部分已经掺杂(例如″n″型掺杂)的硅(一般为多晶硅)层2,其中掺杂分布可以根据本发明优选地控制以在活动波导区域52内形成稍微掺杂的部分,以及沿终端1电触点区域54的更大掺杂的部分。如图所示,可以包括图1的SOI层3的″终端2″材料形成在终端1的掺杂区50的下面。形成终端2的SOI区56(相对于终端1区相对地掺杂)以重叠活动波导区域52中的区50,然后在相反方向上扩展以形成它的接触区58。如前所述,区56的掺杂密度在活动波导区域52中维持在一个较低的级别上以最小化光损耗(虽然允许接触区58中的掺杂密度较高)。
在一个优选安排中,多晶硅区50和60包括输入和输出渐缩区以给进入和退出活动波导区域52和64的光信号提供梯度折射率变化,从而在相关活动波导区域的输入和输出最小化光反射。参见图7,多晶硅区50被表示为包括输入锥体66和输出锥体68,而多晶硅区60被表示为包括输入锥体70和输出锥体72。输入锥体66和70起着逐渐增加波导层的有效折射率的作用,其中与简单地在SOI层上放置一个多晶硅层和引入折射率突变来传播光信号相比,渐变的锥体引入较少的反射。以类似的方式,输出锥体68和72将逐渐减少有效折射率。这类锥体多晶硅层的使用的详细说明可以在2004年4月5日申请的我们同未决的申请序列号10/818,415中找到。
依据施加电调制信号并参考图6和7,在这个特定例子中,分别定义为累加支路36和消耗支路40的″终端2″输入的SOI区56和62被耦合到参考电压(比如在这个实施例中的VDD)。一组四个不同的输入信号表示为耦合(在这个实施例中)到累加支路36和消耗支路40的″终端1″连接。这些信号对应于上述结合图6讨论的那些信号,也就是光″0″到″1″转换的″预加重″脉冲、光″1″的参考电平、光″0″的参考电平和光″1″到″0″转换的预加重脉冲。根据该特定的数据模型,控制这些不同的输入以在每个转换都施加恰当的预加重信号,后面是特定逻辑电平的剩余持续时间的恰当的参考电平。
图8是按照用来定义参考电压和预加重电压的电压电平的图7调制器30的一个优选实施例。图9是与图8的安排有关的参考电压和驱动模型的图。如图所示,″终端2″被固定在VDD的参考电压电势(CMOS应用的常规漏电压)。对于光″0″到″1″转换,用于向累加支路36的终端1施加预加重脉冲的最大电压电平也定义为VDD。类似地,VDD电压电平用来定义消耗支路40上″1″到″0″转换的预加重脉冲的最高电平。也如图9中所示,常规的参考电压电平VSS用来定义累加支路36上″1″到″0″转换和消耗支路40上″0″到″1″转换的预加重脉冲的最大值。稳态的光″1″的参考电压电平定义为VDD和VSS之间的中点,消耗支路40上的逻辑″0″(REF0D)的参考电压大于这个中点值,但是小于VDD,而累加支路36上逻辑″0″的参考电压(REF0A)小于这个中点值,但是大于VSS。
在硅中光的速度大约是0.833×108米/秒。因为本发明的一个示例性的调制器的长度大约为1mm(典型值),所以光信号从调制器的输入到输出的传播时间大约是12psec。对于特别适合本发明的相对高速的应用,12psec可能变成比特周期的重要部分,从而导致误码率的增加。因此,与本发明的改进的实施例相关,区50和60的电触点被放置在沿调制器活动波导区域长度的″扇形展开″配置中。图7说明沿区50的长度放置的多个第一触点54和沿区60的长度放置的多个第二触点82。如果给″终端2″和″终端1″区制作触点,则一系列触点可以在如图7所示的每个区上形成。每个触点或小群的触点可以由分开的金属线(未示出)和晶体管(也未示出)加能,它们在相同时间沿着全长形成开和关该装置的平行分布网络,而在该装置的一端和另一端之间没有传播延迟差。然而应当懂得,有一些解决方案希望在输入和输出之间给予一个时间延迟(例如,将负的啁啾声引入信号),所以在那些情况下需要相对少的触点、或者只需要一个触点。
如上所述,依据确定恰当的参考电压电平和依据确定预加重脉冲的幅度、极性和持续时间,存在着可以影响电-光调制器性能的制造和环境差异。制造的偏差(比如掺杂密度差异)可以在制造过程结束的时候来研究以确定最佳电压电平和持续时间,这些信息存储在与调制器共同设置的存储元件(比如非易失性存储器查找表)中(存储元件是在芯片内或芯片外的)。更重要地,按照需要,反馈安排可用于连续地监视调制器的光输出并调整一个或多个控制信号以保持最佳输出信号。反馈安排还可以提供查找表常数的自适应的实时更新。
图10以方框图形式说明本发明的一个示例性的调制器安排,包括调制器输出和均衡器/预加重电路18之间的一个反馈回路。如图所示,一部分调制的输出信号(优选地是相对小的部分)从输出中被分出并作为光电二极管90的输入,光电二极管90把光信号转换成电信号。在这个特定的实施例中,光电二极管90的模拟电输出则经过模/数转换器91形成数字反馈信号。然后该数字反馈信号作为输入加到微控制器92。然后使用数字信号处理技术分析这个数字反馈信号的特性并与预定义的″控制″值(可能已经存储在查找表94中)比较以评定调制器的性能。实际上,随着可能发生的不同环境的变化(温度偏离、电源电压变动等等),可能需要改变施加给预加重电路18的一个或多个参考值(包括预加重脉冲的幅度和持续时间)。因此,与不同的工作条件有关的一组不同的参考电压值也可以存储在查找表94中并作为调整输入发送到预加重电路18。包括系统接口96并且可用来与外部控制系统(未示出)接口以便向集中记录保持设备发送有关电路调整的信息和/或从集中控制源接收更新信息(或许包括数字控制电路92中使用的算法的改变)。
图11说明反馈安排的另一个实施例,可以与根据本发明形成的电-光调制器一起使用。在这种情况下,分出的输出信号又被光电二极管90转换成模拟电信号。在这个安排中,电信号作为输入加在模拟反馈电路98,模拟反馈电路98对输出信号执行一个或多个分析,提供经过模/数转换器99的多个输出,然后作为输入加在数字逻辑元件100。因此模拟反馈电路98和数字逻辑元件100的组合用来控制不同的均衡器/预加重参数。这些参数例如包括预加重幅度、持续时间和极性;参考电压幅度和累加和/或消耗信号幅度。如图11中所示的,一个特定实施向被控制的每个参数分配一个不同的低频″抖动″信号(f1、f1、…)。8然后模拟反馈电路9用来分开这些选定的控制频率的每个控制频率,在将它们作为输入加到数字逻辑元件100之前生成一组控制″签名″信号。模拟反馈电路98还用适当的循环时间常数调节每个控制信道以消除不稳定性。在经由模/数转换器99数字化之后,提供该控制信号作为数字逻辑元件100内数字逻辑门系统的输入,该门被安排用于最大化(或最小化)特定的控制信号。然后逻辑门的输出使用预定的算法(可能是固定的或自适应的)恰当地修改均衡器参数。数字逻辑元件100的输出也可以作为输入经系统接口102加在外部控制系统(未示出),用于错误报告和/或新的、更新算法的安装。然后提供给数字逻辑元件100的值用来确定预加重电路18所用的电压电平和/或脉冲持续时间的变化。
应当懂得,本发明的预加重技术可应用于任何类型的硅基电-光调制器。按照Mach-Zehnder干涉仪,该技术可以与对称的干涉仪(即沿每个支路的输入光信号的50∶50拆分)一起使用以及用作不对称的干涉仪(不等分)。尽管上述的特定安排把一个终端(在这种情况下是″终端2″)保持在恒定参考值,同时改变剩余终端的参考值,然而也可能向每个终端施加不同的电压电平和偏移以产生相同的预加重脉冲,以及光″1″和光″0″输出值。实际上,本发明的安排同样适用于与如具有非线的数字装置一样的线性调制器一起使用。关于预加重技术与其它类型调制器一起使用,图12说明一个示例性的基于吸收的调制器,其可以使用本发明的预加重技术来提高调制器的开关速度。
电吸收调制器可以用MOSCAP装置驱动来形成,最大化自由载体吸收。吸收可以通过调制电压来控制,从而在正确状况下,″0″(或低)调制信号使得来自光源的光信号被调制器部分地吸收(累加状态),而″1″(或高)调制信号使得调制器允许信号实质上未吸收地通过(消耗状态)。因此,随着电数据信号输入的变化,DC光输入信号实质上被吸收或不被吸收,产生调制光输出信号。图12(a)说明在累加状态的本发明的示例性电吸收调制器110。电吸收调制器110包括输入波导120,类似于上述的调制器,输入波导120包括SOI结构的相对薄的SOI层的选定部分。DC光输入信号Iin作为输入加在波导12055555。在这种情况下,通过掺杂硅(一般是多晶硅)层124(定义为″终端1″材料)的部分与掺杂SOI材料126(定义为″终端2″材料)的部分的重叠形成活动波导区域122。在这个实施例中,薄介质层放置在这些层之间(在图12的俯视图中看不见)。
为了获得这个特定结构中的光″0″输出,终端2被保持在预定的参考值(例如VDD),而终端1的电触点设置为与累加状态有关的值,累加状态将吸收足够量的光信号。从而,图12(a)的光输出表示为Iout0。图12(b)说明消耗状态中的电吸收调制器110,施加允许光信号沿着活动波导区域122基本上未改变传播有关的电压,从而输出代表光″1″并表示为Iout1。图13是与图12的安排有关的参考电压和驱动模型的图,根据本发明,在光″1″和光″0″之间的转换期间(即下降沿转换),与保持光″1″状态有关的相对高的电压降至VSS轨,以一个持续预定时间周期tA10的脉冲形式(脉冲A10)。在这个脉冲的末尾,施加到部分124的″终端1″材料的参考电压(REF0)则维持在与光″0″值有关的相对低的参考电压,这个电压稍微大于VSS。以类似的方式,在光″0″和光″1″之间转换期间(前沿转换),在回到与保持光″1″值有关的电压电平(REF1)之前,对于持续时间tD01的脉冲(脉冲DO1),该电压将增加到VDD轨。从而,如电光干涉仪的情况,通过在逻辑电平之间的初始转换期间加快自由载体的运动,根据本发明,电吸收调制器也可以提供提高的开关速度。
与马赫曾耳干涉仪相关的上述各种其它的调制器改进技术同样地适用于与电吸收调制器一起使用。例如,可以控制区124和126内的掺杂分布,从而在活动波导区域122中提供相对小的掺杂(优选地最小化光损耗)和在接触区中提供相对大的掺杂(优选地最大化开关速度)。此外,在活动波导区域122的输入和输出的光反射可以通过在多晶硅区域124的拓扑中包括锥体来最小化,通过光信号传播通过活动波导区域,该锥体引入看见的有效折射率的渐变。而且,转换时间不齐的问题可以使用沿着终端1触点(区124)和终端2(区126)形成的多个接触区来解决。
图14和15包含表示使用根据本发明的均衡/预加重的电-光调制器的开关速度改进的曲线图。图14中表示的值是与累加情况有关的模拟值,而在图15中表示的值是与消耗情况有关的模拟值。实际上,这些值可以与图6中所示的理想情况比较。对于图14中所示的非线性累加情况,施加到″终端2″(调制器结构的SOI层)的电压是恒定的,如曲线A所示,在这个例子中为值1.7V。对于没有预加重的安排,施加到多晶硅″终端1″的调制电压表示为曲线B,在0.65v的光″1″值和0.35V的光″1″之间切换。曲线C表示相同的调制电压,根据本发明的教导,在这种情况下包括预加重。在这种情况下,选择预加重脉冲具有这样的幅度,以至于脉冲在回到稳态光″1″值0.35V之前到达VSS。如图所示,加上预加重导致增加的终端1充电电流,具有由较大dv/dt所引起的较短的衰变时间(表示为曲线D)。在除去脉冲预加重之后,终端1充电电流归零,指示在比特间隔内达到所希望的光状态。对于这个例子,″1″到″0″和″0″到″1″的预加重电压幅度和持续时间是相等的。这不是必需的情况。
图15包含非线性消耗情况的类似结果,其中又施加到SOI层的(前一图形中的终端″2″)电压保持在值1.7V(即如上面讨论的,与用于累加支路使用的基本上相同的值)。标记为曲线B的、施加到终端″1″的切换电压表示为从值0.7V升高到1.3V。应当注意,要求幅度大约为累加情况有关的幅度的两倍的电压来产生相同的自由载体变化,从而在图4中所示的调制器的每个支路中实现大约π/2弧度的相移。曲线C表示施加到终端″1″的改变电压,包括根据本发明建议的预加重脉冲。如图15中所示的脉冲具有一个幅度,在消耗情况下施加到终端1的光″1″电压基本上等于在图14中所示的累加情况下施加到终端1的光″1″电压。这不是必需的情况。对于这个例子,″1″到″0″和″0″到1″的预加重电压幅度和持续时间是不等的,表示更一般的情况。如曲线D所示的,结果电流曲线图类似于图14的电流曲线图,表示依据具有微乎其微过冲的急剧上升和下降时间的改进,可以使用根据本发明的预加重来取得的速度改进的所有指示。
使用根据本发明的预加重的结果的开关速度的重要改进通过图16的曲线图也是很明显的,表示作为时间函数的载体浓度的变化。不使用预加重,很明显,上升沿和下降沿都存在显著的时间延迟,不能获得完全的光″1″或″光″0″自由载体浓度。相反,对于使用根据本发明的预加重的安排,上升沿和下降沿上的延迟大大地减少,在比特周期的重要部分中达到并保持光″1″和光″0″电平。
对于所属领域的技术人员将会产生本发明的其它实施例,本发明范围将由所附的权利要求书的条款和认可的等效物来定义。例如,通过适当颠倒所施加电压的极性,SOI层的p型掺杂和覆盖硅层的n型掺杂可以互换。另外,还可能存在这种情况,即只在数据模型的上升沿或下降沿(非线性情况)上需要预加重。而且如上所述,本发明的技术同样可适用于使用线性(例如AM)输入数据信号的系统。总之,因此认为本发明的范围仅仅由所附的权利要求书的范围来限定。
权利要求
1.一种产生由输入数据模型调制的高速光输出信号的装置,该装置包括一个电-光调制器,它响应光输入信号和调制电输入信号,用于生成调制的光输出信号;和放置在电-光调制器的电输入的均衡器/预加重模块,该均衡器/预加重模块用于在输入数据模型的第一数据值和第二数据值之间的每个转换处把预定幅度的预加重脉冲和预定的持续时间插入到该调制的电输入信号,该插入的预加重脉冲用于扩展电-光调制器的带宽而不增加它的光损耗。
2.如权利要求1定义的装置,其中该电-光调制器的输出是线性模拟信号。
3.如权利要求1定义的装置,其中该电-光调制器的输出是非线性数字信号。
4.如权利要求1定义的装置,其中该均衡器/预加重模块包括多个开关,用于把预加重脉冲信号切换入和切换出电调制信号,该多个开关通过在第一和第二数据值之间的转换得到控制。
5.如权利要求4定义的装置,其中该多个开关包括多个半导体装置。
6.如权利要求5定义的装置,其中该多个开关包括多个MOS通过晶体管。
7.如权利要求1定义的装置,其中选择该预加重脉冲的幅度以便提供期望的扩展的调制器带宽。
8.如权利要求1定义的装置,其中选择该预加重脉冲的持续时间以便提供期望的扩展的调制器带宽。
9.如权利要求1定义的装置,其中选择该预加重脉冲的幅度以及持续时间以便提供期望的扩展的调制器带宽。
10.如权利要求1定义的装置,其中该调制电输入信号是调制电流信号。
11.如权利要求1定义的装置,其中该调制电输入信号是调制电压信号。
12.如权利要求11定义的装置,其中该调制电压信号是低压信号,具有沿着该电-光调制器的范围在多个分开的接触位置施加的调制电压信号来提高调制器的开关速度。
13.如权利要求12定义的装置,其中分开的接触位置的数目至少部分地由被引入到已调制的光输出信号中的预定的啁啾声量所确定。
14.如权利要求1定义的装置,其中该均衡器/预加重模块的功能是在第二数据值和第一数据值之间的每个转换把预定幅度和预定持续时间的第二预加重脉冲插入到调制电输入信号中,第二预加重脉冲具有与第一预加重脉冲相反的极性,引入的第二预加重脉冲用于进一步扩展电-光调制器的带宽而不增加它的光损耗。
15.如权利要求14定义的装置,其中选择第二预加重脉冲的幅度以便提供期望的扩展的带宽。
16.如权利要求14定义的装置,其中选择第二预加重脉冲的持续时间以便提供期望的扩展的带宽。
17.如权利要求14定义的装置,其中选择第二预加重脉冲的幅度和持续时间以便提供期望的扩展的带宽。
18.如权利要求14定义的装置,其中该装置还包括一个控制模块,它响应调制的光输出信号的一部分,用于测量调制的光输出信号并确定来自如下组中的至少一个操作参数的最佳值第一预加重脉冲持续时间、第二预加重脉冲持续时间、第一预加重脉冲幅度和第二预加重脉冲幅度。
19.如权利要求18定义的装置,其中该控制模块提供确定的最佳值给均衡器/预加重装置以便在制造过程完成时设置插入的第一和第二预加重脉冲的工作特性。
20.如权利要求18定义的装置,其中该控制模块包括一个反馈元件,它连续地测量调制的光输出信号的一部分并与改变操作条件结合来更新第一和第二预加重脉冲的幅度和持续时间值。
21.如权利要求20定义的装置,其中该控制模块还包括一个查找表,该查找表包括与改变操作条件相关的预加重脉冲幅度和持续时间值的列表。
22.如权利要求21定义的装置,其中相对于存储在该查找表中的预加重脉冲幅度和持续时间值的实时更新,该控制模块是自适应的。
23.如权利要求21定义的装置,其中该控制模块包括一个接口来接受来自外部源对于查找表数值的更新。
24.如权利要求1定义的装置,其中该电-光调制器包括一个基于自由载体的调制器,它利用载体密度的变化来生成调制光输出信号。
25.如权利要求24定义的装置,其中该基于自由载体的调制器包括具有第一传导性类型的自由载体掺杂物的第一元件,和具有第二相反传导性类型的自由载体掺杂物的第二元件,放置第一和第二元件使得形成一个波导并支持光信号从电-光调制器输入传播到电-光调制器输出,其中该调制电输入信号加在电-光调制器产生自由载体运动,以便调制第一和第二元件中的自由载体密度并在波导的折射指数中引入调制,从而生成调制的光输出信号,该插入的预加重脉冲加速在第一数据值和第二数据值之间的转换的自由载体运动。
26.如权利要求25定义的装置,其中选择该预加重脉冲的幅度使相对低的掺杂物浓度能够将预定的调制器开关速度的光损耗减到最少。
27.如权利要求25定义的装置,其中选择该预加重脉冲的持续时间使相对低的掺杂物浓度能够将预定的调制器开关速度的光损耗减到最少。
28.如权利要求25定义的装置,其中选择该预加重脉冲的幅度和持续时间使相对低的掺杂物浓度能够将预定的调制器开关速度的光损耗减到最少。
29.如权利要求28定义的装置,其中对于至少1Gb/s的调制器开关速度,掺杂物浓度不大于1×1019cm-3。
30.如权利要求25定义的装置,其中第一元件包括一个相对薄的单晶硅层,而第二元件包括一个硅层,该硅层放置到该相对薄的单晶硅层的一部分,具有分开第一和第二元件的相对薄的介质层。
31.如权利要求30定义的装置,其中第一和第二元件形成在硅绝缘体(SOI)平台内。
32.如权利要求25定义的装置,其中该电-光调制器是一个相位调制器,其中与预加重脉冲有关的自由载体密度的变化把预定的相位变化引入通过那里传播的光信号中。
33.如权利要求32定义的装置,其中该相位调制器是消耗模式的相位调制器。
34.如权利要求32定义的装置,其中该相位调制器是累加模式的相位调制器。
35.如权利要求32定义的装置,其中该相位调制器包括以相同模式工作的第一相位元件和第二相位元件。
36.如权利要求1定义的装置,其中该电-光调制器是一个干涉仪,包括一个分光器,它放置在该调制器输入,把光输入信号划分成为第一支路和第二支路;第一调制元件,它沿着第一支路放置,第一调制元件具有第一传导性类型的第一区域和第二传导性类型的第二区域;第二调制元件,它沿着第二支路放置,第二调制元件具有第一传导性类型的第一区域和第二传导性类型的第二区域;和一个光组合器,它放置在调制器输出,用于组合来自第一和第二支路的调制的光输出信号,其中该调制电输入信号施加到第一和第二调制元件中的至少一个调制元件以便产生调制的光输出信号。
37.如权利要求36定义的装置,其中该干涉仪是平衡的,以使该分光器提供基本相等量的光输入信号给第一支路和第二支路。
38.如权利要求36定义的装置,其中该干涉仪是不平衡的,其中该分光器提供不等的光输入信号给第一和第二支路。
39.如权利要求38定义的装置,其中不平衡的拆分是固定的。
40.如权利要求38定义的装置,其中不平衡的拆分是可调的。
41.如权利要求40定义的装置,其中该分光器的分光比在制造期间是可调的,以便获得期望的分光比。
42.如权利要求40定义的装置,其中该分光器的分光比是动态的和连续可调的。
43.如权利要求36定义的装置,其中第一调制元件以累加模式工作,而第二调制元件以消耗模式工作。
44.如权利要求36定义的装置,其中第一和第二调制元件都以累加模式工作,其中一个调制元件比另外一个调制元件更累加。
45.如权利要求36定义的装置,其中第一和第二调制元件都以消耗模式工作,其中一个调制元件比另外一个调制元件更消耗。
46.如权利要求36定义的装置,其中对于逻辑″1″数值,两个元件都是完全消耗。
47.如权利要求36定义的装置,其中与输入数据模型相关的调制电输入信号包括代表第一调制元件的逻辑″0″值的第一参考电压(REF0A)、代表第二调制元件的逻辑″0″值的第二参考电压(REF0D)、代表第一调制元件的逻辑″1″值的第三参考电压(REF1A)以及代表第二调制元件的逻辑″1″值的第四参考电压(REF1D),其中未调制的可能电压(REF)施加到每个调制元件的一个区域。
48.如权利要求47定义的装置,其中选择第一和第二参考电压电平以使调制的光输出信号最小化。
49.如权利要求47定义的装置,其中选择第三和第四参考电压电平以使调制的光输出信号最大化。
50.如权利要求47定义的装置,其中当第一支路的长度基本上等于第二支路并且第一支路中的掺杂浓度基本上等于第二支路中的掺杂浓度时,第三参考电压基本上等于第四参考电压。
51.如权利要求47定义的装置,其中第三参考电压不等于第四参考电压。
52.如权利要求47定义的装置,其中第三参考电压和第一参考电压之间的差值基本上等于第四参考电压和第二参考电压之间的差值,以便取得在第一和第二支路中基本上相等的自由载体变化。
53.如权利要求47定义的装置,其中选择第三参考电压和第一参考电压之间的差值以及第四参考电压和第二参考电压之间的差值,以便取得沿着第一支路基本上π/2相移以及沿着第二支路基本上π/2相移。
54.如权利要求47定义的装置,其中该调制电输入信号只加到第一支路并且选择第三和第一参考电压之间的差值以便取得基本上等于调制的第一支路和未调制的第二支路之间π的相移。
55.如权利要求47定义的装置,其中该调制电输入信号只加到第二支路并且选择第四和第二参考电压之间的差值,以便取得基本上等于调制的第二支路与未调制的第一支路之间π的相移。
56.如权利要求47定义的装置,其中选择第三参考电压和第一参考电压之间的差值以及第四参考电压和第二参考电压之间的差值,以便取得沿着第一支路的第一随机相移以及沿着第二支路的第二随机相移。
57.如权利要求47定义的装置,其中选择第三参考电压和第一参考电压之间的差值以及第四参考电压和第二参考电压之间的差值,以便取得沿着第一支路的π相移的第一部分以及沿着第二支路的π相移的第二部分,因此引入总数为n的相移。
58.如权利要求47定义的装置,其中该装置还包括一个反馈模块,响应调制的光输出信号,调节由以下组成的组中选择的至少一个调制器参数以便优化作为时间函数的调制器性能第一、第二、第三和第四参考电压,未调制的可能电压,预加重脉冲幅度和预加重脉冲持续时间。
59.如权利要求58定义的装置,其中分开的低频控制信号加到每个选择的调制器参数上,和该反馈模块还包括一个模拟反馈元件,通过滤波存在于调制的光输出信号中的每个低频控制信号分量来分开,然后该反馈模块能够分析恢复的低频信号以便确定对与一定的低频信号相关的特定调制器参数进行调节。
60.如权利要求58定义的装置,其中该反馈模块还包括一个光电检测器,用于捕获一部分调制光输出信号并且把捕获的部分转换成为模拟电反馈信号;一个模数转换器,用于把该模拟电反馈信号转换成为多个数字反馈信号;和一个数字逻辑单元,它耦合到该模数转换器的输出,然后多个数字反馈信号由该数字逻辑单元使用数字信号处理技术进行分析。
61.如权利要求60定义的装置,其中该数字信号处理技术包括对于每个选定参数的一个或多个循环方程式的快速收敛算法。
62.如权利要求58定义的装置,其中该反馈模块还包括一个接口,用于与外部源通信以便更新该数字逻辑单元的过程。
63.如权利要求62定义的装置,其中该反馈模块通过该接口发送并且接收更新信息到在外部源的报告设备。
64.如权利要求58定义的装置,其中反馈模块还包括一个光电检测器,用于捕获一部分调制光输出信号并且把捕获的部分转换成为模拟电反馈信号;耦合到光电检测器的一个模数转换器,用于把该模拟电反馈信号转换成为数字电反馈信号;一个控制元件,响应该数字电反馈信号,确定调制的光输出信号质量的变化;和耦合到该控制元件的查找表,该查找表包括多个不同操作条件的每个调制器参数的多个不同值的列表,其中该控制元件使用调制的光输出信号中确定的变化从查找表中找到适当的调制器参数值。
65.如权利要求14定义的装置,其中该电-光调制器是吸收调制器,包括第一传导性类型掺杂的第一半导体元件;和第二传导性类型掺杂的第二半导体元件,它们之间放置相对薄的介质层,其中对于光的″0″状态,该调制电输入信号的应用使得该光输入信号由第一和第二元件部分地吸收,并且对于光″1″状态,基本上不吸收;生成调制的光输出信号,预加重脉冲从而加速吸收状态和不吸收状态之间的变化。
66.如权利要求65定义的装置,其中选择该预加重脉冲的幅度使相对低掺杂浓度能够将预定的调制器开关速度的光损耗减到最少。
67.如权利要求65定义的装置,其中选择该预加重脉冲的持续时间使相对低掺杂浓度能够将预定的调制器开关速度的光损耗减到最少。
68.如权利要求65定义的装置,其中选择该预加重脉冲的幅度和持续时间使相对低的掺杂浓度能够将预定的调制器开关速度的光损耗减到最少。
69.如权利要求65定义的装置,其中该装置还包括一个控制模块,响应调制的光输出信号的一部分,用于测量调制的光输出信号并确定以下组中选择的至少一个操作参数的最佳值第一预加重脉冲持续时间、第二预加重脉冲持续时间、第一预加重脉冲幅度和第二预加重脉冲幅度。
70.如权利要求69定义的装置,其中该控制模块提供确定的最佳值给均衡器/预加重装置以便在吸收调制器制造过程完成时设置插入的第一和第二预加重脉冲的工作特性。
71.如权利要求69定义的装置,其中该控制模块包括一个反馈元件,连续地测量调制的光输出信号的一部分并与改变操作条件结合更新第一和第二预加重脉冲的幅度和持续时间值。
72.如权利要求69定义的装置,其中该控制模块还包括一个查找表,该查找表包括与变化的操作条件相关的预加重脉冲幅度和持续时间值的列表。
73.一种基于自由载体的电-光干涉仪,包括第一支路,它包括第一光波导;第二支路,它包括第二光波导;一个分光器,用于把光输入信号划分成为耦合到第一支路中的第一输入信号和耦合到第二支路中的第二输入信号;第一调制元件,沿着第一支路放置,第一调制元件具有第一传导性类型的第一区域和第二传导性类型的第二区域;第二调制元件,沿着第二支路放置,第二调制元件具有第一传导性类型的第一区域和第二传导性类型的第二区域;一个光组合器,放置在第一和第二支路的输出来组合来自第一和第二支路的输出光信号,其中电调制信号加到第一和第二调制元件中的至少一个调制元件以便形成调制的光输出信号;和一个电信号源,用于生成代表第一调制元件的逻辑″0″值的第一参考电压(REF0A)、表示第二调制元件的逻辑″0″值的第二参考电压(REF0D)、代表第一调制元件的逻辑″1″值的第三参考电压(REF1A)、代表第二调制元件的逻辑″1″值的第四参考电压(REF1D)以及加到每个调制元件的一个区域上的未调制的可能电压(REF)。
74.如权利要求73定义的装置,其中选择第一和第二参考电压电平以使调制的光输出信号最小化。
75.如权利要求73定义的装置,其中选择第三和第四参考电压电平以使调制的光输出信号最大化。
76.如权利要求73定义的装置,其中第一调制元件以累加模式工作,而第二调制元件以消耗模式工作。
77.如权利要求73定义的装置,其中第一和第二调制元件都以累加模式工作,一个调制元件比另外一个调制元件更累加。
78.如权利要求73定义的装置,其中第一和第二调制元件都以消耗模式工作,一个调制元件比另外一个调制元件更消耗。
79.如权利要求73定义的装置,其中对于逻辑″1″值,第一和第二调制元件都是完全消耗。
80.如权利要求73定义的装置,其中当第一支路的长度基本上等于第二支路,并且第一支路中的掺杂浓度基本上等于第二支路中的掺杂浓度时,第三参考电压基本上等于第四参考电压。
81.如权利要求73定义的装置,其中第三参考电压不等于第四参考电压。
82.如权利要求73定义的装置,其中第三参考电压和第一参考电压之间的差值基本上等于第四参考电压和第二参考电压之间的差值以便取得第一和第二支路中基本上相等的自由载体变化。
83.如权利要求73定义的装置,其中选择第三参考电压和第一参考电压之间的差值以及第四参考电压和第二参考电压之间的差值以便取得沿着第一支路的基本上π/2相移以及沿着第二支路的基本上π/2相移。
84.如权利要求73定义的装置,其中该调制电输入信号只加到第一支路,并且选择第三和第一参考电压之间的差值以便取得基本上等于调制的第一支路和未调制的第二支路之间的π相移。
85.如权利要求73定义的装置,其中该调制电输入信号只加到第二支路,并且选择第四和第二参考电压之间的差值以便取得基本上等于调制的第二支路与未调制的第一支路之间的π相移。
86.如权利要求73定义的装置,其中该装置还包括一个反馈模块,响应调制的光输出信号,调节由以下组成的组中选择的至少一个调制器参数第一、第二、第三和第四参考电平,未调制的可能电压,预加重脉冲幅度和预加重脉冲持续时间,以便优化作为时间函数的干涉仪性能。
87.如权利要求86定义的装置,其中分开的低频控制信号加到每个选择的调制器参数上,并且该反馈模块还包括一个滤波器,用于分出在调制的光输出信号中的每个低频控制信号分量,然后该反馈模块能够分析恢复的低频信号以便确定对选择的干涉仪参数的调节。
88.如权利要求86定义的装置,其中该反馈模块还包括一个模数转换器,用于产生多个数字反馈信号,然后该多个数字反馈信号由反馈模块使用数字信号处理技术进行分析。
89.如权利要求1定义的装置,其中该均衡器/预加重模块的输出阻抗趋近理想的电压源,使得极小影响电-光调制器的开关速度。
全文摘要
一个实现开关速度大于1Gb/s电-光调制器装置使用预加重脉冲加快用于形成电-光调制器的光波导的折射率的变化。在一个实施例中,可以添加反馈回路以便使用一部分调制的光输出信号来调整预加重脉冲的幅度和持续时间,以及用于调制的各个参考电平。对于包括硅基电-光调制器的基于自由载体的电-光调制器,在输入信号数据值之间转换时预加重脉冲用来加快自由载体的运动。
文档编号H04B10/04GK1784842SQ200480012311
公开日2006年6月7日 申请日期2004年5月10日 优先权日2003年5月8日
发明者卡尔潘都·夏斯特里, 普拉卡什·约托斯卡, 马格利特·吉龙, 威普库马·帕特尔, 罗伯特·凯斯·蒙特哥莫里, 索哈姆·帕塔克, 凯瑟琳·A·亚努舍弗斯奇 申请人:斯欧普迪克尔股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1